Review

JV Practice 10/18/20 C.J. Argue

1 Set 1

- 1. A function f is defined by $f(z) = i\overline{z}$, where $i = \sqrt{-1}$ and \overline{z} is the complex conjugate of z. How many values of z satisfy both |z| = 5 and f(z) = z?
- 2. Triangle ABC has AB = 25, AC = 20, and BC = 15. Point D is on \overline{AB} such that AD = 10. Compute CD.
- 3. The quadratic equation $x^2 + mx + n$ has roots twice those of $x^2 + px + m$, and none of m, n, and p is zero. What is the value of n/p?
- 4. Circle ω has radius 5. Points A, B, C lie on circle ω such that $\triangle ABC$ is an isoceles triangle with $\angle B = 30$. Compute the area of $\triangle ABC$.

Set 2

- 1. If $3^{\tan(x)} = 81^{\sin(x)}$, compute all possible values of $\cos(x)$.
- 2. In $\triangle ABC$, AB = 6, BC = 8, and AC = 10. Points M and N are on BC and AC, respectively, and MN intersects the angle bisector of $\angle C$ at P. If MP = 2 and PN = 5, compute the area of $\triangle MNC$.
- 3. The graph of the polynomial $P(x) = x^5 + ax^4 + bx^3 + cx^2 + dx + e$ has five distinct x-intercepts, one of which is at (0,0). Which of the coefficients (a, b, c, d, or e) cannot be 0?
- 4. Find the number of ordered pairs of real numbers (a, b) such that $(a + bi)^{2020} = a bi$.
- 5. In $\triangle ABC$, $\angle A = 45^{\circ}$, $\angle B = 60^{\circ}$ and $AC = \sqrt{15}$. Point *D* lies on \overline{AB} such that \overline{AB} and \overline{CD} are perpendicular. The circle with diameter \overline{AB} intersects \overline{CD} at *E*. Compute DE^2 .
- 6. The equation $2^{333x-2} + 2^{111x+2} = 2^{222x+1} + 1$ has three real roots. Compute the sum of the roots.

Set 3

- 1. Suppose that the real part of the complex number z is equal to 1 and the real part of z^2 is equal to -2. Compute the real part of z^3 .
- 2. Square ABCD has side length 4. Equilateral triangles ABE and BCF are constructed on the exterior of square ABCD. Compute the area of $\triangle DEF$.
- 3. Points P, Q, R lie inside $\triangle ABC$ such that P lies on \overline{AR} , R lies on \overline{CQ} , and Q lies on \overline{BP} . Given that AP = CR = BQ = 4 and PR = RQ = QP = 3, compute the area of $\triangle ABC$.

4. Part of the graph of $f(x) = ax^3 + bx^2 + cx + d$ is shown. What is b?

- 5. The roots of the polynomial $x^6 12x^5 + ax^4 + bx^3 + cx^2 + dx + e$ form a geometric progression. If the sum of the reciprocals of the roots is 6, compute e.
- 6. For how many positive integers n less than or equal to 1000 is $(\sin t + i \cos t)^n = \sin nt + i \cos nt$ true for all real t?