Collinearity

Varsity Practice 1/19/20 Tudor-Dimitrie Popescu

1 Warm-Up Problems

- 1. Revisit similarity. Read the proofs of Menelaus's and Ceva's theorems.
- 2. In a quadrilateral ABCD, let $AD \cap BC = Q$, $AB \cap CD = P$, $AC \cap BD = R$, $QR \cap AB = K$, $PR \cap BC = L$, $AC \cap PQ = T$. Prove that K,L and T are collinear. Hint: use Menelaus and Ceva \odot
- 3. Let ABC be an acute triangle and let M, N be distinct points on the segment BC such that ∠BAM = ∠CAN. If O₁, O₂ are the circumcenters of △ABC and △AMN respectively. Prove that A, O₁, O₂ are collinear. Hint: don't use Menelaus and Ceva; angle chasing goes a long way: you might want to prove that ∠O₂AB = ∠O₁AB.

2 Problem Set

- 1. (Monge) Let C_1, C_2, C_3 be three circles and let their pairwise common tangents intersect at X, Y, Z. Prove that X, Y, Z are collinear.
- 2. (Simson) Given a point P in the plane of $\triangle ABC$. Suppose X, Y and Z are the feet of perpendiculars from P to BC, CA and AB respectively. Then X, Y and Z are collinear if and only if P lies on the circumcircle of $\triangle ABC$.
- 3. (Pappus) Let P_1, P_3, P_5 and P_2, P_4, P_6 be sets of collinear points (with P_1P_3 not parallel to P_2P_4). If $P_2P_3 \cap P_5P_6 = \{M_1\}, P_1P_6 \cap P_3P_4 = \{M_2\}, P_1P_2 \cap P_4P_5 = \{M_3\}$, show that M_1M_2, M_3 are collinear.
- 4. (Desargues) Let $A_1B_1C_1$ and $A_2B_2C_2$ be triangles. IF $\{P\} = B_1C_1 \cap B_2C_2, \{Q\} = A_1C_1 \cap A_2C_2, \{R\} = A_1B_1 \cap A_2B_2$, then P, Q, R are collinear if and only if A_1A_2, B_1B_2, C_1C_2 meet at the same point.
- 5. (JBMO 2016) A trapezoid ABCD (AB||CD, AB > CD) is circumscribed. The incircle of the triangle ABC touches the lines AB and AC at the points M and N, respectively. Prove that the incenter of the trapezoid ABCD lies on the line MN.
- 6. (IZHO 2013) Given a trapezoid ABCD $(AD \parallel BC)$ with $\angle ABC > 90^{\circ}$. Point M is chosen on the lateral side AB. Let O_1 and O_2 be the circumcenters of the triangles MAD and MBC, respectively. The circumcircles of the triangles MO_1D and MO_2C meet again at the point N. Prove that the line O_1O_2 passes through the point N.
- 7. (RMM 2015) Let ABC be a triangle, and let D be the point where the incircle meets side BC. Let J_b and J_c be the incentres of the triangles ABD and ACD, respectively. Prove that the circumcentre of the triangle AJ_bJ_c lies on the angle bisector of $\angle BAC$.