Even More Games

Misha Lavrov

ARML Practice 2/24/2013

(ロ)、(型)、(E)、(E)、(E)、(Q)、(Q)

Problem ("Chomp")

Two players play a game on an $m \times n$ chocolate bar made up of small squares. The players take turns choosing a square and eating it, together with all the squares below it and to the right. The top left square is poisoned: the player who eats it, loses.

▲ロト ▲冊 ト ▲ ヨ ト ▲ ヨ ト ● の へ ()

- 1. Show that the first player has a winning strategy.
- 2. Find this winning strategy in the case m = n.

This is a strategy-stealing argument:

シック・ 川 ・山・山・山・ 一日・

This is a strategy-stealing argument:

		\times

(日本)(日本)(日本)(日本)(日本)(日本)

This is a strategy-stealing argument:

・ロト ・ 日 ・ ・ 田 ト ・ 田 ト ・ 日 ・ つ へ ()・

This is a strategy-stealing argument:

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 ・ のへぐ

Start by eating the square below and to the right of the poisoned square...

Start by eating the square below and to the right of the poisoned square...

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへぐ

Start by eating the square below and to the right of the poisoned square \ldots

... then maintain symmetry between the two long thin pieces.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Problem (Unknown source)

A box contains 300 matches. Two players take turns taking some matches from the box; each player must take at least one match, but no more than half the matches. The player who cannot move, loses. Who has the winning strategy?

Problem (German Math Olympiad 1984/1.)

Two players take turns writing a number 1, 2, ..., 6 on the board. When 2n numbers have been written, the game ends; the second player wins if the sum of the numbers is divisible by 9. For which values of n does the second player have a winning strategy?

Problem (Putnam 1993/B2.)

Cards numbered $1, \ldots, 2n$ are shuffled and dealt to two players (each receives n cards). The players take turns discarding a card face-up; if the sum of all discarded cards is divisible by 2n + 1, the game ends and the player who just discarded, wins.

Assuming optimal play, who wins and how?

Problem (New Zealand IMO Selection, 2004.)

The numbers 1, ..., 1000 are written on the board. Two players take turns erasing a number; a number x may be erased if x = 1, or x - 1 has been erased, or x is even and $\frac{x}{2}$ has been erased. The player to erase 1000 wins.

Which player has a winning strategy?

Problem (ARML 1998 Power Round)

Allie and Bob play a game constructing a partition

 $n = a_1 + a_2 + \cdots + a_k \quad s.t. \ a_1 \ge a_2 \ge \cdots \ge a_k \ge 1.$

On the *i*-th turn, a player picks a_i such that $a_i \leq a_{i-1}$ and $a_1 + \cdots + a_i \leq n$. Allie goes first but cannot pick n.

The player to write down a_k so that $a_1 + \cdots + a_k = n$, wins.

- For which n does Bob have a winning strategy?
- Suppose instead of a_i ≤ a_{i−1} the condition is a_i ≤ 2a_{i−1}. For which n does Bob have a winning strategy?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <