Triangles

JV Practice 3/28/21 Da Qi Chen

Key Concepts

Given triangle ABC and triangle DEF, $\triangle ABC$ is congruent to $\triangle DEF$ (denoted as $\triangle ABC \cong \triangle DEF$) if and only if any of the following is satisfied:

- |AB| = |DE|, |BC| = |EF|, |CA| = |FD| (SSS)
- $|AB| = |DE|, |BC| = |EF|, \angle B = \angle E$ (SAS)
- $\angle A = \angle D, \angle B = \angle E, |AB| = |DE|$ (ASA)
- $\angle A = \angle D, \ \angle B = \angle E, \ |BC| = |EF|$ (AAS)

Triangle ABC is similar to triangle DEF (denoted as $\triangle ABC \sim \triangle DEF$) if and only if one of the following is satisfied:

1. $\angle A = \angle D, \angle B = \angle E$ and $\angle C = \angle F$ (**AA**)

2.
$$\frac{|AB|}{|DE|} = \frac{|BC|}{|EF|} = \frac{|CA|}{|FD|}$$
(SSS)

3. $\frac{|AB|}{|DE|} = \frac{|BC|}{|EF|}$ and $\angle B = \angle B = \angle E$ (SAS)

1 Extended Warm-Up Problems

- 1. In triangle ABC, if |AB| = |BC|, prove that $\angle A = \angle C$.
- 2. In a right-angled triangle ABC, let M be the midpoint of the hypotenuse BC. Prove that |MB| = |MC| = |AM|.
- 3. Let ABCD be a quadrilateral. Let E be a point on BD such that $EC \perp BD$. Suppose $\angle ADE = \angle DCE$, $\angle EBA = 90$, |AD| = 24 and |DC| = 7. Find |AC|.
- 4. In triangle ABC, let D be a point on AC such that |AD| = |AB|. If $\angle ABC \angle ACB = 40^{\circ}$, find $\angle DBC$.
- 5. Let ABCD be a rectangle with area 300. There exist points E on AB and F on CD such that DE = EF = FB. Diagonal AC intersects EF at X. Compute the area of $\triangle AEX$

2 Somewhat-Easy Problems

- 1. In a right-angled triangle ABC, let D, E, f be points on the hypotenuse AB such that CD is the altitude, CE is the angle-bisector, and CF is the median. Prove that $\angle DCE = \angle ECF$. Is the statement still true if ABC is not right-angled?
- 2. In a right-angled triangle ABC, let P be a point such that CP is perpendicular to the hypotenuse CA and |CP| = |CB|. Let line L_1 be the angle bisector of $\angle A$. Prove that L)1 is either perpendicular, or parallel to to BP.
- 3. In triangle ABC, let D, E be points on AB and AC respectively such that |DB| = 2, |EC| = 3 and DE is parallel to BC. If |AD| = 5, find |AC|.
- 4. In rectangle ABCD, let E be a point on side AB such that |AE| = 3 and |EB| = 6. Let F be a point on BC such that |BF| = 2 and |FC| = 4. Let M be the intersection point of EC and AF. Find the area of triangle AMD.
- 5. Let M be the midpoint of a base CD of the trapezoid ABCD. Let F be the point of intersection of AM and the diagonal BD. Extend a line parallel to CD at F so it intersects AD, AC and BC at E, G, H respectively. Prove that EF = FG = GH.
- 6. In rectangle ABCD, let M be the midpoint of AB. Let E be a point on AD such that $EM \perp EC$. Prove that MC bisects $\angle ECB$.

3 A-Bit-Harder Problems

- 1. Let A, K, L, B be four sequential points on a line such that $(AL)^2 = (AK)(AB)$. Let P be another point such that AP = AL. Prove that PL bisects $\angle KPB$. Also, prove the converse.
- 2. In triangle ABC, let AM be the median that also happens to divide $\angle BAC$ into a ratio of 1:2. Extend the line AM to D such that $BD \perp AB$. Prove that |AD| = 2|AC|.
- 3. Let M be the point of intersection of the three altitudes of a triangle ABC. If AB=CM, then determine the angle of ACB.
- 4. Let ABCD be a parallelogram. For each side of the parallelogram, draw a square incident to that side (of that length) outside of the parallelogram. You should have four non-overlapping squares with a parallelogram between them. Let P, Q, R, s be the centers of the four squares. First, prove that PQRS is a square. Next, show that the center of square PQRS is the same as the center of parallelogram ABCD.
- 5. Let ABCD be a trapezoid where the long base AB is 90 unit long. Let E, F be the midpoints of the diagonals and suppose EF is 4 unit long. What is the measurement of the shorter base?
- 6. In $\triangle ABC$, AD is the angle bisector of $\angle A$ with D lying on BC. Given that $\angle B = 2 \angle C$, AB = 3 and BD = 1, find AD. (Hint: BA tcelfer dna yrtemmys esu)