Cyclic Quadrilaterals

David Altizio, Andrew Kwon

1 Lecture

- A quadrilateral is said to be *cyclic* if it can be inscribed inside a circle.
- Let ABCD be a cyclic quadrilateral. Then we have the following properties:
 - $\angle ABC + \angle ADC = \angle BCD + \angle BAD = 180^{\circ}$
 - $\angle ABD = \angle ACD$, etc.
 - (Ptolemy) $AB \cdot CD + AD \cdot BC = AC \cdot BD$.
 - (Braghmaputa) Suppose a, b, c, and d are the side lengths of a cyclic quadrilateral \mathcal{K} , and set $s = \frac{a+b+c+d}{2}$. Then

$$[\mathcal{K}] = \sqrt{(s-a)(s-b)(s-c)(s-d)}.$$

- The catch here is that these rules all go the other way around as well! So for example, if you can prove that $\angle ABD = \angle ACD$, then you know ABCD is cyclic! This is very helpful, since it allows for transferring between different types of angle equalities.
- You can also use Power of a Point to determine whether four points lie on the same circle as well.

2 Problems

- 1. Suppose ABC is a right triangle with a right angle at B. Point D lies on side \overline{AB} , and E is the foot of the perpendicular from D to AC. If $\angle BAC = 17^{\circ}$ and $\angle ABE = 23^{\circ}$, compute $\angle DCB$.
- 2. [AMC 10B 2011] In the given circle, the diameter \overline{EB} is parallel to \overline{DC} , and \overline{AB} is parallel to \overline{ED} . The angles AEB and ABE are in the ratio 4 : 5. What is the degree measure of angle BCD?
- 3. Suppose that P is a point on minor arc \widehat{BC} of the circumcircle of equilateral triangle ABC. If PB = 3 and PC = 7, compute PA.
- 4. Let ABC be a right triangle with $\angle B = 90^{\circ}$. Points D and E are placed such that ACDE is a square. No part of the interior of the square lies inside $\triangle ABC$. Let O be the center of this square. Find $\angle OBC$.

- 5. Two related problems about angle bisectors.
 - (a) [AIME 2016] In $\triangle ABC$ let I be the center of the inscribed circle, and let the bisector of $\angle ACB$ intersect AB at L. The line through C and L intersects the circumscribed circle of $\triangle ABC$ at the two points C and D. If LI = 2 and LD = 3, then $IC = \frac{p}{q}$, where p and q are relatively prime positive integers. Find p + q.

- (b) [Ray Li] In triangle ABC, AB = 36, BC = 40, CA = 44. The bisector of angle A meets BC at D and the circumcircle at E different from A. Calculate the value of DE^2 .
- 6. [Bulgaria 1993] A parallelogram ABCD with an acute angle BAD is given. The bisector of $\angle BAD$ intersects CD at point L, and the line BC at point K. Prove that the circumcenter of $\triangle LCK$ lies on the circumcircle of $\triangle BCD$.
- 7. [AMC 10B 2013] In triangle ABC, AB = 13, BC = 14, and CA = 15. Distinct points D, E, and F lie on segments \overline{BC} , \overline{CA} , and \overline{DE} , respectively, such that $\overline{AD} \perp \overline{BC}$, $\overline{DE} \perp \overline{AC}$, and $\overline{AF} \perp \overline{BF}$. The length of segment \overline{DF} can be written as $\frac{m}{n}$, where m and n are relatively prime positive integers. What is m + n?
- 8. [USAMO 1992] Let ABCD be a convex quadrilateral such that the diagonals AC and BD are perpendicular, and let P be their intersection. Prove that the reflections of P with respect to AB, BC, CD, DA lie on a circle.
- 9. Two more related problems.
 - (a) [AIME 1991] A hexagon is inscribed in a circle. Five of the sides have length 81 and the sixth, denoted by \overline{AB} , has length 31. Find the sum of the lengths of the three diagonals that can be drawn from A.
 - (b) [AMC 12B 2014] Let ABCDE be a pentagon inscribed in a circle such that AB = CD = 3, BC = DE = 10, and AE = 14. The sum of the lengths of all diagonals of ABCDE is equal to $\frac{m}{n}$, where m and n are relatively prime positive integers. What is m + n?
- 10. [APMO 2007] Let ABC be an acute angled triangle with $\angle BAC = 60^{\circ}$ and AB > AC. Let I be the incenter and H the orthocenter of the triangle ABC. Prove that $2\angle AHI = 3\angle ABC$.
- 11. [David Altizio] Let $A_1A_2A_3A_4A_5A_6$ be a hexagon inscribed inside a circle of radius r. Furthermore, for each positive integer $1 \le i \le 6$ let M_i be the midpoint of the segment $\overline{A_iA_{i+1}}$, where $A_7 \equiv A_1$. Suppose that hexagon $M_1M_2M_3M_4M_5M_6$ can also be inscribed inside a circle. If $A_1A_2 = A_3A_4 = 5$ and $A_5A_6 = 23$, then r^2 can be written in the form $\frac{m}{n}$ where m and n are positive relatively prime integers. Find m + n.
- 12. [AIME 2016] Circles ω_1 and ω_2 intersect at points X and Y. Line ℓ is tangent to ω_1 and ω_2 at A and B, respectively, with line AB closer to point X than to Y. Circle ω passes through A and B intersecting ω_1 again at $D \neq A$ and intersecting ω_2 again at $C \neq B$. The three points C, Y, D are collinear, XC = 67, XY = 47, and XD = 37. Find AB^2 .
- 13. [Balkan MO 1992] Let D, E, F be points on the sides BC, CA, AB respectively of a triangle ABC (distinct from the vertices). If the quadrilateral AFDE is cyclic, prove that

$$\frac{4\mathcal{A}[DEF]}{\mathcal{A}[ABC]} \le \left(\frac{EF}{AD}\right)^2.$$

14. [USAMO 2008] Let ABC be an acute, scalene triangle, and let M, N, and P be the midpoints of \overline{BC} , \overline{CA} , and \overline{AB} , respectively. Let the perpendicular bisectors of \overline{AB} and \overline{AC} intersect ray AM in points D and E respectively, and let lines BD and CE intersect in point F, inside of triangle ABC. Prove that points A, N, F, and P all lie on one circle.