Transformations of the Plane

JV Practice 11/8/20 Elizabeth Chang-Davidson

1 Warmup

1.1 Vectors and Converting from Polar to Cartesian Coordinates

- 1. What is the vector \vec{v} from the point (1,6) to the point (-7,2)?
- 2. What is the angle θ (in radians) associated with \vec{v} ? (This is the angle between the positive x-axis and \vec{v})
- 3. What is the magnitude m associated with \vec{v} ?

1.2 Transformations and Matrices

- 1. What is the reflection of (3,5) across the line x=0?
- 2. What is the reflection of (3,5) across the line y=-x?
- 3. More generally, how would you reflect a vector across the line x = 0? Can you represent this in matrix form? What about for the line y = -x?
- 4. What is the length of the projection of $\vec{p} = (3,5)$ onto the line y = 2x?
- 5. What is the translation of the point (5,-1) by \vec{v} ?

2 Some Useful Formulas

Cartesian representation of vector:

$$\vec{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = 2 \times 1 \text{ vector}$$

Matrix index convention:

$$M = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} = 2 \times 2 \text{ matrix}$$

Matrix multiplication on a vector:

$$M\vec{v} = \begin{bmatrix} M_{11}v_1 + M_{12}v_2 \\ M_{21}v_1 + M_{22}v_2 \end{bmatrix} = 2 \times 1 \text{ vector}$$

Dot product:

$$\vec{v} \cdot \vec{w} = v_1 * w_1 + v_2 * w_2 = \text{scalar}$$

Projection of \vec{v} onto \vec{w} :

$$\operatorname{proj}_{\vec{w}}(\vec{v}) = \frac{\vec{v} \cdot \vec{w}}{||\vec{w}||} * \frac{\vec{w}}{||\vec{w}||}$$

Finding the angle between two vectors:

$$||\vec{v}|| * ||\vec{w}|| * \cos(\theta) = \vec{v} \cdot \vec{w}$$

Matrix multiplication:

$$MN = \begin{bmatrix} M_{11} & M_{12} \\ M_{21} & M_{22} \end{bmatrix} \begin{bmatrix} N_{11} & N_{12} \\ N_{21} & N_{22} \end{bmatrix} = \begin{bmatrix} M_{11}N_{11} + M_{12}N_{21} & M_{11}N_{12} + M_{12}N_{22} \\ M_{21}N_{11} + M_{22}N_{21} & M_{21}N_{12} + M_{22}N_{22} \end{bmatrix} = 2 \times 2 \text{ matrix}$$

3 Formulas We Will Derive

3.1 Reflection

To reflect a point p across a line with normal vector $\vec{\ell}$, the resulting point q will be:

$$q = 2 * (\vec{p} \cdot \vec{\ell}) * \vec{\ell} - \vec{p}$$

Since $\vec{\ell}$ is a normal vector, we can represent it as $\ell_1 = \cos(\theta)$ and $\ell_2 = \sin(\theta)$. Our formula then becomes:

$$q = \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$$

3.2 Rotation

To rotate a point p around the origin by angle θ , the resulting point q will be:

$$q = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$$

3.3 Translation

To translate a point p by a vector \vec{v} , the resulting point q will be:

$$q = \begin{bmatrix} v_1 + p_1 \\ v_2 + p_2 \end{bmatrix}$$

3.4 Glide Reflection

A glide reflection is just a composition of a reflection and translation along the same line.

4 Problems

4.1 Exploring Properties of Transformations

- 1. Find the rotation matrix for $\theta = \frac{2\pi}{3}$. What is the result when (2, -6) is rotated by $\frac{2\pi}{3}$?
- 2. Find the reflection matrix for the line y = 2x. What is the result when the point (1,5) is reflected across this line?
- 3. What is the transformation matrix for rotating by $\frac{3\pi}{4}$ and then reflecting across the line y = 0? Does this correspond to any simpler transformation? If so, what?
- 4. What is the transformation matrix for reflecting across the line at $\frac{2\pi}{3}$ and then across the line at $\frac{\pi}{3}$? Does this correspond to any simpler transformation? If so, what?
- 5. What is the transformation matrix for reflecting across the line y = 4? What if you then reflect across the line y = 2? Can you simplify that? What if you then reflect across the line y = 1? Can you simplify that?
- 6. Find the rotation matrix for rotating by $\frac{\pi}{3}$. Now find the rotation matrix for rotating by $-\frac{\pi}{3}$. What do you get when you multiply them?
- 7. What are the fixed points under a rotation? Under a translation? Under a reflection?
- 8. Prove that rotations, reflections, translations, and glide reflections preserve collinearity.

4.2 Applying Geometry Concepts to Problems

- 1. A triangle with vertices A(0,2), B(-3,2), and C(-3,0) is reflected about the x-axis, then the image $\triangle A'B'C'$ is rotated counterclockwise about the origin by 90° to produce $\triangle A''B''C''$. What transformation will return $\triangle A''B''C''$ to $\triangle ABC$?
- 2. A piece of graph paper is folded once so that (0,2) is matched with (4,0), and (7,3) is matched with (m,n). Find (m,n).
- 3. In the Cartesian plane let A=(1,0) and $B=(2,2\sqrt{3})$. Equilateral triangle ABC is constructed so that C lies in the first quadrant. Let P=(x,y) be the center of $\triangle ABC$. Then $x \cdot y$ can be written as $\frac{p\sqrt{q}}{r}$, where p and r are relatively prime positive integers and q is an integer that is not divisible by the square of any prime. Find p,q, and r.
- 4. The points (0,0), (a,11), and (b,37) are the vertices of an equilateral triangle. Find the value of ab.
- 5. A bee starts flying from point P_0 . She flies 1 inch due east to point P_1 . For $j \geq 1$, once the bee reaches point P_j , she turns 30° counterclockwise and then flies j+1 inches straight to point P_{j+1} . When the bee reaches P_{2015} she is exactly $a\sqrt{b}+c\sqrt{d}$ inches away from P_0 , where a, b, c and d are positive integers and b and d are not divisible by the square of any prime. What is a+b+c+d?

6. A parabola with equation $y = ax^2 + bx + c$ is reflected about the x-axis. The parabola and its reflection are translated horizontally five units in opposite directions to become the graphs of y = f(x) and y = g(x), respectively. What is the form of y = (f + g)(x)?

7. The parabola with equation $p(x) = ax^2 + bx + c$ and vertex (h, k) is reflected about the line y = k. This results in the parabola with equation $q(x) = dx^2 + ex + f$. What is a + b + c + d + e + f in terms of h or k or both?

4.3 Other Geometry Problems

- 1. Let points A = (0,0,0), B = (1,0,0), C = (0,2,0), and D = (0,0,3). Points E, F, G, and H are midpoints of line segments \overline{BD} , \overline{AB} , \overline{AC} , and \overline{DC} respectively. What is the area of rectangle EFGH?
- 2. Ajay is standing at point A near Pontianak, Indonesia, 0° latitude and 110° E longitude. Billy is standing at point B near Big Baldy Mountain, Idaho, USA, 45° N latitude and 115° W longitude. Assume that Earth is a perfect sphere with center C. What is the degree measure of $\angle ACB$?
- 3. Points A, B, C, D and E are located in 3-dimensional space with AB = BC = CD = DE = EA = 2 and $\angle ABC = \angle CDE = \angle DEA = 90^{\circ}$. The plane of $\triangle ABC$ is parallel to \overline{DE} . What is the area of $\triangle BDE$?
- 4. A rectangular box has width 12 inches, length 16 inches, and height $\frac{m}{n}$ inches, where m and n are relatively prime positive integers. Three faces of the box meet at a corner of the box. The center points of those three faces are the vertices of a triangle with an area of 30 square inches. Find $\frac{m}{n}$.