Practice Math Contest Misha Lavrov

The Largest Prime Factor Function: Solutions
Western PA ARML Practice January 22, 2017

In the problems! below, let P(n) denote the largest prime factor of n. For example, since 2016 =
25.32.7, P(2016) = 7; since 2017 is prime, P(2017) = 2017.

1.

2.

(a) Find P(100! + 101!).

Answer: 97. We have 100! + 101! = 100! - (14+101) =1-2-3---99-100 - 102. Of these
factors, 97 is the largest which is prime, and all of the composite factors are less than
97 - 2, so they can’t themselves have a prime factor greater than 97.

(b) Find the largest 2-digit prime factor of (388).

. ! .
Answer: 61. We can write (fgg) as 12000(3'2. For every prime number p between 67 and

99, it will divide 200! twice (once for the factor of p and once for the factor of 2p), and
100! once, so it will not divide 1200(3!2. The largest prime number smaller than 67 is 61,
which divides 200! three times (from the factors of 61, 122, and 183) and 100! only once,

T 200!
so it divides 55z once.

Proof: Choose an arbitrary odd prime p. Since p? —1 = 22. el %, we have P(p? — 1) <

2l < p, so P(p? — 1) < P(p?).

If P(p?> +1) > p, then P(p? — 1) < P(p?) < P(p* + 1), and we have found one such triple.
Otherwise, let £ > 0 be the smallest integer such that ka + 1 has a prime factor larger than
p. By assumption, P(p*" + 1) > P(p*"), and we can factor p2* — 1 as (p> — 1)(p> + 1)(p* +
1)--- (p2k_1 + 1), each of which has no prime factors larger than p, again by assumption.
Therefore P(ka -1)< P(p2k) < P(p2k + 1), and we have found one such triple.

Prove that there are infinitely many integers n such that P(n) < P(n+1) < P(n+ 2).
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We get a different triple for every odd prime p we choose, since the middle number will always
be a power of p, so we can find infinitely many such triples.

. Prove that there are infinitely many triples of distinct positive integers (a,b,c) such that

P(a®>+1)=P(b* +1) = P(c* + 1).

Proof: Let k be an arbitrary positive integer. Define p = P((2k —1)? +1), ¢ = P((2k)? + 1),
and 7 = P((2k +1)? +1).

Note that, for any x, since (x+i)(x+1—i) = z(z+1)+1+i and (x—i)(x+1+i) = z(z+1)+1—1,
we have (22 + 1)((z +1)?2 +1) = (z(z+ 1) +1)2 + 1.

Similarly, since (z+i)(x+2—1i) =z(x+2)+1+2iand (x —i)(x+2—1i) = x(z+2) + 1 — 24,
we have (22 + 1)((z +2)?2 +1) = (2(x +2) + 1)2 + 4. When z is odd, this is equal to
4((HEEDHLy2 4 ),

'Problems 1(a) and 1(b) are taken from posts on the Art of Problem Solving forum, with slight modification.
Problems 2 and 3 are taken from posts on http://www.reddit.com/r/mathriddles/.



This was all just motivation for the following calculations:

(2k =124+ 1)((2k)24+1) = ((2k —1)(2k) + 1)2 + 1

=22+ 1
(k)2 +1)((2k+1)24+1) = ((2k) 2k + 1)+ 1)2 +1
=: y2 +1
(2k =12+ 1D)(2k+1)2+1) = 4((2k*)* + 1)
= 4(2% +1).

Therefore P(z% + 1) = max{p, ¢}, P(y*> + 1) = max{q,r}, and P(z? + 1) = max{p, r}.
Among P((2k —1)% + 1), P((2k)? + 1), P((2k + 1)2 + 1), P(2® + 1), P(y* + 1), P(2* + 1), the
value max{p, q,r} occurs at least three times. This yields one of the solutions we wanted.

Taking arbitrarily large values of k yields triples (a, b, ¢) with a,b, ¢ distinct and each at least
2k — 1 that satisfy P(a®? + 1) = P(b*> + 1) = P(c®> +1). So arbitrarily large solutions—and
therefore infinitely many solutions—exist.



