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There are two kinds of games

Problem (1)

Suppose tic-tac-toe is played on a 4 x 4 board, but the first player
to claim 4 squares on a line loses. Find a strategy that allows the
second player to avoid losing.

Problem (2)
In two-step chess, players take turns making two moves at a
time: first White moves twice, then Black moves twice, and so on.

Prove that if both players play optimally, White is guaranteed at
least a draw: that is, Black has no foolproof winning strategy.



Misére tic-tac-toe and pairing strategies

» Match the squares of the 4 x 4 board in pairs:

A|B|C|D
E|F|G|H
E|F|G|H
A|B|C|D

» Whenever the first player claims a square, the second player
should claim the matching square.
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Match the squares of the 4 x 4 board in pairs:

A|B|C|D
E|F|G|H
E|F|G|H
A|B|C|D

Whenever the first player claims a square, the second player
should claim the matching square.

A line of 4 squares with only 2 different letters on it can’t
possibly matter in the end: neither player will claim all of it.

If a line of 4 squares has 4 different letters, the other 4
squares with those letters also form a line. Therefore if the
second player ends up claiming the first line, the first player
must have already claimed the second line, and lost.



Two-step chess and strategy stealing

» Suppose Black had a winning strategy. White can begin with
a “null move” (e.g. Nbl-c3-bl) that doesn't change the
position, and then follow this winning strategy with all the
colors reversed. Contradiction!



Two-step chess and strategy stealing

» Suppose Black had a winning strategy. White can begin with
a “null move” (e.g. Nbl-c3-bl) that doesn't change the
position, and then follow this winning strategy with all the
colors reversed. Contradiction!

» This is known as a “strategy stealing” argument. It applies to
any game in which a move can be made that can’t possibly
hurt you (tic-tac-toe is a good example).

» Notably, the strategy stealing argument says nothing about
what the strategy actually is.



Examples

Problem (Golomb and Hales, Hypercube Tic-Tac-Toe, 2002)

Find a strategy allowing the second player to force a draw in
(ordinary) 5 x 5 tic-tac-toe.

Problem (USAMO 2004 /4)

Alice and Bob play a game on a 6 x 6 grid. They take turns writing a
number in an empty square of the grid; Alice goes first. When all squares
are filled, the square in each row with the largest number is colored black.
Alice wins if she can then draw a straight line (possibly diagonal)
connecting two opposite sides of the grid that stays entirely in black
squares.

Find, with proof, a winning strategy for one of the players.



Solution: 5 x 5 tic-tac-toe

» The second player can play according to the following pairing
strategy:

N -
| =/ =
— | |
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» Each row, column, and diagonal contains two paired squares;
as soon as the first player claims one of them, the second
player claims the other, and therefore the first player cannot

claim the whole line.




» Bob selects 3 squares in each row as follows:

X XX
X | XX
X| XX
X | XX
X | XX
X | X X
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Solution: USAMO 2004 /4

» Bob selects 3 squares in each row as follows:

X XX
X | XX
X | XX
XXX
XXX
X | X X

» Bob can ensure that no marked square is colored black by
following two rules:

» When Alice writes a number on a marked square, Bob writes a
higher number on an unmarked square in the same row.

» When Alice writes a number on an unmarked square, Bob
writes a lower number on a marked square in the same row.



» An impartial game is one in which the only difference between

the two players is that one goes first (in particular, there can
be no pieces “belonging” to one player).
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Winning and losing positions

» An impartial game is one in which the only difference between
the two players is that one goes first (in particular, there can
be no pieces “belonging” to one player).

» Impartial games can be studied by classifying all possible
positions into winning and losing positions:

» A winning position is one in which it is either possible to win
in one move, or else a move exists that brings it to a losing
position.

» A losing position is one in which every move either loses
immediately or leads to a winning position.



Winning and losing positions

» An impartial game is one in which the only difference between
the two players is that one goes first (in particular, there can
be no pieces “belonging” to one player).

» Impartial games can be studied by classifying all possible
positions into winning and losing positions:

» A winning position is one in which it is either possible to win
in one move, or else a move exists that brings it to a losing
position.

» A losing position is one in which every move either loses
immediately or leads to a winning position.

» Once all positions are classified, they determine the winning
player and provide a strategy.



Problems with impartial games

Problem (“Bachet's Game")

There are n tokens on the table. Two players take turns removing
any number of tokens between 1 and k from the table. The player
that takes the last token wins. Assuming optimal play, for what
values of n and k does the first player win?

Problem (2009 Mathcamp Qualifying Quiz, Problem 6)

Two players play a game by starting with the integer 1000, and
taking turns replacing the current integer N with either | § | or

N — 1. The player that moves to 0 wins. Assuming optimal play,
which player has a winning strategy?



» We will classify the possible positions carefully as either
winning or losing.
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» We will classify the possible positions carefully as either
winning or losing.

» The positions with 1,2, ..., k tokens on the table are winning.
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» We will classify the possible positions carefully as either
winning or losing.

» The positions with 1,2, ..., k tokens on the table are winning.

» The position with k + 1 tokens on the table is losing (any
move leads to one of the k positions above).
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Bachet's Game

» We will classify the possible positions carefully as either
winning or losing.

» The positions with 1,2, ..., k tokens on the table are winning.

» The position with k 4+ 1 tokens on the table is losing (any
move leads to one of the k positions above).

» The positions with (k+ 1)+ 1,...,(k + 1) + k tokens on the
table are winning; there is a move from them to k 4+ 1, and so
on.



Bachet's Game

» We will classify the possible positions carefully as either
winning or losing.

» The positions with 1,2, ..., k tokens on the table are winning.

» The position with k 4+ 1 tokens on the table is losing (any
move leads to one of the k positions above).

» The positions with (k+ 1)+ 1,...,(k + 1) + k tokens on the
table are winning; there is a move from them to k 4+ 1, and so
on.

» From here, we can see that the positions with a multiple of
k + 1 tokens on the table are the only losing positions. The
first player wins provided n is not divisible by k + 1, and the
winning strategy is to always leave a multiple of k 4 1 tokens
on the table.



» We first prove that every position N where N is odd is a
winning position.
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The Mathcamp problem

» We first prove that every position N where N is odd is a
winning position.

» We induct on N. When N =1, a single move wins so this is a
winning position.

» For N =2k + 1, we can move to k or 2k. If k is losing then
2k + 1 is winning.

» If k is winning then 2k is losing (the only possible moves are to
k and 2k — 1, both of which are winning), so 2k 4 1 is still
winning.



The Mathcamp problem

» We first prove that every position N where N is odd is a
winning position.

» We induct on N. When N =1, a single move wins so this is a
winning position.

» For N =2k + 1, we can move to k or 2k. If k is losing then
2k + 1 is winning.

» If k is winning then 2k is losing (the only possible moves are to
k and 2k — 1, both of which are winning), so 2k 4 1 is still
winning.

» 125 and 249 are winning, so 250 is losing; therefore 500 is
winning. Since 999 is also winning, 1000 is losing.



The Mathcamp problem

» We first prove that every position N where N is odd is a
winning position.
» We induct on N. When N =1, a single move wins so this is a
winning position.
» For N =2k + 1, we can move to k or 2k. If k is losing then
2k + 1 is winning.

» If k is winning then 2k is losing (the only possible moves are to
k and 2k — 1, both of which are winning), so 2k 4 1 is still
winning.

» 125 and 249 are winning, so 250 is losing; therefore 500 is
winning. Since 999 is also winning, 1000 is losing.

» In general, if N = 2% (2k + 1), then N is a winning position if
and only if £ is even.



