Math 290-1 Class 10

Friday 19th October 2018

Subspaces

A subspace of \mathbb{R}^n is a set U of *n*-dimensional vectors which is closed under linear combinations. Thus if \vec{u} and \vec{v} are in U, then $a\vec{u} + b\vec{v}$ is in U for all scalars a and b. Some examples:

- The subspaces of \mathbb{R}^2 are: \mathbb{R}^2 itself; any line through the origin; and the point at the origin.
- The subspaces of \mathbb{R}^3 are: \mathbb{R}^3 itself; any plane through the origin; any line through the origin; and the point at the origin.

Note that the zero vector $\vec{0}$ is in *all* subspaces—it is the linear combination of no vectors at all!

Span, kernel and image

The span of a set of vectors is the set of linear combinations of those vectors. For example

$$\operatorname{span}(\vec{u}, \vec{v}, \vec{w}) = \{a\vec{u} + b\vec{v} + c\vec{w} \mid a, b, c \text{ scalars}\}$$

Spans are subspaces, since any linear combination of linear combinations is a linear combination.

Given a linear transformation $T : \mathbb{R}^n \to \mathbb{R}^m$:

- The kernel of T is the set ker(T) of solutions \vec{x} in \mathbb{R}^n to the equation $T(\vec{x}) = \vec{0}$.
- The image of T is the set im(T) of vectors \vec{b} in \mathbb{R}^m such that the equation $T(\vec{x}) = \vec{b}$ has a solution. [That is, im(T) consists of all vectors of the form $T(\vec{x})$.]

For an $m \times n$ matrix A, define ker(A) and im(A) analogously. Some remarks:

- The kernel of $T : \mathbb{R}^n \to \mathbb{R}^m$ is a subspace of \mathbb{R}^n , and the image of T is a subspace of \mathbb{R}^m .
- The image of a matrix A is the span of the columns of A. (Why?)
- The kernel of a matrix A can be found by solving the system $A\vec{x} = \vec{0}$ and expressing the result as a linear combination of constant vectors in \mathbb{R}^n —these are the vectors that span the kernel.

Some remarks regarding invertibility:

- An $n \times n$ matrix A is invertible if and only if ker $(A) = \{\vec{0}\}$ —this says that the zero vector is the unique solution to the equation $A\vec{x} = \vec{0}$.
- An $n \times n$ matrix A is invertible if and only if $im(A) = \mathbb{R}^n$ —this says that the equation $A\vec{x} = \vec{b}$ has a solution for all \vec{b} in \mathbb{R}^n .

1. Find the kernel and image of each of the following matrices, expressing your answers as a span of as few vectors as you can.

(a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}$$

(b)
$$B = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1 & 0 & 0 & 0 \end{pmatrix}$$

(c)
$$C = \begin{pmatrix} 15 & 94 & 43 & 72 & 55 & 13 \\ 0 & 81 & 46 & 46 & 21 & 54 \\ 0 & 0 & 62 & 58 & 32 & 30 \\ 0 & 0 & 0 & 49 & 29 & 11 \\ 0 & 0 & 0 & 0 & 40 & 62 \\ 0 & 0 & 0 & 0 & 0 & 12 \end{pmatrix}$$

2. Let $\vec{v} = \begin{pmatrix} 3 \\ -1 \\ 2 \end{pmatrix}$ be a nonzero vector in \mathbb{R}^3 . Show that the kernel of the linear transformation $\operatorname{proj}_{\vec{v}} : \mathbb{R}^3 \to \mathbb{R}^3$ is the plane defined by 3x - y + z = 0, and express this plane as the span of two vectors.