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Gauss—Jordan elimination

An m x n matrix is a grid of numbers with m rows and n columns.
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The entries of an m x n matrix A will be written a;;, where i represents the row (1 <i < m) and j
represents the column (1 < j < n) of the entry.
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An m x 1 matrix is called a column vector (or just vector), a 1 x n is called a row vector, and an
n X n matrix is called a square matrix. R” is the vector space of column vectors with » entries.
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An augmented matrix is a horizontal concatenation of an m X n matrix with an m X k matrix
(usually k =1 or k = m). When k = 1, the augmented matrix can be used to represent a linear

system.
12374 represents x+2y+3Z=4
45 6|7 P Ax+5y+67=1

We can do elementary row operations to augmented matrices just like we did for linear systems.
The goal is to put the left-hand matrix in reduced row-echelon form (rref).

2 0 0 2|2 [x1]— 2% + + 25 = 2
0 113 + x5= 3
—2| -4 [X4] — 2¢5s = —4

0= 0

Setting non-leading variables (in this case x; and x5) equal to parameters and solving for the leading
variables (in this case xi, x3 and x4) provides a parametrised solution to the linear system.



Examples

1. [Bretscher §1.2 Q18] Determine which of the following (possibly augmented) matrices are in
reduced row-echelon form; if it isn’t, say why not.
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2. [Bretscher §1.2 Q6, modified] Consider the following linear system.

x1 — Txp + x5=3
X3 — 2x5 =2
x4+ x5=1

Write down the augmented matrix representing the system.

Find all solutions to the system.



3. [Bretscher §1.2 Q11, modified] Use Gauss—Jordan elimination to solve the following linear
system.

X1 2x3 +4x4 = —8
X2 — 3)63 — X4 = 6

3x; + 4xp — 6x3 + 8xq = 0
— xp 4+ 3x3 +4xg = —12



