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A Story

A man named Zero walks into a hotel...
Then, Zero walks into Hilbert’s Hotel...
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What is ’Size’ Anyways?

We won’t define ’size,’ only comparative size.

Let A and B be sets.

I B is at least as big as A (denoted |A| ≤ |B|) if there is an
injection (one-to-one function) f : A→ B.

I A is the same size as B (denoted |A| = |B|) if |A| ≤ |B| and
|B| ≤ |A|. This can be shown by either

I An injection f1 : A→ B and an injection f2 : B → A.
I A bijection (one-to-one and onto function) g : A→ B.

I B is bigger than A (denoted |A| < |B|) if |A| ≤ |B| and
|A| 6= |B|.
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The Most Basic Rule of Size

Fact: If A ⊆ B then |A| ≤ |B|

I Proof: f : A→ B defined by f (a) = a is injective.

I Corollary: |A| = |A|.
Q: If A ( B, then is |A| < |B|?

I A: If B is finite, yes.If B is infinite, maybe not.
E.g. |{1, 2, 3, . . . }| = |{0, 1, 2, 3, . . . }|.

I This gives us a definition of ‘infinite set’ !
That is, a set B is infinite if ∃A ( B such that |A| = |B|.
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Countable Sets

A set S is countable if it |S | = |N|.

I Another way of thinking it is that we can write down an
(infinitely long) list that contains every element of S .

Examples:

I The natural numbers N = {1, 2, . . . }
I The whole numbers W = {0, 1, 2, 3, . . . }
I The integers Z = {. . . ,−2,−1, 0, 1, 2, . . . }

I Proof: 0,−1, 1,−2, 2,−3, 3, . . .
I In general, if A,B are countable, then A ∪ B is countable

(Here: A = {0, 1, 2, . . . } and B = {−1,−2,−3, . . . }).
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The Rational Numbers

Our first really interesting example is the rational numbers,

Q =

{
p

q
| p ∈ Z, q ∈ N

}
Does |Q| = |N|?

Yes!

I Proof by picture

I f
(
p
q

)
=

{
2p3q : p ≥ 0
5p7q : p < 0

I g
(
p
q

)
= sgn(p)2|p|(2q − 1)

I Almost, but not quite a bijection Q→ Z.
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Less Basic Rules of Size

From the proof that |Q| = |N|, we can see that

1. If |A| = |B| = |N| then |A× B| = |N|
If |C | = |N| then |A× B × C | = |(A× B)× C | = |N|.
Generally works with finitely many sets.

2. If |A1| = |A2| = · · · = |N| then |A1 ∪ A2 ∪ . . . | = |N|
Q: How many finite subsets of N are there?
A: |N| many

I Let Si = {i−element subsets of N}, |Si | ≥ |N|.
I Then Si ⊆ N× N× · · · × N (N repeats i times).

I By (1), |N× N× · · · × N| = |N|, so |Si | ≤ |N|, so |Si | = |N|.
I By (2), |S0 ∪ S1 ∪ S2 ∪ S3 ∪ . . . | = |N|.
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The Size of the Real Numbers

Theorem: |R| > |N|
Proof: By contradiction. Assume that we can list the real
numbers, say

5.9000000 . . .

1.9876543 . . .

8.8888888 . . .

3.1415926 . . .

0.3523034 . . .

...

Now from this list, highlight the first digit (past the decimal) of the
first number, the second digit of the second number, and so on.
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its digits (9 becomes 0).Where on the list is 0.09961 . . . ?
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Subsets

Q: How many subsets of N are there?

A: More than |N| many.
Proof: By contradiction. Assume that we can list the subsets of N.

S1 = {1, 2, 4, 8, 16, . . . }
S2 = {1, 3, 7, 12, 19, . . . }
S3 = {1, 2, 3, 8, 9, 10, 15, . . . }
S4 = {10, 20, 500, 127646, . . . }
S5 = {999}

...

Define T = {k : k /∈ Sk}. Here, T = {2, 4, 5, . . . }.
T ⊆ N, so for some k , T = Sk . Is k ∈ T ?
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Power Sets

P(N) = {subsets of N} = the power set of N

I We showed that |P(N)| > N
I In fact, a similar argument shows that for any set S ,
|P(S)| > |S |

I Therefore, |N| < |P(N)| < |P(P(N))| < . . .

There are infinitely many sizes of infinity! We call the first few
ℵ0,ℵ1,ℵ2,ℵ3,ℵ4, . . .
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The Continuum Hypothesis (CH)

We know that N is the smallest infinite set, i.e. |N| = ℵ0, and that
|R| > |N|. But are there any sizes of infinity between the size of N
and the size of R? In other words, is |R| = ℵ1

The Continuum Hypothesis: No intermediate sizes, |R| = ℵ1.

I Georg Cantor asked whether CH was true in 1878.

I Godel 1940: ZFC cannot disprove CH

I Cohen 1963: ZFC cannot prove CH

I In summary: the answer is whatever you want!

More specifically, the answer is independent of ZFC, meaning that
you can add to ZFC exactly one of the following:

I CH is true

I CH is false

Either one will not lead you to a contradiction∗
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Further Topics of Interest

I If |R| 6= ℵ1, then what is |R|?
I |R| could be any of ℵ1,ℵ2,ℵ3, . . . and more!

I How many infinities are there?

I Defining ’size:’ Ordinal and cardinal numbers
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Thanks for listening!


