15-151 Homework 8

Please submit in class at 8:00am on Tuesday 1st August

Exercises

In the following exercises, the notation [n], for $n \in \mathbb{N}$, refers to the set $\{k \in \mathbb{N} \mid 1 \leq k \leq n\}$.

- 1. For each $a \in [14]$ coprime to 14, find a multiplicative inverse for a modulo 14 and the order of a modulo 14. [4 points]
- 2. The parts of this question form a proof of Fermat's little theorem. Throughout this question, p is a prime modulus and a is an integer not divisible by p.
 - (a) Explain why each element of [p-1] is coprime to p. [1 points]
 - (b) Prove that, for each $x \in [p-1]$, there exists an element of $\{a, 2a, \ldots, (p-1)a\}$ which is congruent to x modulo p. [3 points]
 - (c) Prove that, for all $k, \ell \in [p-1]$, if $ka \equiv \ell a \mod p$, then $k = \ell$. [3 points]
 - (d) Use parts (b) and (c) to prove that $(p-1)! \equiv a^{p-1}(p-1)!$. [3 points] *Hint:* $a^{p-1}(p-1)! = a \times 2a \times \cdots \times (p-1)a$.
 - (e) Explain why this implies that $a^{p-1} \equiv 1 \mod p$. [2 points]
- 3. Find the last two digits of $7^{7^{7'}}$. Hint: recall from class that $7^4 \equiv 1 \mod 100$.
- 4. For each of the following functions, determine (with proof) whether it is injective and whether it is surjective.
 - (a) $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ defined by $f(m, n) = 2^m(2n+1)$ for all $(m, n) \in \mathbb{N} \times \mathbb{N}$. [5 points]
 - (b) $q: \mathbb{Z} \times (\mathbb{Z} \setminus \{0\}) \to \mathbb{Q}$ defined by $q(a, b) = \frac{a}{b}$ for all $(a, b) \in \mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$. [5 points]

Project milestone

Complete the questionnaire located at the following URL:

[6 points]