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POWER ROUND: MEDITATIONS ON PARTITIONS

ARML 1998

Let positive integers A, B, and C be the angles of a triangle (in degrees) such that A < B <
C.

(a) Determine all the values that each of A, B, and C can take on.

The first angle, A, can be any integer 1 < A < 60. Since A < B < (C, 180 =
A+B+C>A+A+ A, so A <60; we are given the lower bound. We also check that
setting B = A and C' = 180 — 2A lets us get any of these values.

The second angle, B, can be any integer 1 < B < 89. Since B< (C,180=A+B+C >
1+ B+ B, so B <89.5, and since B is an integer, it can be at most 89; we are given
the lower bound. The examples above give us values of B between 1 and 60; for
45 < B < 89, take a right triangle with angles A =90 — B and C' = 90.

The final angle, C, can be any integer 60 < C' < 178. For the lower bound: 180 =
A+B+C < C+C+C,s0C > 60. For the upper bound: 180 = A+ B+C > 1+1+C,
so C' < 178. For any of these, we can set B = 60 and A = 120 — C to obtain a valid
triangle.

(b) Compute the number of ordered triples (A, B,C) in which B = 70°.
The answer is 40.

Since B < C, we have C > 70, so A =180 — B — C < 180 — 140 = 40. We then check
that any value of A between 1 and 40 works: the ordered triples

(1,70,109), (2,70,108), ..., (40,70,70)
all correspond to valid triangles.

Note: it is not hard to show that any three positive integers that add to 180 can be angles
of a triangle. Given such A, B, and C, divide the perimeter of a circle by three points into
arcs of measure 24, 2B, and 2C, which are in total 360. Then take the triangle with those
three points as vertices.

In convex pentagon ABCDE, m/A < m/B < m/C < m/D < m/E. LetT = m/C +
m/D. If m/ZA:msB:m/C : m/D : m/E =1:2:x:y:5, determine the range of
values of T'.

If we had the non-strict inequality on the angles, we could put them in the ratio 1:2:2:
2 : 5, making the angles 45°,90°,90°,90°, and 225° and T" = 180°. We could also put them
in the ratio 1: 2 :5:5: 5, making the angles 30°,60°,150°,150°, and 150° and T" = 300°.
Any value between these is achievable.

Since the angles must be strictly increasing, these endpoints are ruled out, but we still can
get any 180 < T < 300.

Let a, b, and c be positive integers such that a < 3b and b > 4c and a + b + ¢ = 200.
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(a) Determine the largest value that ¢ can take on.

The answer is 39. We can get this with a = 4, b = 157, ¢ = 39, which satisfies all the
inequalities.

Since @ > 1 and b > 4¢, we have a+b+c¢ > 1+4c+c=5¢c+1, but a+ b+ c = 200. So
5¢+ 1 < 200, which means ¢ < 39.8. Since c is an integer, ¢ < 39, so no larger value is
possible.

(b) Determine the smallest value that b can take on.

The answer is 48. We can get this with a = 141, b = 48, and ¢ = 11, which satisfies all
the inequalities.

Since b > 4c¢, we have ¢ < %, and we already knew a < 3b, which means a + b+ ¢ <
3b+b+ % = %b. Since a + b + ¢ = 200, we have %b > 200, so b > % ~ 47.06. Since
b is an integer, b > 48, so no smaller value is possible.

(c) Determine the number of ordered triples (a,b,c) in which ¢ = 11.
There are 141 such triples.

Setting b to any value 48 < b < 188 will work. We must then have a = 189 — b, which
is always a positive integer less than 3b, and b is always at greater than 4c = 44. But
b > 189 will not work (since a becomes 0 or less) and b < 48 was shown impossible in
part (b).

Let a, b, and c be positive integers. If a +b+ c = 85, ¢ > 3a, 2b > ¢, and 5a > 3b, prove
algebraically that there is a unique solution (a,b,c) to this system.

Solving the equations for a, we get %a <b< %a, and 3a < ¢ < %a.

If we plug the lower bounds into a + b+ ¢ = 85, we get %a < 85,50 a < %, which means

a < 15. Plugging the upper bounds into the same equation, we get 6a > 85, so a > 14.

Now if we try a = 14, we have ¢ > 42 (which means ¢ > 43), 2b > ¢ (which means b > 22),
and 5a > 3b (which means b < 23).

If we take a = 14, then 5a > 3b tells us b < 23, which means ¢ = 85 —a — b > 48. However,
c > 48 and b < 23 violates 2b > ¢, so this is impossible.

If we take a = 15, then 5a > 3b tells us b < 24. In fact we must have b = 24, because b < 23
would give us ¢ > 47, with the same problems as before. If a = 15 and b = 24, then ¢ = 46,
and we can check that (15, 24,46) satisfies all the equations.

A unit square is divided into 4 rectangles of positive area by two cuts parallel to the sides
of the square. Let a1 < ag < az < a4 be the areas of the four parts in nondecreasing order.
For eachi=1,...,4, determine with proof the range of values for a;.

Theansweristhat0<a1§i,0<a2§i,0<a3<%,and%§a4<1.

To show the bounds on a; and a4, just note that a; (the smallest area) can’t be larger than
the average area w = %, while a4 (the largest area) can’t be less than the average
area.

To show the bound on as, we have to work harder. Suppose one cut is at distance x from
one of its parallel sides, and the other cut is at distance y from one of its parallel sides, with
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0<z<y<4i. Thena =zy, as=2(1-y), a3 = (1 —z)y, and as = (1 — z)(1 —y). Since
z <y, we have ap = z(1 —y) < 2(1 —z) = 1 — (z — 3)?, which can be at most ;.

To show the bound on ag, note that a1 < as and a3 < a4, 8o a1 +ag < as + a4, which means
a1 +ag < % Since a; > 0, we have a3z < %

To show that all of these bounds are best possible, consider the following three dissections:

e Both cuts divide the square equally, giving a; = ag = a3 = a4 =

ol

e Both cuts are within some small distance ¢ of a side, giving a1 = €2, ay = a3z = €(1 —¢),
and a4 = (1 — €)%, By taking € arbitrarily small, aj, as, and ag get arbitrarily close to
0 and a4 gets arbitrarily close to 1.

e One cut divides the square equally while the other is within € of a side, giving a; =
ags = %e and a3 = a4 = %(1 — €). By taking e arbitrarily small, ag gets arbitrarily close
to %

A unit cube is divided into 8 parallelepipeds of positive volume by three cuts parallel to the

faces of the cube. Let v1 < vy < --- < vg be the volumes of the eight parts in nondecreasing
order. Determine with proof the range of values for v4 and vs.

The ranges are 0 < vq < % and 0 < vs < %. The lower bounds here are trivial.

To show the upper bound on vs, note that vs + vg + vy + vg < 1, and vy is the smallest of
these, so v < %.

To show the upper bound on vy, we have to do some tedious work. Suppose that the cuts
are made at distances x, y, and z from a parallel face, with 0 < x <y < z < % Then the
eight volumes are products like zyz or (1 — z)y(1 — z), and we can say the following things
about their order:

o zyz <zy(l—2)<z(l-y)z <(1-12)yz.
o« s(l—y)(1—2) < (1—a)y(l—2) < (1 —2)(1—y)z < (1 —2)(1 - )(1 - 2).
o (1l —y)z <z(l—y)(1-—2).

So vy is the smaller of (1 — z)yz and z(1 — y)(1 — z), and vs is the larger.

; also, (1 —2) < 1 (as shown in the previous

. Therefore vqvs < 6%1. Since v4 < vy, we must

~—

We have vqvs = z(1 — 2)y(l — y)z(1 — 2

problem), y(1 —y) < %, and 2(1 — 2) <

ol

have v4 < %.

To show that these bounds are best possible, consider the following examples:

e All three cuts are even, so all eight volumes are %.

e Two cuts are even, and the third is arbitrarily close to a face. Then vy through vy will
be arbitrarily close to 0, and vs through wvg arbitrarily close to %.

e All three cuts are arbitrarily close to one of the faces they’re parallel to. Then vy
through v7 will be arbitrarily close to 0, and vg arbitrarily close to 1.

Let n be a positive integer. Allie and Bob play a game constructing a partition n = a1 +

as + -+ ap with ay > a2 > -+ > ap > 1. Allie wins if there is an odd number of terms

in the partition, i.e. if k is odd, and Bob wins otherwise. Allie begins by choosing an ai

between 1 and n — 1 inclusive. Bob then chooses an as between 1 and aq inclusive such that
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a1 +ag < n. Allie then chooses an ag between 1 and as inclusive such that a1 +as+az < n,
and so on, with the game ending when the partition is complete. Determine with proof all
n > 1 for which Bob has a winning strategy.

Bob has a winning strategy for n if and only if n is a power of 2.

All we need to keep track of over the course of the game is the limit ¢ (initially £ =n — 1)
that is the largest number you can write down, and the remainder r (initally » = n) equal
to the difference between n and the sum of all numbers written. Writing down a number
a changes the limit £ to a and the remainder r to r — a. The player who gets » down to 0
wins.

The winning strategy in this game is to try, on your turn, to achieve a position (¢,7) such
that, for some i, £ < 2* and r is divisible by 2*. We call such a position i-uncomfortable,
with the idea that your goal is to place your opponent in an uncomfortable position.

To prove this strategy, we check the following three facts:

e From an i-uncomfortable position, your opponent can’t win in one turn. Either » =0
(and you've already won), or r > 2" (and no number that’s at most ¢ can reduce r to
0).

e Moreover, from an i-uncomfortable position, your opponent can’t produce another
uncomfortable position.

e However, from any comfortable position, you can place your component in an i-
uncomfortable position for some 1.

So if the “make your opponent uncomfortable” strategy is executed, your position will never
be uncomfortable, and your opponent’s position will always be. Eventually r will get down
to 0 and someone will win: that will have to be you, because your opponent can’t win from
an uncomfortable position.

To show the second claim, suppose that position (¢,7) is i-uncomfortable, so r is divisible
by 2¢ and ¢ < 2°. No move below the limit can produce another multiple of 2. To produce
a multiple of 2°=!, you need to subtract at least 2°~! from r. To produce a multiple of 2°=2,
you need to subtract at least 2°=2, and so on. So the new limit will be at least as big as the
largest power of 2 dividing 7, and the new position is comfortable.

To show the third claim, let (¢,7) be comfortable; let 2¢ be the largest power of 2 less than
¢. Since (¢,7) is not i-uncomfortable, r is not divisible by 2¢. So let a = r mod 2! be the
next move. Then the new limit, a, is less than 2¢, and the new remainder, r — a, is divisible
by 2¢, so we've produced an i-uncomfortable position.

If the starting position (n — 1,n) is comfortable, then Allie can execute this strategy and
win. This happens most of the time; however, when n = 2¢ for some i, (n — 1,n) is 4-
uncomfortable. So after Allie’s first move, Bob will be an a comfortable position, and can
execute this strategy to win.

Allie and Bob play a game similar to the one in (7) except that the inequality a; > a;11
is replaced by 2a; > ajy1. Prove that Bob has a winning strategy if and only if n is a
Fibonacci number. (You may assume the following: each positive integer n can be uniquely

represented as a decreasing sum of non-adjacent Fibonacci numbers, e.g., 32 =21+ 8+3.)
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The idea here is similar, but the new constraint changes the possible moves: from a position
with limit ¢ and remainder r, one may choose a number a with 1 < a < ¢ and pass to the
position with limit 2a and remainder r — a.

We correspondingly define a new way to tell if a position is comfortable. We say that (¢,7)
is comfortable if, when r is written as a decreasing sum of non-adjacent Fibonacci numbers,
the smallest number is at most £.

To prove that this lets us implement a “make your opponent uncomfortable strategy”, we
check two things:

e From a comfortable position, an uncomfortable one can always be produced.

e From an uncomfortable position, any move leads to a comfortable one (and no move
can win).

We begin with the first claim. In the position (¢,r), let 7 have the non-adjacent Fibonacci
representation of Fj, +Fj, +---+F;,, where Fj; is the smallest. If the position is comfortable,
a = F;; can be written down. Then the new limit is 2a = 2F;,, and the new remainder is
r—a=F,+F,+--+F,_,.ButF,  >F . =F +F;>F+F;so it’s greater
than the new limit. So the new position is uncomfortable.

Next, we show the second claim. Suppose (¢,r) is an uncomfortable position, with r =
Fi, + Fiy, +--- + Fij. The next move is some number less than F;;, since /< F;;. So the
Fibonacci representation of the next remainder will have the same initial segment, with
merely F;; replaced by some smaller Fibonacci numbers.

Thus, we may ignore this unchanging beginning, and assume that » = F; for some i, and
¢ < F;. Suppose there existed a move to another uncomfortable position (2a,r — a). Then
the non-adjacent Fibonacci representations for » —a and for 2a could be concatenated, since
the last Fibonacci number in the representation of r — a is greater than 2a, so it can’t be
adjacent to the first Fibonacci number in the representation of a. This would give us a
second representation for r = Fj, contradicting the uniqueness the problem lets us assume.

So the “make your opponent uncomfortable” strategy is a viable one, and can be summarized
as follows:

(a) Write the current remainder r as a sum of non-adjacent Fibonacci numbers.

(b) If the smallest Fibonacci number is playable, write it down.

(c) If not, you're in a position with no winning strategy: your opponent can win with
optimal play.

The starting position in this game has a remainder of n and a limit of n — 1. The only
way this can be uncomfortable is if n is a Fibonacci number; if n is a sum of two or more
non-adjacent Fibonacci numbers, the smaller of them will be less than n, so below the limit.
Therefore Allie wins games starting from non-Fibonacci numbers, with optimal play, and
Bob wins games starting from Fibonacci numbers.



