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A short theorem

Theorem (Complex numbers are weird)

−1 = 1.

Proof.

The obvious identity
√
−1 =

√
−1 can be rewritten as√

−1

1
=

√
1

−1
.

Distributing the square root, we get

√
−1√
1

=

√
1√
−1

.

Finally, we can cross-multiply to get
√
−1 ·

√
−1 =

√
1 ·
√

1, or
−1 = 1.



Basic complex number facts

I Complex numbers are numbers of the form a + bı̇, where
ı̇2 = −1.

I We add and multiply complex numbers in the obvious way.
Other operations:

I a + bı̇ = a− bı̇ (conjugation).

I |a + bı̇| =
√

a2 + b2 (absolute value). Note: |z | =
√

z · z .

I We can identify a complex number a + bı̇ with the point
(a, b) in the plane.
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Complex number facts, continued

I Corresponding to polar notation for points (r , θ), complex
numbers can be expressed as

z = r(cos θ + ı̇ sin θ) = r exp(ı̇θ).

I Multiplication is more natural in this form:

r1 exp(ı̇θ1) · r2 exp(ı̇θ2) = (r1r2) exp(ı̇(θ1 + θ2)).

I This has a geometric interpretation: rotation by θ, and scaling
by r = |z |.
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Complex number geometry

Problem (AIME 2000/9.)

A function f is defined on the complex numbers by f (z) = (a + bı̇)z,
where a and b are positive numbers. This function has the property that
the image of each point in the complex plane is equidistant from that
point and the origin. Given that |a + bı̇| = 8 and that b2 = m/n, where
m and n are positive integers, find m/n.

Problem (AIME 1992/10.)

Consider the region A in the complex plane that consists of all points z
such that both z/40 and 40/z have real and imaginary parts between 0
and 1, inclusive. What is the integer that is nearest the area of A?



Solution: AIME 2000/9

If f (z) is equidistant from 0 and z for all z , in particular,
f (1) = a + bı̇ is equidistant from 0 and 1.

This is true if and only if a = 1
2 . We now need to use |a + bı̇| = 8:

8 = |a + bı̇| =
√

a2 + b2 =

√
b2 +

1

4
.

b2 = 64− 1

4
=

255

4
.

Why is f (z) equidistant from 0 and z for all z , not just z = 1?
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Solution: AIME 1992/10

Write z = x + y ı̇. Then z/40 has real part x/40 and imaginary
part y/40. If these are between 0 and 1, then 0 ≤ x ≤ 40 and
0 ≤ y ≤ 40.

To deal with 40/z , we write it as 40z/(zz) = 40z/|z |2. So

0 ≤ 40x

x2 + y2
≤ 1 and 0 ≤ 40y

x2 + y2
≤ 1.

We can rewrite the first as x2 + y2 ≥ 40x , or
(x − 20)2 + y2 ≥ 202, or |z − 20| ≥ 20. Similarly, the second
becomes |z − 20ı̇| ≥ 20. The rest is algebra.
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Applications

Problem (Basic fact)

Show that given any quadrilateral, the midpoints of its sides form
a parallelogram.

Problem (Law of cosines)

Let a, b, and c be the sides of 4ABC opposite the vertices A, B,
and C respectively. Prove that

c2 = a2 + b2 − 2ab cos∠C .



Basic fact: solution

Let a, b, c , and d be the complex numbers corresponding to four
vertices of a quadrilateral.

Then the midpoints of the sides are given by a+b
2 , b+c

2 , c+d
2 , and

a+d
2 .

It’s easiest to show that both pairs of opposite sides are congruent.
We have:

∣∣∣∣a + b

2
− b + c

2

∣∣∣∣ =
|a− c|

2
=

∣∣∣∣c + d

2
− a + d

2

∣∣∣∣ .
∣∣∣∣b + c

2
− c + d

2

∣∣∣∣ =
|b − d |

2
=

∣∣∣∣a + b

2
− a + d

2

∣∣∣∣ .
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Law of cosines: solution

We can assume that the three vertices of 4ABC correspond to
complex numbers 0, 1, and z , with the vertex C at 0.

Then a = 1, b = |z |, and c = |z − 1|.

Write z = x + y ı̇ = r(cos θ + ı̇ sin θ). Then θ = ∠C , and
cos θ = x/|z |. Then we have

a2 + b2 − 2ab cos θ = 1 + |z |2 − 2|z | · x

|z |
= 1 + |z |2 − 2x .

On the other hand,

|z − 1|2 = (x − 1)2 + y2 = x2 − 2x + 1 + y2 = |z |2 − 2x + 1.
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Roots of unity and polynomials

Fact: the equation zn = 1 has n complex roots, which are evenly
spaced around the circle |z | = 1 and start from z = 1. They can
be written, for some angle θ = 2πk

n , k an integer 0 ≤ k < n, as

z = cos θ + ı̇ sin θ = exp(ı̇θ)

We can also think of these as follows. Let ω = cos 2π
n + ı̇ sin 2π

n .
Then the roots of zn = 1 are 1, ω, ω2, . . . , ωn−1.

Problem (AMC 12A 2002/24.)

Find the number of ordered pairs of real numbers (a, b) such that
(a + bı̇)2002 = a− bı̇.



Solution: AMC 12A 2002/24

Multiplying by a + bı̇ again, we get (a + bı̇)2003 = a2 + b2, or
z2003 = |z |2.

In particular, |z |2003 = |z |2, so |z | can be 0 or 1.

If |z | = 0, then z = 0 is one solution. If |z | = 1, then z2003 = 1,
which has 2003 solutions.
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Roots of unity, continued

Problem (HMMT 2010 Algebra/4.)

Suppose that there exist nonzero complex numbers a, b, c , d such
that z satisfies az3 + bz2 + cz + d = 0 and
bz3 + cz2 + dz + a = 0. Find all possible (complex) values of z.

Problem (ARML 1995/T5.)

Determine all integer values of θ with 0 ≤ θ ≤ 90 for which
(cos θ◦ + ı̇ sin θ◦)75 is a real number.



Solution: HMMT 2010 Algebra/4

Multiplying the first equation by z gives us
az4 + bz3 + cz2 + dz = 0. Now we subtract the second equation
to get az4 − a = 0. Since a 6= 0, we must have z4 = 1.

The fourth roots of unity are 1, ı̇, −1, and −ı̇. We can get all of
these except 1 by setting a = b = c = d = 1, so that both
equations become z3 + z2 + z + 1 = 0.

If z = 1, then we must have a + b + c + d = 1 = 0, but
fortunately it’s not too hard to find examples of such a, b, c , and
d . So all four of the values we found are possible values of z .
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Solution: ARML 1995/T5

We know that cos θ + ı̇ sin θ is on the circle |z | = 1, and taking
powers of it just rotates it around. The only real numbers it could
possibly hit are −1 and 1.

So we could try to solve (cos θ + ı̇ sin θ)75 = 1 and
(cos θ + ı̇ sin θ)75 = −1 separately. But we can also combine these
two into (cos θ + ı̇ sin θ)150 = 1.

There are 150 roots, but we want ones for which 0 ≤ θ ≤ 90◦.
There are 150/4 = 38 of these. We could write down what they
are, but that’s boring.
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Even more roots of unity

Problem (AIME 1997/14, modified.)

Let v and w be distinct, randomly chosen roots of the equation
z1997 − 1 = 0. Find the probability that |v + w | ≥ 1.

Problem (AIME 1996/11, modified.)

Let P be the product of the roots of z4 + z3 + z2 + z + 1 = 0 that
have a positive imaginary part, and suppose that
P = r(cos θ◦ + ı̇ sin θ◦), where r > 0 and 0 ≤ θ < 360. Find θ.



Solution: AIME 1997/14

We know v and w are points on the circle of radius 1 around 0.
The closer together v and w are to each other, the bigger |v + w |
is.

By drawing some triangles, we see that if v and w are 120◦ or 2
3π

radians apart, then |v + w | is exactly 1.

After some counting, we conclude that the probability is 1331
1997 .

Exercise: in the original AIME problem, you were asked to find the

probability that |v + w | ≥
√

2 +
√

3. What is the answer then?
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Solution: AIME 1996/11

We recognize z4 + z3 + z2 + z + 1 as z5−1
z−1 . So

z4 + z3 + z2 + z + 1 = 0 if z5 = 1 and yet z 6= 1.

There are four roots: ω = cos 2π
5 + ı̇ sin 2π

5 , ω2, ω3, and ω4.

The first two have positive imaginary part, and their product is ω3,
which is cos 6π

5 + ı̇ sin 6π
5 . So θ = 6π

5 = 216◦.

Exercise: in the original problem, we instead had
z6 + z4 + z3 + z2 + 1 = 0. How does this change the answer?
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Hard problems

Problem (AIME 1994/13.)

The equation
z10 + (13z − 1)10 = 0

has ten complex real roots r1, r1, . . . , r5, r5. Find the value of

1

r1r1
+

1

r2r2
+

1

r3r3
+

1

r4r4
+

1

r5r5
.

Problem (AIME 1998/13.)

If a1 < a2 < · · · < an is a sequence of real numbers, we define its
complex power sum to be a1ı̇+ a2ı̇

2 + · · ·+ an ı̇
n. Let Sn be the

sum of all complex power sums of all nonempty subsequences of
1, 2, . . . , n.Given that S8 = −176− 64ı̇, find S9.


