Geometry Review

Tudor Dimitre-Popescu

- 1. In a triangle ABC the median AM is half of side BC. The angle between AM and the height of the triangle, AH is 40°. Find the measure of BAC.
- 2. Let *CHOPIN* be a regular hexagon, and let *OPERA* be a regular pentagon. Find all possible values of measure of $\angle PIE$.
- 3. Right $\triangle ABC$ has AB = 3, BC = 4, and AC = 5. Square XYZW is inscribed in $\triangle ABC$ with X and Y on \overline{AC} , W on \overline{AB} , and Z on \overline{BC} . What is the side length of the square?
- 4. Let ABC be a triangle with $\angle BAC = 117^{\circ}$. The angle bisector of $\angle ABC$ intersects side AC at D. Suppose $\angle ABD = \angle ACB$, and $\angle BDA = \angle CBA$. Compute the measure of $\angle ABC$, in degrees.
- 5. An equilateral triangle lies inside a square of side length 2. Find the maximum possible side length of the triangle.
- 6. Triangle ABC has $BC = 2 \cdot AC$ and $\angle A = 3 \angle B$. Compute $\angle A$.
- 7. Circle C with radius 2 has diameter \overline{AB} . Circle D is internally tangent to circle C at A. Circle E is internally tangent to circle C, externally tangent to circle D, and tangent to \overline{AB} . The radius of circle D is three times the radius of circle E and can be written in the form $\sqrt{m} - n$, where m and n are positive integers. Find m + n.
- 8. Let ABC be a triangle. The internal bisector of $\angle B$ meets AC in P. Let I be the incenter of ABC. If AP + AB = CB and AI = 10, compute AP. Hint: let P' be a point in the extension of ray BA such that P'A = PA.
- 9. Point A lies on the circumference of a circle Ω with radius 78. Point B is placed such that AB is tangent to the circle and AB = 65, while point C is located on Ω such that BC = 25. Compute the length of \overline{AC} .
- 10. $\triangle ABC$ has side lengths AB = 15, BC = 34, and CA = 35. Let the circumcenter of ABC be O. Let D be the foot of the perpendicular from C to AB. Let R be the foot of the perpendicular from D to AC, and let W be the perpendicular foot from D to BC. Find the area of quadrilateral CROW.