Functional Equations

Varsity Practice 04/12/2020 Anish Sevekari

1 Warm-Up Problems

- 1. Consider the recurrence $a_{n+1} = 2a_n + 1$, with $a_0 = 0$.
 - (a) Compute a_1, a_2, a_3, a_4, a_5 . Can you guess the value of a_n ?
 - (b) Prove that $a_n = 2^n 1$.
- 2. Consider the recurrence $a_{n+1} = 2a_n + n$, with $a_0 = 1$. Compute a_1, a_2, \ldots, a_5 . Can you guess the formula for a_n ?
- 3. Let A_n denote the number of ways of tiling a $1 \times n$ box using blocks of size 1×1 and 1×2 .
 - (a) Find A_1, A_2, A_3, A_4, A_5 . Is the sequence familier to you?
 - (b) Compute a recursive expression for A_n . That is, express A_n in terms of A_{n-1} and A_{n-2} .
 - (c) (Bonus:) Can you find a closed form formula for A_n ?

2 Problems

A generating function for the series a_0, a_1, \ldots is a power series given by

$$A(x) = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{i=0}^{\infty} a_i x^i$$

Sometimes, recurrence relations between a_i can translate into algebraic identities for A(x), allowing us to compute a closed form expression for $A(x) = \frac{P(x)}{Q(x)}$ where P(X) and Q(x) are polynomials. This can help us in solving for a_n .

Some useful identities:

$$\frac{1}{1-x} = 1 + x + x^2 + \dots$$
$$\frac{dA(x)}{dx} = \sum_{i=0}^{\infty} a_{i+1}(i+1)x^i$$

the second identity says that you can differentiate each part individually.

- (a) Find the generating function in simple form of
 - (a) $a_n = 1$.
 - (b) $a_n = n$.
 - (c) $a_n = \alpha n + \beta$.
- (b) Use generating functions to solve the recurrence $a_{n+1} = 2a_n + 1$.
- (c) Consider the Fibonacci Sequence given by the recurrence $A_n = A_{n-1} + A_{n-2}$, with $A_0 = 1, A_1 = 1$.
 - (a) Use the recurrence above to get an identity for $F(x) = \sum_{i=0}^{\infty} A_n x^n$.

- (b) Solve the identity to get a simple form expression for F(x).
- (c) How can you use this expression to compute values of A_n ?
- (d) Catalan Numbers: Let C_n denote the number of paths from (0,0) to (n,n) consisting of 2n steps, where each step is of 1 unit along positive x or y directions, which do not go above the diagonal (they can touch diagonal)
 - (a) Find a recurrence relation for C_n .
 - (b) Convert the recurrence relation into an identity for $A(x) = \sum_{i=0}^{\infty} C_n x^n$.
 - (c) Find closed form for the generating function A(x).
 - (d) Find a closed form for C_n .