
0.1 Friend Trends

This puzzle is based on the following anecdote concerning a Hungarian sociolo-
gist and his observations of circles of friends among children.

“In the 1950s, a Hungarian sociologist S. Szalai studied friendship
relationships between children. He observed that in any group of
around 20 children, he was able to find four children who were mu-
tual friends, or four children such that no two of them were friends.
Before drawing any sociological conclusions, Szalai consulted three
eminent mathematicians in Hungary at that time: Erdos, Turan and
Sos. A brief discussion revealed that indeed this is a mathematical
phenomenon rather than a sociological one. For any symmetric re-
lation R on at least 18 elements, there is a subset S of 4 elements
such that R contains either all pairs in S or none of them. This
fact is a special case of Ramsey’s theorem proved in 1930, the foun-
dation of Ramsey theory which developed later into a rich area of
combinatorics.”

(Quoted from lecture notes by MIT Prof. Jacob Fox.)

The puzzle we now present follows the same idea but with some smaller
numbers. Specifically, we are interested in investigating the smallest size of a
group of people that necessitates a subgroup of three people that are all mutually
friends or all mutually enemies.

Assume that amongst a group of people, any two of them are either
friends or enemies, and that these are the only possible relationships
(i.e. no acquaintances or frenemies or anything like that). Take a
group of four people and try to assign a designation of friend/enemy
to each pair so that there are no groups of three people that are all
friends or all enemies. Can you do this with a group of five people?
How about six? Seven? Ten? Twenty? Try to identify a cutoff
number for the size of the group where you can be guaranteed to
find a subgroup of three people that are all friends or all enemies.

Think carefully about this before turning the page and reading our solution.
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Did you figure it out? This is a very tricky puzzle, so don’t feel bad if you
struggled with finding a solution. In fact, we think that investigating this puzzle
is just as important as actually finding an answer, because there are several ways
to approach this puzzle and it’s always interesting to see how different people
interpret the puzzle.

Let’s start by discussing how to even write down/draw/talk about this situ-
ation. For any of the questions posed by this puzzle, we are meant to consider a
group of people with a certain size and think about the relationship between any
two people in the group. To tackle this puzzle, we will need a way to represent
all of these relationships in an efficient and easily-interpretable way, so that we
can verify the desired property about the subgroups of size three. Specifically,
we want to easily identify whether or not there are any subgroups of size three
that are homogeneous, in the sense that the three people are all friends or all
enemies. From now on, we will refer to this as the “homegeneity property” to
be more concise. How could we do this? We could number the people in the
group, then write out a list of all pairs of numbers and label each pair with F
(friend) or E (enemy). Let’s try doing that for a group of four people:

12F 13E 14F 23F 24E 34F

Does this friend/enemy group satisfy the subgroup property? It’s not so easy
to verify, is it? For one, the numbering makes it difficult to find subgroups of
size three, and to verify the property, we need to check all such subgroups to
make sure they are not EEE or FFF . Perhaps we should find a better way of
representing the information of the puzzle before attempting a solution. Can
you think of a more visually pleasing way of representing whether two people
are friends or enemies, for all possible pairs in the group? Specifically, we would
like to have a relatively efficient way of looking for subgroups of size three and
recognizing whether they are all friends or all enemies.

Let’s try representing each person in the group as a single dot and connecting
two people with a type of line dependent on whether those two are friends or
enemies. For example, let’s connect two people that are friends with a blue line
and two people that are enemies with a red line (and remember that any two
people are either friends or enemies and nothing else, so each pair of dots must
have some colored line between them). Now, what would we be looking for to
verify the homogeneity property? We want three dots (three people) so that all
of the lines between them are either blue (all friends) or red (all enemies). That’s
right—we’re looking for monochromatic triangles! (Note: we want the vertices
of the triangle to be one of the original dots we drew; that is, we don’t want
a vertex to be a place where two lines cross. Also, monochromatic comes from
the Greek words monos and khroma, meaning “one” and “color”, respectively.)
This representation is much easier to interpret visually and makes checking for a
solution much faster. Try drawing the dots-and-lines diagram that matches the
list we gave above. Did you find any monochromatic triangles? What happens
if you move your four dots around on the paper? Did that affect the solution?
Did it make it any easier to look at? How else could you draw the lines?
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Based on the diagram that you just drew, it would seem that we have ad-
dressed the question regarding four people: we have an arrangement of friends
and enemies so that there are no subgroups of size three that are either all friends
or all enemies. Can you find another arrangement? How can you be sure that
it’s a different arrangement than the one we’ve already seen? How many dif-
ferent arrangements are there that satisfy the homogeneity property? Now, try
drawing an arrangment that does not satisfy the homogeneity property. What
does that look like? How many of these arrangements are there?

Let’s move on and think about a group of five people. Our diagram changes
because we have five dots now, and this means there are more lines to draw.
Still, we are looking to fill in all of the connections with a blue or red line and
make sure there are no monochromatic triangles. Is this possible? (Hint: try
arranging the dots into a regular pentagon shape and then filling in the lines.)
Try to draw this a few times and see if any of your arrangements work. It may
also help to draw in a few lines randomly and then guide your choices from there
on out by making sure that you don’t create any triangles when you add a new
line.

Did you figure it out? Turn the page to see how we did it . . .
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Here is our arrangment of red/blue lines amongst five dots that completely
avoids the homogeneity property:

Notice the elegant symmetry of the figure: all of the red lines are on the
outside of the pentagon, and all of the blue lines are in the interior of the shape.
The reason this works is that any triangle using three dots as vertices must use
either two outside lines and one inside line, or two inside lines and one outside
line. (Think about that: why couldn’t we use three inside lines or three outside
lines to make a triangle?) This guarantees that any triangle we draw will use two
differently-colored lines, so this figure does not have the homogeneity property!
Of course, we could look at all possible triangles inside the diagram and make
sure none of them use one color. How many such triangles are there? How
quickly could you check all of them by hand? Is it easier to do that, or to notice
the inside/outside property that we mentioned above?

Perhaps you found a solution that doesn’t look like the drawing we have.
How can you tell whether it’s actually a different figure? How many blue and red
lines are there in your diagram? In ours? Try redrawing your figure by moving
the dots around but maintaining the relationships between the dots (i.e. the
color of line drawn between any two of them). Can you make your figure look
like ours? What do you think this says about the number of solutions to this
puzzle?

Okay, now we’re ready to think about what happens when we have six people.
In terms of the dots and lines, we’re looking to draw all possible connections
between six dots with either blue or red lines and ensure that there are no
triangles with the same line type. Before you start drawing, try to think about
the solutions to this puzzle when we were working with four and five dots. What
did those solutions look like? What was the number of lines that we had to fill
in? How many will we have to draw this time? Can we try to make this figure
look like the solution for five dots? It sometimes helps to think about how a
solution to a current puzzle might be similar to previous work. Now, try to
draw this figure and see what happens.

Did it work? Why not? Where did you run into trouble? How many lines
could you draw before you were forced to make a monochromatic triangle? That
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is, how many lines could you fit into the figure before the next one you drew
would make a monochromatic triangle, no matter whether it was blue or red?
These are just tangential questions, in a way, to solving this particular puzzle,
but they’re worth thinking about because they’re interesting in their own right
and they may guide us toward a solution for this puzzle or a generalization
thereof.

The situation we face now is interesting because it’s of the opposite nature
to the kind of situations we faced before. With four and five dots, we wanted to
show that it was possible to arrange all of the lines to make no monochromatic
triangles. To show that, we just had to do it! Exhibiting a particular figure
with the desired property was sufficient to show that it was possible to achieve
the property we wanted. With six dots, though, it seems like it is not possible
to arrange the lines so that there are no monochromatic triangles. How can
we prove that this is a fact? It is tempting to say that we should just look
at all possible arrangements of the lines and argue that there is at least one
monochromatic triangle in every single one of them. Is this feasible? How many
arrangements of the lines are there? How could we easily show that there is
a monochromatic triangle in any given diagram? Remember how we did this
with the figure with five dots? We noticed that any triangle would have to use
at least one line from the outside and at least one line from the inside, which
guarantees right away that any triangle has two types of lines. Could we do the
same thing here, and identify some property that guarantees a triangle?

The issue is that there are too many possible arrangments of the lines in the
diagram with six dots for us to check all of them by hand! There are 15 lines
to be drawn, each of which could be either blue or red, so it seems like there
are 215 possible arrangements. This is a big number! (In actuality, there are
slightly fewer possibilities because some of them are equivalent in some sense;
more technically, they are called “isomorphic”. We will discuss these concepts
in more detail later on. )

We need to be more clever with our argument so that we can prove a property
of any diagram without drawing a particular one. That is, we need to find some
fact, some property that is true of all of the possible diagrams with six dots, that
will still allow us to deduce that there must be a triangle. One way to approach
this is to think about drawing the lines in one small section of the diagram.
Specifically, let’s take any of the six dots and consider the five lines coming out
from that dot. How many are blue and how many are red? This is partially a
trick question; because we’re not considering any particular diagram but trying
to find a fact about all possible diagrams, we can’t answer that question too
specifically. Here’s what we can say, though: there must be at least three blue
lines or at least three red lines. Do you see why this is true? The only way this
wouldn’t be true is if there were two (or fewer) blue lines and two (or fewer) red
lines leaving this particular dot, for a total of four (or fewer) lines, but we know
that all possible connections must be drawn, so there should be five! (This
argument is an example of a concept known as the Pigeonhole Principle.
The idea is that we can’t place five objects, of two different colors, into two
different boxes without putting three objects of one color into one box. This is
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an incredibly useful strategy with these types of problems, and we will examine
the principle in much greater detail later on in Chapter 6.)

So where do we stand? We started with any of the figures with six dots and
all lines filled in, and focused on one particular dot; coming out from this dot,
there must be three blue lines or three red lines. It could be either color, so we
can’t just assume it’s blue and follow an argument that way; we can do that,
but we have to come back to this point afterwards and see what would change
if the three lines were red. So let’s do that: let’s examine all of the figures so
that there are three red lines exiting this particular dot. Where can we go from
there? We haven’t yet assumed anything about the other lines in the figure, so
let’s look at what those could be. Examine the picture below to see what line
colors we have assumed exist so far:

Now, what lines could be added to this diagram that would avoid making
a triangle of one color amongst three dots? We can’t necessarily make any
assumptions about the lines coming out from the two dots that are isolated in
the picture, so let’s focus on the three dots on the bottom. What color could
the lines among those be? Well, if any of them are red, that would form a
monochromatic triangle between the two endpoints of that line and the original
dot we focused on! That would be a problem. Okay, the only way to avoid that
is to make all of those lines blue. But that would make a blue triangle among
those three dots! Wow, it looks like we cannot avoid making a monochromatic
triangle no matter what we do!
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Let’s go back to our Pigeonhole argument and reassess the situation. What
if the three lines of the same type that were guaranteed by the argument were
blue instead of red? Well, nothing would really change, right? We would still
be stuck, in terms of adding new lines among the three dots on the bottom of
the figure:

If we include any blue lines, that forms a monochromatic triangle with the
original dot, and if we make all of them red, that forms a monchromatic triangle
there! In this sense, the two arguments we followed after the Pigeonhole argu-
ment were identical ; if we were to replace every instance of the word “blue” with
“red” and vice versa, we would have the same argument. Sometimes, mathe-
maticians will use this situation to shorten a proof and just say that “without
loss of generality, the three lines are red.” This is usually taken to mean that
if we were to make the other choice instead (i.e. if the lines were blue) then
the further argument would have an identical structure, mathematically, so we
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can save space and time by not writing the same words over again. This is so
common, in fact, that you might sometimes see this phrase, “without loss of
generality”, abbreviated as WOLOG or WLOG.

What have we accomplished so far? We produced specific diagrams that
showed we could arrange the lines among four and five dots so that we can
avoid a monochromatic triangle, and we argued that any diagram of lines with
six dots must have a monochromatic triangle. In terms of the friends/enemies
formulation of the puzzle, this means that any group of six people must have
a subgroup of three people that are all friends or all enemies. Notice how
helpful it was to recast the puzzle into this dots/lines formulation; it allowed
us to completely forget about the social context of the problem (which can be
distracting, in a way) and let us simplify our terminology and notation (we
went from labeling pairs of people as “friends” or “enemies” to simply drawing
one line between two dots). This is a very useful strategy: extracting the
inherent structure of a puzzle—the underworkings, the relationships between
the elements, how they interact, etc.—and rewriting everything in terms of just
those parts. This can make the puzzle easier to understand and tackle, and it
can guide us into devising better notation. What if we had continued to solve
this puzzle with the 13F, 23E, . . . notation? That may have eventually worked,
but it would have been much harder!

One of this puzzle’s original questions was to identify a cutoff number so
that any larger group of people would necessarily have this subgroup property.
Do you think we have accomplished that? Have we identified a cutoff? Could
six be that number? Why or why not? In any group of seven people, there’s a
smaller group of six people, and then our work above proves that there must be
three mutual friends/enemies among that group! Certainly, this works for any
group of people of size larger than six, so this must be that precise cutoff point
we were looking for. This is an analogous result to the one mentioned in the
original statement of the puzzle, where the Hungarian sociologist noticed this
phenomenon for subgroups of size four. That problem is much more difficult
to solve, so we handled a smaller, simpler case here. Both of these results are
related to a larger class of problems known as Ramsey Theory. This branch
of combinatorics and graph theory works with identifying these kind of “cutoff
points” where, as the size of some structure (like a group of people) grows
and grows, there is eventually a point where we can be guaranteed to find a
subgroup with a certain property (three mutual friends/enemies). What was
at first thought to be a sociological phenomenon turned out to be a rigorous
mathematical fact. How about that!

Let’s pose some interesting and related questions before moving on. What
if we had been looking for homogeneous groups of a different size, like four
or five or twelve? Certainly, we would have to have a larger group of people,
overall, to guarantee finding such a subgroup. Can we always do this? That
is, given any desired subgroup size, can we identify a cutoff point in the way
that we did here? Can you figure out how to prove that such a cutoff point
must exist, even without finding the particular number? Furthermore, what
if we allowed for a third possibility: friend, enemy, unacquainted. Could we
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answer similar questions about homogeneous groups? These are all questions
related to Ramsey Theory and some of them are quite difficult to answer and
took mathematicians many years to address (and many are still open problems)
so don’t be discouraged if you don’t make any progress on these questions. We
believe that even attempting to answer them and thinking about the issues
therein is meaningful and beneficial enough, in itself.

Lesson from this puzzle: This puzzle brought up several difficulties. First,
we had to find a way to interpret the puzzle in a meaningful way so that we
could even address the questions it asked, and this involved coming up with
appropriate notation to represent the elements of the puzzle. This is an impor-
tant part of mathematical problem-solving, particularly for a puzzle like this
that doesn’t incorporate the notation and visualization as part of the problem
statement. Second, to identify six as the group cutoff size, we had to somehow
prove that something is not possible, but the number of possible configurations
to examine was way too large to examine each one individually. This happens
frequently, particularly in problems related to computer science and algorithms.
To address this, we had to employ a strategy far more clever than mere brute
force, and it’s not always clear what strategy that should be. Here, we essen-
tially started to try to fill in the lines as if it was going to work out, and then
realized that we reached a point that was impossible to fix. Proving that some-
thing is possible can amount to just showing an example of that phenomenon
(which we did with the groups of size four and five), but proving something is
impossible can be much trickier and require some context-dependent ingenuity.
Lastly, we saw that it can be interesting to think of questions closely-related
to the puzzle at hand that simply tweak one or more of the conditions of the
problem. What if we look for larger subgroups? What if we allow for more types
of lines? How does this change the results? Exploring the boundaries of puzzles
by changing the conditions like this can lead to new mathematical discoveries
and techniques, and keeps mathematicians actively searching for new knowledge
and ways of sharing that knowledge.
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