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Abstract. We characterize the class of definable families of coun-
table sets for which there is a single countable definable set inter-
secting every element of the family.

1. Introduction

A set P punctures a family of sets A if its intersection with each
set in A is non-empty. This notion was isolated by Spencer, and
provides a uniform way of handling many results in finite combinatorics.
The basic problem studied in [Spe74] is to find puncture sets of small
cardinality for finite families of finite sets. The arguments are primarily
probabilistic in nature. As the author remarks and as is often the case
in finite combinatorics, the bounds obtained through this approach
yield better results than those obtained through explicit constructions.

On the other hand, if a family of sets of bounded finite cardinality
admits a finite puncture set, then there is such a set which is explicitly
constructible, and therefore definable, from the family. This follows
from the observation that the family of puncture sets of minimal car-
dinality is itself finite (by a straightforward induction), thus the union
of all such sets is as desired. This fact is quite useful in the descrip-
tive set-theoretic setting. For instance, it was an important component
of the proof of a recent result of Clemens-Conley-Miller, generalizing
the Glimm-Effros dichotomy from Polish spaces to quotients of Polish
spaces by countable Borel equivalence relations (see [CCM11]). Other
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recent results of Marks-Miller and Miller rely on the same observation
(see [MM11, Mil11b]), suggesting that such arguments are not isolated
phenomena, and that there may be value in studying related notions.

The picture changes significantly for families of infinite sets. Suppose
that κ is an infinite cardinal and X is a set, and let [X]<κ denote the
family of subsets of X of cardinality strictly less than κ. It is clear
that every infinite set A ∈ [X]<κ punctures the corresponding family
A = {B ∈ [X]<κ | A ∩ B is infinite}. However, since the group of
transpositions of X acts transitively on X and fixes A setwise, no
proper subset of X is in any reasonable sense definable from A .

Nevertheless, it is possible to define countable puncture sets from
appropriate witnesses to the definability of the families in question.
Generalizing the perfect set theorem, Przymusiński has shown that
an analytic family of finite subsets of a Polish space has a countable
puncture set if and only if it does not have a pairwise disjoint subset of
cardinality c (see [Prz78, Theorem 1]), and Hohti has shown that this
characterization continues to hold for analytic families of countable
subsets of Polish spaces (see [Hoh88, Theorem 2.1]). Moreover, it is
easy to extract definitions of the corresponding puncture sets from the
proofs. Here we generalize these results beyond Polish spaces.

Before proceeding further, we must first introduce some terminology.
For each set X, let [X]≤ℵ0 denote the family of countable subsets of X.
The dual of a pointclass Γ is the pointclass Γ̆ of complements of sets
in Γ. Given an equivalence relation E on X and a set N , a lifting of
a sequence x ∈ (X/E)N is a sequence y ∈ XN such that y(i) ∈ x(i)
for all i ∈ N . Let `(x) denote the set of all such liftings. We say
that a set A ⊆ (X/E)N is Γ-measurable if its lifting

⋃
{`(x) | x ∈ A}

is in Γ, and we say that a family A ⊆ [X/E]≤ℵ0 is Γ-measurable if
{x ∈ (X/E)N | {x(n) | n ∈ N} ∈ A } is Γ-measurable.

Suppose that X is a class of Hausdorff spaces. In §2, we consider
pointclasses Γ which are κ-chromatic-on-X , in the sense that every Γ-
measurable ℵ0-dimensional digraph on a space X ∈X satisfies a weak
analog of the Kechris-Solecki-Todorcevic dichotomy theorem charac-
terizing the existence of Borel colorings (see [KST99, Theorem 6.4])
relative to κ. A number of such classes appear in the literature, begin-
ning with work of Lecomte (see [Lec09, Theorem 1.6]). We show that
all such pointclasses satisfy another somewhat technical generalization
of the original Kechris-Solecki-Todorcevic dichotomy theorem.

Suppose that X is a Hausdorff space. We say that a set Y ⊆ X is
weakly ℵ0-universally Baire if π−1(Y ) has the Baire property for every
continuous function π : 2N → X. In §3, we establish the following:
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Theorem. Suppose that κ is an infinite cardinal, X is a class of Haus-
dorff spaces, Γ is a κ-chromatic-on-X pointclass, X ∈ X , E is a
Γ̆-measurable, weakly ℵ0-universally Baire equivalence relation on X,
and A ⊆ [X/E]≤ℵ0 is Γ-measurable. Then at least one of the following
holds:

(1) There is a set of cardinality strictly less than κ puncturing A .
(2) There is a pairwise disjoint subset of A of cardinality c.

Moreover, if there is no surjection from a cardinal strictly less than κ
to c, then exactly one holds.

In §4, we use this result to establish refinements for several distin-
guished pointclasses, and we discuss the definability of the puncture
sets obtained from the proofs.

Unless specified otherwise, all of our arguments take place in ZF.

Acknowledgments. We would like to thank Alexander Kechris for
several suggestions, Stevo Todorcevic for pointing out [Hoh88, The-
orem 2.1], and Sy Friedman for hosting both the second and fourth
authors at the Kurt Gödel Research Center, Universität Wien, during
the production of this paper.

2. Chromatic pointclasses

In this section, we establish technical generalizations of the Kechris-
Solecki-Todorcevic dichotomy theorem characterizing analytic graphs
of uncountable Borel chromatic number. Although our results can be
proven via straightforward modifications of the known proofs of the
Kechris-Solecki-Todorcevic dichotomy theorem in the different contexts
we have in mind, we will instead show that a weak ℵ0-dimensional
analog of the Kechris-Solecki-Todorcevic dichotomy theorem abstractly
implies the result we desire.

Suppose that N is a set and S ⊆ N<N. We say that S is dense if
∀r ∈ N<N∃s ∈ S r v s, and S is sparse if |Nn ∩ S| ≤ 1 for all n ∈ N.
Underlying the main result of this section is the following observation:

Proposition 1. Suppose that C ⊆ NN is comeager, R ⊆ 2<N is sparse,
S ⊆ N<N is dense, and fi : R → N<N for i < 2. Then there is a
continuous function ϕ : 2N → C such that

∀r ∈ R∃s ∈ S∀c ∈ 2N∃b ∈ NN∀i < 2 ϕ(ra(i)ac) = safi(r)
ab.

Proof. We use s v t to denote extension, s @ t to denote strict exten-
sion, and both sat and

⊕
i<k si to denote concatenation of sequences.

We also use Ns to denote the basic open set determined by s. In order
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to avoid confusion, throughout this argument we use XY to denote the
family of all functions from X to Y .

Fix dense open sets Uk ⊆ NN such that
⋂
k∈N Uk ⊆ C. Clearly we can

assume that for each k ∈ N there is a unique sequence rk ∈ R ∩ <N2.
For each k ∈ N, fix an enumeration (ri,k)i<2k of k2. We will recursively
construct functions ϕk : k2→ <NN, beginning with the trivial function
ϕ0 : 02→ 0N.

Granting that we have found ϕk : k2 → <NN, recursively construct
an increasing sequence (ui,k)i<2k of non-empty sequences such that

∀i < 2k Nϕk(ri,k)aui,k ⊆ Uk.

Set uk = u2k−1,k, fix sk ∈ S such that ϕk(rk)
auk v sk, let vk denote the

unique sequence with the property that ϕk(rk)
auk

avk = sk, and define
ϕk+1 : k+12→ <NN by

ϕk+1(s
a(i)) = ϕk(s)

auk
avk

afi(rk)

for i < 2 and s ∈ k2.
Clearly ϕk(s) @ ϕk+1(s

a(i)) for i < 2, k ∈ N, and s ∈ k2, so we
obtain a continuous map ϕ : N2→ NN by setting ϕ(c) =

⋃
k∈N ϕk(c � k).

Note that if c ∈ N2, then Nϕk+1(c�(k+1)) ⊆ Uk for all k ∈ N, so

ϕ(c) ∈
⋂
k∈NNϕk(c�k) ⊆

⋂
k∈N Uk ⊆ C,

thus ϕ[N2] ⊆ C. Finally, note that if c ∈ N2, i < 2, and k ∈ N, then
ϕ(rk

a(i)ac) = sk
afi(rk)

ab, where b =
⊕

j>k uj
avj

afc(j−k−1)(rj).

Suppose that X is a set and κ is a cardinal. An ℵ0-dimensional di-
graph on X is a set G ⊆ XN of non-constant sequences. The restriction
of G to a set Y ⊆ X is the ℵ0-dimensional digraph G � Y on Y given by
G � Y = G ∩ Y N. We say that Y is G-independent if G � Y = ∅. A κ-
coloring of G is a map c : X → κ such that c−1({α}) is G-independent
for all α < κ. A (<κ)-coloring is a λ-coloring for some λ < κ. More
generally, a homomorphism from an ℵ0-dimensional digraph G on X
to an ℵ0-dimensional digraph H on Y is a function ϕ : X → Y sending
sequences in G to sequences in H.

Fix sequences sk ∈ Nk which are together dense in N<N, and define

G0(NN) = {(ska(i)ac)i∈N | c ∈ NN and k ∈ N}.

Suppose that κ is a cardinal, X is a class of Hausdorff spaces, and
Γ is a pointclass of subsets of Hausdorff spaces. We say that Γ is κ-
chromatic-on-X if every Γ-measurable ℵ0-dimensional digraph H on a
space X ∈ X satisfies the following weak form of the ℵ0-dimensional
analog of the Kechris-Solecki-Todorcevic dichotomy theorem: if there
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is no (<κ)-coloring of H, then there is a comeager set C ⊆ NN for
which there is a continuous homomorphism from G0(NN) � C to H.

A number of instances of this notion have appeared in the literature,
but we defer their mention until §4.

A digraph on X is an irreflexive set G ⊆ X × X. The notions of
restriction, independence, coloring, and homomorphism are defined for
digraphs exactly as for ℵ0-dimensional digraphs. A mixed κ-coloring
of a sequence G = (Gn)n∈N of digraphs on X is a function c : X → κ
such that for all α < κ, there exists n ∈ N for which c−1({α}) is Gn-
independent. A mixed (<κ)-coloring is a mixed λ-coloring for some
λ < κ. A homomorphism from a sequence G = (Gn)n∈N of digraphs on
X to a sequence H = (Hn)n∈N of digraphs on Y is a function ϕ : X → Y
sending pairs in Gn to pairs in Hn for all n ∈ N.

Fix sequences rk ∈ 2k which are together dense in 2<N. Then there
are natural numbers nk such that

∀n ∈ N {rk | k ∈ N and nk = n} is dense.

Let G0 = (G0,n)n∈N denote the sequence of digraphs on 2N given by

G0,n = {(rka(0)ac, rk
a(1)ac) | c ∈ 2N, k ∈ N, and nk = n}.

We say that Γ is mixed κ-chromatic-on-X if every sequence H =
(Hn)n∈N of Γ-measurable digraphs on a space X ∈ X satisfies the
following version of the Kechris-Solecki-Todorcevic dichotomy theorem:
if there is no mixed (<κ)-coloring of H, then there is a continuous
homomorphism from G0 to H.

Proposition 2. Suppose that κ is a cardinal, X is a class of Haus-
dorff spaces, and Γ is a κ-chromatic-on-X pointclass. Then Γ is mixed
κ-chromatic-on-X .

Proof. Suppose that X ∈ X and H = (Hn)n∈N is a sequence of Γ-
measurable digraphs on X. Let H denote the ℵ0-dimensional digraph
on X given by

(xn)n∈N ∈ H ⇐⇒ ∀n ∈ N x2n Hn x2n+1.

Note that a subset of X is H-independent if and only if it is Hn-
independent for some n ∈ N. In particular, it follows that there is a
(<κ)-coloring of H if and only if there is a mixed (<κ)-coloring of H,
so we can assume that there is a comeager set C ⊆ NN for which there
is a continuous homomorphism ϕ : C → X from G0(NN) � C to H. By
Proposition 1, there is a continuous function ψ : 2N → C such that

∀k ∈ N∃` ∈ N∀c ∈ 2N∃b ∈ NN∀i < 2 ϕ(rk
a(i)ac) = s`

a(2nk + i)ab.

Clearly ϕ ◦ ψ is a continuous homomorphism from G0 to H.
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3. The existence of small puncture sets

In the context of families of infinite sets, the existence of small punc-
ture sets is easy to characterize. Although this can be seen directly, we
will first note a somewhat more general fact.

From this point forward, it will be convenient to work with sets of
sequences A ⊆ X<κ in lieu of families of sets A ⊆ [X]<κ. Given a set
K ⊆ κ and a sequence x ∈ X<κ, we use x � K to denote the restriction
of x to the intersection of K with the domain of x, and we use x[K]
to denote the set of points of the form x(α), where α is in the domain
of x � K. Given a set A ⊆ X<κ, we use A � K to denote the set given
by A � K = {x � K | x ∈ A}. We say that a set P punctures A if
x[κ] ∩ P 6= ∅ for all x ∈ A.

Proposition 3 (ZFC). Suppose that κ is an infinite regular cardinal, X
is a set, and A ⊆ X<κ. Then for every non-empty set K ⊆ κ, exactly
one of the following holds:

(1) There is a set of cardinality strictly less than κ puncturing A �
K.

(2) There is a sequence (xα)α<κ of elements of A such that

∀α < β < κ xα[κ] ∩ xβ[K] = ∅.

Proof. It is clear that conditions (1) and (2) are mutually exclusive,
and the obvious transfinite recursion shows that at least one holds.

As promised, Proposition 3 gives a characterization of the existence
of small puncture sets:

Proposition 4 (ZFC). Suppose that κ is an infinite regular cardinal,
X is a set, and A ⊆ [X]<κ. Then exactly one of the following holds:

(1) There is a set of cardinality strictly less than κ puncturing A .
(2) There is a pairwise disjoint subset of A of cardinality κ.

Proof. Set A = {x ∈ X<κ | x[κ] ∈ A } and K = κ. Proposition
3 ensures that either there is a set of cardinality strictly less than κ
puncturing A, or there is a pairwise disjoint subset of A of cardinality
κ, which correspond to conditions (1) and (2) of the proposition.

Let ⊥ denote incomparability with respect to containment. Propo-
sition 3 also yields a natural situation in which the underlying space⋃

A is itself a small puncture set:

Proposition 5 (ZFC). Suppose that κ is an infinite regular cardinal,
X is a set, A ⊆ [X]<κ, and there is no sequence (Aα)α<κ of sets in A
such that ∀α < β < κ Aβ * Aα. Then |

⋃
A | < κ.
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Proof. Set A = {x ∈ X<κ | x[κ] ∈ A } and K = {0}. As
⋃

A is
the projection of A onto the 0th coordinate, Proposition 3 ensures that
|
⋃

A | < κ.

The following example shows that consistently the hypothesis of
Proposition 5 cannot be replaced with a natural weakening:

Example 6. Recall that a κ-Souslin tree is a (set-theoretic) tree of
height κ with no chains of length κ nor antichains of cardinality κ. If
T is such a tree and A = {{s ∈ T | s ≤ t} | t ∈ T}, then |

⋃
A | = κ

but for no sequence (Aα)α<κ of sets in A is it the case that either
∀α < β < κ Aα ⊆ Aβ or ∀α < β < κ Aα ⊥ Aβ.

Nevertheless, we will now establish strengthenings of these results in
the descriptive set-theoretic setting.

Given an equivalence relation E on X and a sequence x ∈ XN, let
[x]E denote the sequence in (X/E)N whose nth entry is [x(n)]E. For
each set A ⊆ XN, the quotient of A by E is the set A/E of sequences
obtained in this fashion.

Theorem 7. Suppose that κ is a cardinal, X is a class of Hausdorff
spaces, Γ is a mixed κ-chromatic-on-X pointclass, X ∈ X , E is a
Γ̆-measurable, weakly ℵ0-universally Baire equivalence relation on X,
and A ⊆ XN is Γ-measurable. Then for every non-empty set N ⊆ N,
at least one of the following holds:

(1) There is a set of cardinality strictly less than κ puncturing (A �
N)/E.

(2) There is a non-empty perfect set P ⊆ A such that for all distinct
points x, y ∈ P , the sets x[N]/E and y[N ]/E are disjoint.

Moreover, if there is no surjection from a cardinal strictly less than κ
to c, then exactly one holds.

Proof. If both conditions (1) and (2) hold as witnessed by a puncture
set B and a perfect set P , then each point of B intersects the range of
at most one sequence in (P � N)/E, thus there is a surjection from B
to (P � N)/E, and therefore from a cardinal strictly less than κ to c.

It remains to show that at least one of conditions (1) and (2) holds.
Fix a sequence (kn)n∈N of natural numbers for which N = {kn | n ∈ N},
and let H = (Hn)n∈N denote the sequence of digraphs on A given by

x Hn y ⇐⇒ ¬ x(kn) E y(kn).

Suppose that c is a mixed (<κ)-coloring of H, and fix λ < κ such
that c[A] ⊆ λ. For each α < λ, set Xα = c−1({α}) and Bα =
projkn [Xα], where n ∈ N is least for which Xα is Hn-discrete. Then
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the quotient of the set B =
⋃
α<λBα by E has cardinality at most λ

and punctures (A � N)/E.
Suppose, on the other hand, that there is a continuous homomor-

phism ϕ : 2N → X from G0 to H. For m,n ∈ N, define

Rm,n = {(c, d) ∈ 2N × 2N | ϕ(c)(m) E ϕ(d)(kn)}.

Lemma 8. Suppose that m,n ∈ N. Then Rm,n is meager.

Proof of lemma. As Rm,n = ((projm ◦ ϕ) × (projkn ◦ ϕ))−1(E), it has
the Baire property. Moreover, if c ∈ 2N and ψ : X → X × X is the
continuous function given by ψ(x) = (ϕ(c)(m), x), then [ϕ(c)(m)]E =
ψ−1(E), so the cth vertical section of Rm,n also has the Baire property,
since it can be expressed as

(Rm,n)c = (projkn ◦ ϕ)−1([ϕ(c)(m)]E) = (ψ ◦ projkn ◦ ϕ)−1(E).

By the Kuratowski-Ulam theorem (see, for example, [Kec95, Theorem
8.41]), it is therefore sufficient to show that for no c ∈ 2N does there
exist r ∈ 2<N for which the set C = (Rm,n)c is comeager inNr. Towards
this end, suppose that there is such an r, and fix k ∈ N such that
n = nk and r v rk. Then there exists d ∈ 2N for which the points of
the form di = rk

a(i)ad for i < 2 are in C. As d0 G0,n d1 and ϕ is
a homomorphism, it follows that ϕ(d0) Hn ϕ(d1). But the fact that
d0, d1 ∈ C ensures that ϕ(d0)(kn) E ϕ(c)(m) E ϕ(d1)(kn), the desired
contradiction.

Lemma 8 ensures that the set R =
⋃
m,n∈NRm,n is meager. By My-

cielski’s theorem (see, for example, [Kec95, Theorem 19.1]), there is a
continuous function ψ : 2N → 2N such that

∀c, d ∈ 2N (ψ(c) R ψ(d) =⇒ c = d).

It follows that (ϕ ◦ ψ)[2N] is the desired perfect set.

Theorem 7 gives a characterization of the existence of small puncture
sets in the descriptive set-theoretic setting:

Theorem 9. Suppose that κ is a cardinal, X is a class of Hausdorff
spaces, Γ is a mixed κ-chromatic-on-X pointclass, X ∈ X , E is a
Γ̆-measurable, weakly ℵ0-universally Baire equivalence relation on X,
and A ⊆ [X/E]≤ℵ0 is Γ-measurable. Then at least one of the following
holds:

(1) There is a set of cardinality strictly less than κ puncturing A .
(2) There is a pairwise disjoint subset of A of cardinality c.

Moreover, if there is no surjection from a cardinal strictly less than κ
to c, then exactly one holds.
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Proof. Set A = {x ∈ XN | x[N] ∈ A } and N = N. Theorem 7
ensures that either there is a set of cardinality strictly less than κ
puncturing A/E, or there is a perfect pairwise disjoint subset of A,
which correspond to conditions (1) and (2) of the theorem.

Theorem 7 also yields a natural situation in which the underlying
space

⋃
A is itself a small puncture set:

Theorem 10. Suppose that κ is a cardinal, X is a class of Hausdorff
spaces, Γ is a mixed κ-chromatic-on-X pointclass, X ∈ X , E is a
Γ̆-measurable, weakly ℵ0-universally Baire equivalence relation on X,
and A ⊆ [X/E]≤ℵ0 is Γ-measurable and has no pairwise incomparable
subsets of cardinality c. Then |

⋃
A | < κ.

Proof. Set A = {x ∈ XN | x[N] ∈ A } and N = {0}. As the projection
of A onto the 0th coordinate is

⋃
A , Theorem 7 ensures that |

⋃
A | <

κ.

The following example shows that the conclusion of Theorem 10
cannot be replaced with a natural strengthening:

Example 11. Set X = Q and A = {{q ∈ Q | q < r} | r ∈ R \ Q}.
Clearly A has no non-trivial pairwise incomparable subsets. As the
group of order-preserving permutations of Q acts transitively on X and
fixes A setwise, no proper subset of X is any reasonable sense definable
from A .

4. Applications

We say that a subset of a Hausdorff space is analytic if it is the
continuous image of a closed subset of NN.

Theorem 12. Suppose that X is a Hausdorff space, E is a co-analytic
equivalence relation on X, and A ⊆ [X/E]≤ℵ0 is analytic. Then ex-
actly one of the following holds:

(1) There is a countable set puncturing A .
(2) There is a pairwise disjoint subset of A of cardinality c.

Proof. By [Lec09, Theorem 1.6] (see also [Mil11a, Theorem 4]), the
pointclass of analytic sets is ℵ1-chromatic on Hausdorff spaces. Propo-
sition 1 therefore implies that it is mixed ℵ1-chromatic on Hausdorff
spaces, and since the Lusin-Sierpiński theorem ensures that co-analytic
subsets of 2N have the Baire property (see, for example, [Kec95, The-
orem 21.6]), Theorem 9 yields the desired result.
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Recall that an aleph is an infinite cardinal κ which can be well or-
dered. We say that a subset of a Hausdorff space is κ-Souslin if it is
the continuous image of a closed subset of κN. We say that a set is
(<κ)-Souslin if it is λ-Souslin for some λ < κ. Generalizing Theorem
12, we have the following:

Theorem 13. Suppose that κ is an uncountable aleph, X is a Haus-
dorff space, E is a co-(<κ)-Souslin, weakly ℵ0-universally Baire equiv-
alence relation on X, and A ⊆ [X/E]≤ℵ0 is (<κ)-Souslin. Then at
least one of the following holds:

(1) There is a set of cardinality strictly less than κ puncturing A .
(2) There is a pairwise disjoint subset of A of cardinality c.

Moreover, if there is no surjection from a cardinal strictly less than κ
to c, then exactly one holds.

Proof. By [Mil11a, Theorem 4], the pointclass of (<κ)-Souslin sets is
κ-chromatic on Hausdorff spaces. Proposition 1 therefore implies that
it is mixed κ-chromatic on Hausdorff spaces, so Theorem 9 yields the
desired result.

Remark 14. Recall that under AD, every subset of a Polish space has
the Baire property, thus the assumption that E is weakly ℵ0-universally
Baire is superfluous. Moreover, as AD also ensures that no uncountable
subset of an analytic Hausdorff space can be well-ordered, it follows
that if E is trivial then condition (1) can be strengthened to the exis-
tence of a countable set puncturing A .

The theory AD+ is a strengthening due to Woodin of AD (for an
introduction, see [CK11a] and the references therein). We say that
V is a natural model of AD+ if it is a model of AD+ and has the form
L(P(R)) or L(T,R) for some set T of ordinals.

Theorem 15 (V is a natural model of AD+). Suppose that X is a set,
E is an equivalence relation on X, and A ⊆ [X/E]≤ℵ0. Then exactly
one of the following holds:

(1) There is a well-orderable set puncturing A .
(2) There is a pairwise disjoint subset of A of cardinality c.

Proof. Given an aleph κ, we say that a subset of a topological space is
κ-Borel if it belongs to the closure of the open sets under the operations
of complementation and unions of length strictly less than κ. In the
context of determinacy, it is desirable to work with a uniform version
of this definition for Polish spaces, where a code (a set of ordinals)
describing the construction of the set in terms of basic open sets is
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provided. There are different ways of formalizing this approach, see
[CK11a] for details. Working in ZF, the theory DCR+“there is a fine
σ-complete measure on [R]≤ℵ0” is a consequence of AD+. As shown
in [CK11b], this theory implies that for all alephs κ there is an aleph
κ∗ such that the pointclass of κ-Borel sets is κ∗-chromatic on Polish
spaces, and therefore mixed κ∗-chromatic on Polish spaces. As V is a
natural model of AD+, the desired result follows from Theorem 9 by a
straightforward adaptation of the proof of [CK11a, Theorem 4.8].

The above arguments ensure that if A admits a small puncture set,
then such a set is constructible from an appropriate witness to the
definability of A . In many cases, much finer results can be obtained.
This can be achieved, for example, by placing strong assumptions on
the family in question:

Theorem 16. Suppose that X is a Hausdorff space, E is a co-analytic
equivalence relation on X, and A ⊆ [X/E]≤ℵ0 is analytic and has no
pairwise incomparable subsets of cardinality c. Then

⋃
A is countable.

Theorem 17. Suppose that κ is an uncountable aleph, X is a Haus-
dorff space, E is a co-(<κ)-Souslin, weakly ℵ0-universally Baire equiv-
alence relation on X, and A ⊆ [X/E]≤ℵ0 is (<κ)-Souslin and has no
pairwise incomparable subsets of cardinality c. Then |

⋃
A | < κ.

Theorem 18 (V is a natural model of AD+). Suppose that X is a set,
E is an equivalence relation on X, and A ⊆ [X/E]≤ℵ0 has no pairwise
incomparable subsets of cardinality c. Then

⋃
A is well orderable.

Theorems 16 – 18 are proved in a manner nearly identical to their
counterparts Theorems 12 – 15, with the exception that Theorem 10
must be used in place of Theorem 9.

Finer definability of puncture sets can also be achieved by employ-
ing a strengthening of κ-chromaticity in which the (<κ)-coloring is
required to be ∆-measurable, where ∆ = Γ ∩ Γ̆. This stronger notion,
which we refer to as measurable κ-chromaticity, holds of all of the point-
classes we have thus far utilized, and can be used to ensure that the
puncture sets we construct are in ∆. In particular, by applying [Lec09,
Theorem 1.6], we obtain the following (see [Mos09] for the details of
the effective theory):

Theorem 19. Suppose that X is a recursively presented Polish space,
E is a Π1

1 equivalence relation on X, and A ⊆ [X/E]≤ℵ0 is Σ1
1. Then

exactly one of the following holds:

(1) There is a countable ∆1
1 set puncturing A .

(2) There is a pairwise disjoint subset of A of cardinality c.
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Yet another approach is to use a parametrized version of κ-chromat-
icity (which itself follows from κ-chromaticity). We omit the details,
but note one result obtainable in this fashion:

Theorem 20 (V is a natural model of AD+). Suppose that X and Y
are sets, E is an equivalence relation on X, and A ⊆ [X/E]≤ℵ0 × Y .
Then exactly one of the following holds:

(1) There is a set R ⊆ ((X/E)× (X/E))×Y such that Ry is a well
ordering of a set puncturing A y for all y ∈ Y .

(2) For some y ∈ Y there is a pairwise disjoint subset of A y of
cardinality c.

Combining the latter two approaches, one can use a parametrized
form of measurable κ-chromaticity to obtain the following:

Theorem 21. Suppose that X and Y are Hausdorff spaces, E is a co-
analytic equivalence relation on X, and A ⊆ [X/E]≤ℵ0 × Y is analytic.
Then exactly one of the following holds:

(1) There is a Borel set B ⊆ X × Y such that By/E is a countable
set puncturing A y for all y ∈ Y .

(2) For some y ∈ Y , there is a pairwise disjoint subset of A y of
cardinality c.

Theorem 22. Suppose that κ is an uncountable aleph, X and Y are
Hausdorff spaces, E is a co-(<κ)-Souslin, weakly ℵ0-universally Baire
equivalence relation on X, and A ⊆ [X/E]≤ℵ0 × Y is (<κ)-Souslin.
Then exactly one of the following holds:

(1) There is a κ-Borel set B ⊆ X × Y such that By/E is a set of
cardinality strictly less than κ puncturing A y for all y ∈ Y .

(2) For some y ∈ Y , there is a pairwise disjoint subset of A y of
cardinality c.
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