15-151 Homework 6

Please submit in class at 8:00am on Tuesday 25th July

Exercises

1. Let $S : \mathbb{Z} \to \mathcal{P}(\mathbb{Z})$ be any function, and define a subset $B \subseteq \mathbb{Z}$ by

$$B = \{ n \in \mathbb{Z} \mid n \notin S(n) \}$$

Prove that there is no $k \in \mathbb{Z}$ such that B = S(k).

Hint: suppose B = S(k) for some $k \in \mathbb{Z}$, and consider whether $k \in B$. [6 points]

2. Let A, B, X be sets such that $A \cap B = \emptyset$, and let $f : A \to X$ and $g : B \to X$ be functions. Define $h : A \cup B \to X$ by letting

$$h(t) = \begin{cases} f(t) & \text{if } t \in A \\ g(t) & \text{if } t \in B \end{cases}$$

Prove that $\operatorname{Gr}(h) = \operatorname{Gr}(f) \cup \operatorname{Gr}(g)$.

3. Use the Euclidean algorithm to compute the greatest common divisors of the following pairs of integers:

(42, 30) (363, 154) (8085, 3094)

Include the steps of the computation in your written solution.

- 4. For each $n \in \mathbb{Z}$, let $D_n \subseteq \mathbb{Z}$ be the set of divisors of n. Prove that $D_a \cap D_b = D_{\text{gcd}(a,b)}$ for all $a, b \in \mathbb{Z}$. [7 points]
- 5. Let $a, b \in \mathbb{Z}$ and suppose that d_1 and d_2 are greatest common divisors of a and b. Prove that either $d_1 = d_2$ or $d_1 = -d_2$. [7 points]

[6 points]

[9 points]