1. Find the matrix of the linear transformation Q ; R? — [R? that reflects each vector through the

line y = x.
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2. Find the matrix of the linear transformation R : R — R? that scales each vector by a factor
of 2 and then reflects it in the (x,y)-plane.
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3. Find the matrix of the linear transformation S : R? — R3 that rotates each vector by @ radians
about the y-axis.

Note: y-axis Memeins Rued
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4. Given a fixed nonzero vector &, use the following three facts to find an explicit formuta for
the linear map proj; : R — R".
(i) ¥ = ka for some scalar k (since 7 is parallel to )
(ii) v -a@ =0 (since ¥ is perpendicular to @)
(i) v=v"4+v"
[Hint: start by writing v~ in terms of V and ¥ in equation (ii).]
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Find the orthogonal projection of ( 3 ) onto the vector (O)
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5. Let £ be a line through the origin in R” which is parallel to a vector &, Find an expression for
the linear transformation ref, : R" — R” that reflects each vector ¥ through the line £.
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Find the result of reflecting the vector ( 3 ) through the line which passes through the
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origin and is parallel to the vector (0)
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