Practice Math Contest

Misha Lavrov

The Largest Prime Factor Function: Solutions

Western PA ARML Practice

January 22, 2017

In the problems¹ below, let P(n) denote the largest prime factor of n. For example, since $2016 = 2^5 \cdot 3^2 \cdot 7$, P(2016) = 7; since 2017 is prime, P(2017) = 2017.

1. (a) Find P(100! + 101!).

Answer: 97. We have $100! + 101! = 100! \cdot (1 + 101) = 1 \cdot 2 \cdot 3 \cdots 99 \cdot 100 \cdot 102$. Of these factors, 97 is the largest which is prime, and all of the composite factors are less than $97 \cdot 2$, so they can't themselves have a prime factor greater than 97.

(b) Find the largest 2-digit prime factor of $\binom{200}{100}$.

Answer: 61. We can write $\binom{200}{100}$ as $\frac{200!}{100!^2}$. For every prime number p between 67 and 99, it will divide 200! twice (once for the factor of p and once for the factor of 2p), and 100! once, so it will not divide $\frac{200!}{100!^2}$. The largest prime number smaller than 67 is 61, which divides 200! three times (from the factors of 61, 122, and 183) and 100! only once, so it divides $\frac{200!}{100!^2}$ once.

2. Prove that there are infinitely many integers n such that P(n) < P(n+1) < P(n+2).

Proof: Choose an arbitrary odd prime p. Since $p^2 - 1 = 2^2 \cdot \frac{p-1}{2} \cdot \frac{p+1}{2}$, we have $P(p^2 - 1) \leq \frac{p+1}{2} < p$, so $P(p^2 - 1) < P(p^2)$.

If $P(p^2 + 1) > p$, then $P(p^2 - 1) < P(p^2) < P(p^2 + 1)$, and we have found one such triple. Otherwise, let k > 0 be the smallest integer such that $p^{2^k} + 1$ has a prime factor larger than p. By assumption, $P(p^{2^k} + 1) > P(p^{2^k})$, and we can factor $p^{2^k} - 1$ as $(p^2 - 1)(p^2 + 1)(p^4 + 1) \cdots (p^{2^{k-1}} + 1)$, each of which has no prime factors larger than p, again by assumption. Therefore $P(p^{2^k} - 1) < P(p^{2^k}) < P(p^{2^k} + 1)$, and we have found one such triple.

We get a different triple for every odd prime p we choose, since the middle number will always be a power of p, so we can find infinitely many such triples.

3. Prove that there are infinitely many triples of distinct positive integers (a, b, c) such that $P(a^2 + 1) = P(b^2 + 1) = P(c^2 + 1)$.

Proof: Let k be an arbitrary positive integer. Define $p = P((2k-1)^2+1)$, $q = P((2k)^2+1)$, and $r = P((2k+1)^2+1)$.

Note that, for any x, since (x+i)(x+1-i) = x(x+1)+1+i and (x-i)(x+1+i) = x(x+1)+1-i, we have $(x^2+1)((x+1)^2+1) = (x(x+1)+1)^2+1$.

Similarly, since (x+i)(x+2-i) = x(x+2) + 1 + 2i and (x-i)(x+2-i) = x(x+2) + 1 - 2i, we have $(x^2+1)((x+2)^2+1) = (x(x+2)+1)^2 + 4$. When x is odd, this is equal to $4((\frac{x(x+2)+1}{2})^2+1)$.

¹Problems 1(a) and 1(b) are taken from posts on the Art of Problem Solving forum, with slight modification. Problems 2 and 3 are taken from posts on http://www.reddit.com/r/mathriddles/.

This was all just motivation for the following calculations:

$$((2k-1)^{2}+1)((2k)^{2}+1) = ((2k-1)(2k)+1)^{2}+1$$

=: $x^{2}+1$
 $((2k)^{2}+1)((2k+1)^{2}+1) = ((2k)(2k+1)+1)^{2}+1$
=: $y^{2}+1$
 $((2k-1)^{2}+1)((2k+1)^{2}+1) = 4((2k^{2})^{2}+1)$
=: $4(z^{2}+1).$

Therefore $P(x^2 + 1) = \max\{p, q\}$, $P(y^2 + 1) = \max\{q, r\}$, and $P(z^2 + 1) = \max\{p, r\}$. Among $P((2k - 1)^2 + 1)$, $P((2k)^2 + 1)$, $P((2k + 1)^2 + 1)$, $P(x^2 + 1)$, $P(y^2 + 1)$, $P(z^2 + 1)$, the value $\max\{p, q, r\}$ occurs at least three times. This yields one of the solutions we wanted.

Taking arbitrarily large values of k yields triples (a, b, c) with a, b, c distinct and each at least 2k - 1 that satisfy $P(a^2 + 1) = P(b^2 + 1) = P(c^2 + 1)$. So arbitrarily large solutions—and therefore infinitely many solutions—exist.