Functional Equations

Varsity Practice 04/12/2020 Anish Sevekari

1 Warm-Up Problems

- 1. Consider the recurrence $a_{n+1} = 2a_n + 1$, with $a_0 = 0$.
 - (a) Compute a_1, a_2, a_3, a_4, a_5 . Can you guess the value of a_n ?
 - (b) Prove that $a_n = 2^n 1$.
- 2. Consider the recurrence $a_{n+1} = 2a_n + n$, with $a_0 = 1$. Compute a_1, a_2, \ldots, a_5 . Can you guess the formula for a_n ?
- 3. Let A_n denote the number of ways of tiling a $1 \times n$ box using blocks of size 1×1 and 1×2 .
 - (a) Find A_1, A_2, A_3, A_4, A_5 . Is the sequence familier to you?
 - (b) Compute a recursive expression for A_n . That is, express A_n in terms of A_{n-1} and A_{n-2} .
 - (c) (Bonus:) Can you find a closed form formula for A_n ?

2 Introduction on Generating functions

A generating function for the series a_0, a_1, \ldots is a power series given by

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{i=0}^n a_i x^i$$

Sometimes, recurrence relations between a_i can translate into algebraic identities for A(x), allowing us to compute a closed form expression for $A(x) = \frac{P(x)}{Q(x)}$ for some polynomial P(X), Q(x). Then using partial fraction decomposition for Q, we can infact get closed forms for A(x), in certain cases.

Some useful identities:

$$\frac{1}{1-x} = \sum_{i=0}^{\infty} x_i = 1 + x + x^2 + \cdots$$
$$(1+x)^n = \sum_{i=0}^{\infty} \binom{n}{i} x^i$$
$$\frac{dA(x)}{dx} = \sum_{i=0}^{\infty} a_{i+1}(i+1)x^i$$

Note that in the second formula, $\binom{n}{i} = \frac{n(n-1)\cdots(n-i+1)}{i!}$. Note that if n is a natural number, then $\binom{n}{i} = 0$ for i > n, which implies that binomal theorem terminates in finitely many terms. The third formula tells you that you can differentiate power series term by term. Note that the equalities hold on a formal level. Loosely speaking, that implies that both sides are equal if they are well defined.

3 Problems (day 1)

- 1. Find the generating functions in simple form for the sequences
 - (a) $a_n = 1$
 - (b) $a_n = n$
 - (c) $a_n = \alpha n + \beta$.
- 2. Use generating functions to solve the recurrent $a_{n+1} = 2a_n + 1$.
- 3. Consider the Fibonacci Sequence given by the recurrence $A_n = A_{n-1} + A_{n-2}$, with $A_0 = 1, A_1 = 1$.
 - (a) Use the recurrence above to get an identity for

$$F(x) = \sum_{i=1}^{\infty} A_n x^n$$

- (b) Solve the indentity to get a simple form expression for F(x).
- (c) Use partial fraction decomposition to find a closed form value for A_n .

4 Problems (day 2)

- 1. Catalan Numbers: Let C_n denote the number of pahts from (0,0) to (n,n) consisting of exactly 2n steps, each of length 1, either along positive X direction or along positive Y directions, which **do not** go above the diagonal given by x = y. (The paths can touch the diagonal).
 - (a) Use a combinatorial argument to show that $C_n = \frac{1}{n+1} {2n \choose n}$.
 - (b) Show that C_n is also the number of words of length 2n, made from two symbols, a, b such that no initial string has more b's than a's.
 - (c) Show that C_n is also the number of adding parethesis in a string of length n + 1 which is valid.
 - (d) Find a recurrence relation for C_n .
 - (e) Convert the recurrence relation to find closed form for A(x), the generating function of C_n .
 - (f) Use the simple form of A(x) to get a closed form for C_n .
- 2. Let $\overline{p}_k(n)$ denote the number of partitions of n into at most k parts, where partition of n of size k is a sequence $(\lambda_1, \ldots, \lambda_k)$ such that $\lambda_1 + \ldots + \lambda_k = n$ and $1 \ge \lambda_2 \ge \cdots \ge \lambda_k > 0$. Find a generating function for $\overline{p}_k(n)$. Can you use this to find a generating function for p(n), the total number of partitions of n?