Mock ARML

Individual Round

Misha Lavrov

ARML Practice 10/12/2014

(ロ)、(型)、(E)、(E)、(E)、(Q)、(Q)

1. Compute the next year after 2014 which cannot be written as the difference of two squares of integers.

2. Five congruent circles of radius r are drawn in square *ABCD*: one tangent to *AB* and *BC*, one tangent to *BC* and *CD*, one tangent to *CD* and *AD*, one tangent to *AD* and *AB*, and one tangent to the other four. If AB = 1, compute r.

1. Compute the next year after 2014 which cannot be written as the difference of two squares of integers.

Answer: 2018

2. Five congruent circles of radius r are drawn in square *ABCD*: one tangent to *AB* and *BC*, one tangent to *BC* and *CD*, one tangent to *CD* and *AD*, one tangent to *AD* and *AB*, and one tangent to the other four. If AB = 1, compute r.

Answer:
$$\frac{\sqrt{2}-1}{2}$$

3. Let A, B, and C be digits, $A \neq 0$. If $AB \cdot AC = 1023$, compute AB + AC.

4. T(x) is a degree 3 polynomial with integer coefficients, one of whose roots is $\cos \frac{\pi}{7}$. Compute $\frac{T(1)}{T(-1)}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへ⊙

3. Let A, B, and C be digits, $A \neq 0$. If $AB \cdot AC = 1023$, compute AB + AC.

Answer: 64

4. T(x) is a degree 3 polynomial with integer coefficients, one of whose roots is $\cos \frac{\pi}{7}$. Compute $\frac{T(1)}{T(-1)}$.

- ロ ト - 4 回 ト - 4 □

Answer: $-\frac{1}{7}$

5. A regular 12-gon has vertices A_1, A_2, \ldots, A_{12} . If A_3, A_6, A_9 , and A_{12} are the midpoints of the four sides of a square with area 1, compute the area of the 12-gon.

6. Compute all integer values of k for which $x = \cos \alpha$ is a solution to $x^2 + x - k = 0$ for some real α .

5. A regular 12-gon has vertices A_1, A_2, \ldots, A_{12} . If A_3, A_6, A_9 , and A_{12} are the midpoints of the four sides of a square with area 1, compute the area of the 12-gon.

Answer: $\frac{3}{4}$

6. Compute all integer values of k for which $x = \cos \alpha$ is a solution to $x^2 + x - k = 0$ for some real α .

Answer: k = 0, 1, 2

7. Let a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots be two geometric sequences. The sequence c_1, c_2, c_3, \ldots has $c_n = a_n + b_n$ for each positive integer *n*. If $c_1 = 1$, $c_2 = 4$, $c_3 = 3$, and $c_4 = 2$, compute c_5 .

8. In triangle *ABC*, *AB* = 3, *BC* = 4, and *AC* = 5. $\triangle ABC$ is inscribed in a circle, and *D* is the point on the circle opposite *B*. Compute the distance between the incenters of $\triangle ABC$ and $\triangle ACD$.

7. Let a_1, a_2, a_3, \ldots and b_1, b_2, b_3, \ldots be two geometric sequences. The sequence c_1, c_2, c_3, \ldots has $c_n = a_n + b_n$ for each positive integer *n*. If $c_1 = 1$, $c_2 = 4$, $c_3 = 3$, and $c_4 = 2$, compute c_5 . **Answer:** $\frac{17}{13}$

8. In triangle *ABC*, *AB* = 3, *BC* = 4, and *AC* = 5. $\triangle ABC$ is inscribed in a circle, and *D* is the point on the circle opposite *B*. Compute the distance between the incenters of $\triangle ABC$ and $\triangle ACD$.

Answer: $\sqrt{5}$

9. Diameters AB and CD of circle S are perpendicular. Chord AE intersects diameter CD at point K and chord EC intersects diameter AB at point L. If CK : KD = 2 : 1, find AL : LB.

10. Compute the largest integer between 1 and 1000 whose base 5 representation consists of the last k digits of its base 2 representation, for some k.

9. Diameters AB and CD of circle S are perpendicular. Chord AE intersects diameter CD at point K and chord EC intersects diameter AB at point L. If CK : KD = 2 : 1, find AL : LB.

Answer: 3 : 1

10. Compute the largest integer between 1 and 1000 whose base 5 representation consists of the last k digits of its base 2 representation, for some k.

Answer: 31