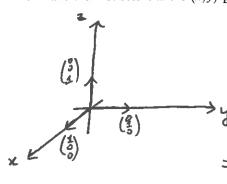


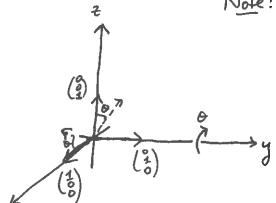
- $Q\begin{pmatrix} 1\\ 0 \end{pmatrix} = \begin{pmatrix} 0\\ 1 \end{pmatrix}$
- $Q\binom{0}{1} = \binom{1}{0}$
- \Rightarrow The matrix of Q is $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

2. Find the matrix of the linear transformation $R: \mathbb{R}^3 \to \mathbb{R}^3$ that scales each vector by a factor of 2 and then reflects it in the (x, y)-plane.

1. Find the matrix of the linear transformation $Q: \mathbb{R}^2 \to \mathbb{R}^2$ that reflects each vector through the



- $R\begin{pmatrix} 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 2 \\ 0 \\ 0 \end{pmatrix}$
- $R\begin{pmatrix} z \\ z \end{pmatrix} = \begin{pmatrix} z \\ z \end{pmatrix}$
- $\begin{array}{cccc}
 y & R\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ -2 \end{pmatrix} \\
 \Rightarrow & \text{The matrix of } R \text{ is } \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{pmatrix}$
- 3. Find the matrix of the linear transformation $S: \mathbb{R}^3 \to \mathbb{R}^3$ that rotates each vector by θ radians about the y-axis.



Note: y-axis remains fixed (x, z)-plane

$$S\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} \cos \delta \\ 0 \\ \sin \delta \end{pmatrix}$$

$$S\begin{pmatrix} 0\\1\\0 \end{pmatrix} = \begin{pmatrix} 0\\1\\0 \end{pmatrix}$$

$$S\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} -\sin \Theta \\ 0 \\ \cos \Theta \end{pmatrix}$$

=> So the matrix of

$$\begin{pmatrix}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{pmatrix}$$

- **4.** Given a fixed nonzero vector \vec{a} , use the following three facts to find an explicit formula for the linear map $\operatorname{proj}_{\vec{a}} : \mathbb{R}^n \to \mathbb{R}^n$.
 - (i) $\vec{v}^{\parallel} = k\vec{a}$ for some scalar k (since \vec{v}^{\perp} is parallel to \vec{a})
 - (ii) $\vec{v}^{\perp} \cdot \vec{a} = 0$ (since \vec{v}^{\perp} is perpendicular to \vec{a})
 - (iii) $\vec{v} = \vec{v}^{\parallel} + \vec{v}^{\perp}$

[Hint: start by writing \vec{v}^{\perp} in terms of \vec{v} and \vec{v}^{\parallel} in equation (ii).]

(iii)
$$\Rightarrow$$
 $\overrightarrow{J} = \overrightarrow{J} - \overrightarrow{J}$ by (ii)

 $\Rightarrow 0 = \overrightarrow{J} \cdot \overrightarrow{a} = (\overrightarrow{J} - \overrightarrow{J}) \cdot \overrightarrow{a}$ by (ii)

 $\Rightarrow 0 = \overrightarrow{J} \cdot \overrightarrow{a} - \overrightarrow{J} \cdot \overrightarrow{a}$ since dot product is linear

 $\Rightarrow \overrightarrow{J} \cdot \overrightarrow{a} = \overrightarrow{J} \cdot \overrightarrow{a}$ by (i)

 $\Rightarrow (k\overrightarrow{a}) \cdot \overrightarrow{a} = \overrightarrow{J} \cdot \overrightarrow{a}$ by (i)

 $\Rightarrow k \cdot (\overrightarrow{a} \cdot \overrightarrow{a}) = \overrightarrow{J} \cdot \overrightarrow{a}$ since dot product is linear

 $\Rightarrow k = \overrightarrow{J} \cdot \overrightarrow{a}$ both sides)

 $\Rightarrow k = \overrightarrow{J} \cdot \overrightarrow{a}$ both sides)

Using (i) again, we have
$$proj_{\vec{a}}(\vec{r}) = \left(\frac{\vec{r} \cdot \vec{a}}{\vec{a} \cdot \vec{a}}\right) \vec{a} \quad \text{for all } \vec{r} \text{ in } \mathbb{R}^n$$

Find the orthogonal projection of
$$\begin{pmatrix} 2 \\ 3 \\ -1 \end{pmatrix}$$
 onto the vector $\begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}$.

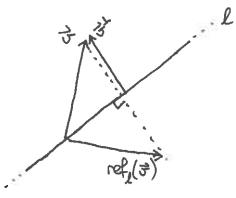
$$\vec{a} = 2 \times 1 + 3 \times 0 + (-1) \times 1 = 1$$

$$\vec{a} \cdot \vec{a} = 1 \times 1 + 0 \times 0 + 1 \times 1 = 2$$

$$\vec{a} \cdot \vec{a} = 1 \times 1 + 0 \times 0 + 1 \times 1 = 2$$

$$\vec{a} \cdot \vec{a} = 1 \times 1 + 0 \times 0 + 1 \times 1 = 2$$

5. Let ℓ be a line through the origin in \mathbb{R}^n which is parallel to a vector \vec{a} . Find an expression for the linear transformation $\operatorname{ref}_{\ell}: \mathbb{R}^n \to \mathbb{R}^n$ that reflects each vector \vec{v} through the line ℓ .



Note we can express refe in terms

ref_e(
$$\vec{\sigma}$$
) = $\vec{\sigma}$ - $2\vec{\sigma}$ | $\vec{\sigma}$ | \vec

Find the result of reflecting the vector $\begin{pmatrix} 2\\3\\-1 \end{pmatrix}$ through the line which passes through the origin and is parallel to the vector $\begin{pmatrix} 1\\0\\1 \end{pmatrix}$.

From Q4 we know that
$$\operatorname{proj}_{\begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} - \begin{pmatrix} \frac{2}{3} \\ -1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} - \begin{pmatrix} \frac{2}{3} \\ -1 \end{pmatrix}$$

$$= \begin{pmatrix} \frac{1}{3} \\ -\frac{1}{3} \end{pmatrix}$$

$$= \begin{pmatrix} -\frac{1}{3} \\ -\frac{1}{3} \end{pmatrix}$$