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Abstract

How to properly specify boundary conditions for pressure is a longstanding problem

for the incompressible Navier-Stokes equations with no-slip boundary conditions. An

analytical resolution of this issue stems from a recently developed formula for the

pressure in terms of the commutator of the Laplacian and Leray projection operators.

Here we make use of this formula to (a) improve the accuracy of computing pressure in

two kinds of existing time-discrete projection methods implicit in viscosity only, and

(b) devise new higher-order accurate time-discrete projection methods that extend a

slip-correction idea behind the well-known finite-difference scheme of Kim and Moin.

We test these schemes for stability and accuracy using various combinations of C
0

finite elements. For all three kinds of time discretization, one can obtain 3rd-order

accuracy for both pressure and velocity without a time-step stability restriction of

diffusive type. Furthermore, two kinds of projection methods are found stable using

piecewise linear elements for both velocity and pressure.
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1 Introduction

We consider the Navier-Stokes equations (NSE) for incompressible fluid flow in
a domain Ω in R

N (N = 2 or 3) with velocity specified on the boundary Γ = ∂Ω.
We write the momentum equation and boundary conditions in the form

∂tu + ∇p = ν∆u + F in Ω, (1)

u = g on Γ. (2)

Here u is the fluid velocity, p the pressure, and ν = 1/Re is the kinematic
viscosity coefficient, taken to be a fixed positive constant. We combine external
forcing f and nonlinear terms into one symbol F = f − u·∇u.

The pressure field p should ensure that the velocity is divergence-free, with

∇ · u = 0 in Ω. (3)

This incompressibility condition is the source of many difficulties associated
with the numerical approximation of solutions of NSE, especially in the presence
of boundaries. Projection methods, deriving from classic work of Chorin and
Temam, aim to deal efficiently with incompressibility through strategies that
involve the Helmholtz decomposition of an arbitrary vector field into a sum of
a gradient plus a divergence-free field. But for many years, projection methods
were plagued by large and poorly understood numerical boundary-layer errors.

The situation improved markedly with the formal analysis of Brown et al. [6],
who explained why one could achieve second-order accuracy in time. One point
we make in the present paper is that for no-slip boundary conditions, formal
accuracy and numerical boundary-layer errors at the time-discrete level can be
understood rather simply in terms of the failure of commutativity between the
(space-continous) Laplacian ∆ and the Leray-Helmholtz projection operator P
onto divergence-free vector fields.

The commutator ∆P −P∆ directly contributes a term to the Navier-Stokes
pressure, as we show in section 2. We will describe a formula for the pressure,
in fact, that shows how it is necessarily determined from the current velocity
and forcing fields by solving Poisson equations with appropriate boundary con-
ditions. This formula underlies the proof in [19] of local-time well-posedness for
an extended Navier-Stokes dynamics unconstrained by (3). This well-posedness
proof shows that the pressure formula provides a rigorous resolution of the long-
standing issue of how to properly specify boundary conditions for pressure. For
discussion of this issue see the book [12], and see the paper [27] for a recent and
interesting alternative.

Our goal here is to use the pressure formula to derive a number of improve-
ments to numerical schemes for viscous incompressible flow. We will focus on
simple and efficient schemes that involve projection methods for time discretiza-
tion, implicit in viscosity only. For numerical performance tests we use a variety
of C0 finite elements for spatial discretization. We anticipate that our study will
have a number of consequences for other kinds of time stepping and spatial dis-
cretization, however. For example, if the Reynolds number is large enough so



Stable and accurate pressure approximation 3

that the time step is not severely restricted by diffusive stability criteria, one
can simply use explicit fourth-order Runge-Kutta time-stepping (like for a gauge
method in [9]), since the pressure field is determined by current velocity and
forcing.

There are several different kinds of projection methods. We will deal with
three types in this paper, which we classify as follows:

(1) Pressure approximation (PA) schemes involve determining an approxima-
tion of the true pressure from the current velocity field. A key term in the
pressure boundary conditions involves n·∇×∇×u, the normal component
of the curl of vorticity at the boundary. This term has appeared in the
numerical literature on projection methods for many years, starting with
work of Orszag, Israeli, and Deville [22] and Karniadakis et al. [17].

(2) Pressure update (PU) schemes involve using an existing pressure approxi-
mation pn at time level n in determining pn+1. Such schemes go back to
van Kan [32], and include work by Bell et al. [5], Timmermans et al. [30]
and Ren et al. [26]

(3) Slip correction (SC) schemes involve adjusting the boundary condition for
an intermediate velocity to ensure that the Leray-projected velocity field
(which is nominally divergence free) satisfies the desired boundary condi-
tion to higher order. The well-known 2nd-order finite difference method of
Kim and Moin [18] is of this type.

In brief, the main improvements that we propose in this paper involve (a) im-
proved accuracy in computing the pressure in existing pressure-approximation
and pressure-update projection methods, and (b) the derivation of new higher-
order accurate slip-correction methods. Furthermore, our stability and accuracy
tests indicate that with PA or SC schemes, one may obtain up to 3rd-order accu-
racy in time for both velocity and pressure with no diffusive time-step stability
restriction.

A potentially significant finding is that the PA and SC schemes which we
test exhibit good performance when discretizing space in simple ways—using
Lagrange finite elements of equal order for velocity and pressure, for example.
These (but not PU) schemes are stable even with piecewise-linear approximation
for both velocity and pressure. As is well known, this simple type of approxi-
mation violates the classic inf-sup condition, a condition necessary for stability
in traditional mixed steady-state formulations. Our tests suggest that the inf-
sup condition may not be required for stability in time-dependent computations
with certain PA and SC schemes. The issue of obtaining good performance
without the inf-sup condition is complex and subtle and worthy of further in-
vestigation. For brevity, here we restrict ourselves to reporting a limited number
of numerical tests involving equal-order elements.

There is a large literature concerning projection methods, and discussion of
it here must necessarily be limited. We refer to [13] for a recent comprehensive
review. Many projection methods are closely related to the Navier-Stokes dy-
namics extended by the pressure formula, and its implicit/explicit discretization
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appearing in the work of Johnston & Liu [16]. We refer to [19] for discussion of
these relations for the 2nd-order projection or time-splitting methods of Kim &
Moin [18], Timmermans et al. [30], Henshaw & Petersson [14], Brown et al. [6],
and the gauge method of E & Liu [9].

The Johnston-Liu scheme is essentially a pressure-approximation scheme, as
are the higher-order schemes introduced by Karniadakis et al. [17]. Leriche et
al. [21] recently tested the stability of many schemes from [17] for the Stokes
system in a 2D square domain with spectral collocation in space. They found
unconditional stability for a certain (3,2) HOS scheme that exhibits 3rd-order
temporal accuracy for velocity. Here, we find similar behavior for slip-correction
and pressure-update schemes with finite-element spatial discretizations. More-
over, using the pressure formula we find ways to recover full 3rd-order accuracy
for pressure as well as velocity. In this regard, it is important to maintain a
clear distinction between the true Navier-Stokes pressure on the one hand, and
the potential that enforces zero divergence in the Helmholtz decomposition on
the other hand.

2 Pressure and well-posedness

We shall derive a very useful expression for the pressure based on a few identities
involving the Leray-Helmholtz projection onto divergence-free fields.

The Laplace-Leray commutator. Recall that any square-integrable ve-
locity field u has a unique Helmholtz decomposition

u = v + ∇φ, (4)

where v is L2-orthogonal to all square-integrable gradients:
∫

Ω
v ·∇q = 0 for all

q smooth enough. Then v is divergence-free and at the boundary has vanishing
component in the direction of the outward unit normal n:

∇ · v = 0 in Ω, n · v = 0 on Γ. (5)

We write v = Pu, defining the Leray-Helmholtz projection operator P , and
write φ = Qu to denote the zero-mean potential field in (4), satisfying

∆φ = ∇ · u in Ω, n · ∇φ = n · u on Γ. (6)

That is, ∇φ = (I −P)u. Then ∆(I −P)u = ∆∇φ = ∇∆φ = ∇∇ ·u, and from
this, the fact P∇ = 0, and the vector identity ∇×∇× u = ∆u −∇∇ · u, one
immediately obtains the following identities described in [19]:

∆Pu = (∆ −∇∇·)u = −∇×∇× u, (7)

(∆P − P∆)u = (I − P)(∆ −∇∇·)u = −(I − P)∇×∇× u. (8)

Due to (8), we see that the commutator of the Laplacian and Leray projection
operators is the gradient of a potential field pS(u) satisfying

pS(u) = Q(∆ −∇∇·)u, ∇pS(u) = (∆P − P∆)u. (9)
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From (9) it follows that pS(u) is well-defined for all velocity fields with square-
integrable second derivatives, and as discussed in [19], it is the unique zero-mean
solution of the boundary value problem

∆pS(u) = 0 in Ω, n · ∇pS(u) = n · (∆ −∇∇·)u on Γ. (10)

Formulae for pressure. Suppose now that u is a solution of the Navier-
Stokes equations (1)-(3). Suppose for simplicity at first that the boundary is
no-slip, that is,

g = 0. (11)

Then u = Pu, but on the other hand, if we apply P to (1) and use (9) to say
P∆u = ∆Pu −∇pS(u), since P∇p = 0 what we find is that

∂tu = ν∆u − ν∇pS(u) + PF . (12)

Since P = I−∇Q, comparison of (12) with (1) immediately yields the expression
for pressure that we seek, assuming it is normalized to mean zero: Necessarily,

p = νpS(u) + QF . (13)

This expression is explicit in terms of solutions of boundary value problems
involving the velocity and forcing fields, as in (10) and (6). We refer to pS(u) as
the Stokes pressure since the other terms vanish in the absence of forcing and
nonlinear convection terms.

The expression (13) is altered as follows in case the boundary data g is
nonzero and satisfies the natural compatibility condition

∫

Γ

n · g = 0 for t ≥ 0. (14)

Let R(g) denote the zero-mean harmonic function whose normal derivative at
the boundary is n · g, meaning that

∆R(g) = 0 in Ω, n · ∇R(g) = n · g on Γ. (15)

Now, if u satisfies (1), (2) and (3), then

u −∇R(g) = P(u −∇R(g)) = Pu, (16)

and applying P to (1) yields

∂t(u −∇R(g)) + ν∇pS(u) = ν∆u + PF . (17)

Hence the pressure is now given by

p = νpS(u) −R(∂tg) + QF . (18)

Finite-element computation of this pressure is best based on discretization
of the following equivalent weak-form characterization that involves only first
derivatives: For all test functions ψ with square-integrable gradient,

∫

Ω

∇p · ∇ψ =

∫

Γ

(ν(∇× u) · (n ×∇ψ) − (n · ∂tg)ψ) +

∫

Ω

F · ∇ψ. (19)
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For sufficiently regular data, (18) is also equivalent to the single boundary value
problem

∆p = ∇ · F in Ω, (20)

n · ∇p = −n · (ν∇×∇× u + ∂tg) + n · F on Γ. (21)

The appearance of the curl of vorticity in the boundary condition for pressure
is familiar, dating back to Orszag et al. [22]. For purposes of analysis, how-
ever, we most often use the operator representation in (18), which distinguishes
contributions to pressure by source, particularly that from the Laplace-Leray
commutator.

Extended Navier-Stokes dynamics. There is a long history of using
various pressure Poisson equations like (20)-(21) in computation; see [27] for
a discussion and further references. In this context, it is notable that (18)
has recently been placed on a sound analytical footing in relation to Navier-
Stokes well-posedness theory. It was proved in [19] that the initial-boundary
value problem is well-posed locally in time for equations (1) and (2) without the
divergence constraint (3)—instead using (19) to define the pressure. This was
done in bounded domains with C3 boundaries, for suitably regular forcing and
boundary data, and for any initial velocity uin having square-integrable gradient
and satisfying the boundary condition (2), regardless of what its divergence
is. One obtains unique strong solutions with spatial second derivatives square-
integrable in space-time.

The well-posedness theory of [19] involves using the pressure formula (19) to
prove the stability of a basic implicit/explicit time-difference scheme for (1) that
treats the pressure and nonlinear terms explicitly in time, and only the viscosity
term implicitly. Bounds on the pressure gradient come from the following (es-
sentially sharp) estimate for the Laplace-Leray commutator, or Stokes pressure
gradient, which shows that for no-slip boundary conditions, the commutator is
strictly controlled at leading order by the viscosity term:

Theorem. Suppose Ω is a bounded domain with C3 boundary, and ε > 0. Then
there is a constant C such that for all u that vanish on the boundary and have
square integrable second derivatives,

∫

Ω

|∇pS(u)|2 ≤
(

1

2
+ ε

) ∫

Ω

|∆u|2 + C

∫

Ω

|∇u|2. (22)

We refer to (1) with (18) (or equivalently (17)) as the extended Navier-Stokes
equations. For a general solution of these equations, it follows easily from (17),
(10) and (5) that the divergence w = ∇ · u satisfies a diffusion equation with
no-flux boundary conditions:

∂tw = ν∆w in Ω, n · ∇w = 0 on Γ. (23)

The divergence w ≡ 0 initially if and only if w ≡ 0 for all later time, and
this produces a solution of NSE including the incompressibility constraint. The
dynamics of the extended NSE extends the constrained dynamics of NSE in a
well-posed manner off the “invariant manifold” of states satisfying (3).
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3 Time discretization by projection methods

Since pressure is determined explicitly by (19) (or equivalently (18)), it is
straightforward to discretize the extended Navier-Stokes equations (1), (2) and
(19) in time. To achieve efficiency at low to moderate Reynolds number, it
is convenient to treat the viscosity term implicitly and treat the pressure and
convection terms explicitly. In this section we will describe three classes of time
discretizations of this type, and examine their formal accuracy in light of the
formulae from the previous section that involve pressure. We treat semi-discrete
schemes that are discrete in time and continuous in space. Time discretization
has long been considered a main source of numerical boundary-layer error. This
is already apparent in the studies by Orszag et al. [22] and Brown et al. [6], for
example, and is consistent with our numerical tests. We will discuss implemen-
tation details for space discretization by finite elements in section 4.

It will be better to use a rotational form of the nonlinear term, writing

F = f − h, h = (∇× u) × u. (24)

This is different from the previous expression for F , but is related by the identity

u · ∇u = (∇× u) × u +
1

2
∇|u|2. (25)

The pressure formulae in (18)–(21) remain valid with the new F , the pressure
changing by a term 1

2
|u|2 up to a constant.

For each kind of projection method, we will find a divergence-free approxi-
mate velocity uj at time tj = j∆t by decomposing an intermediate velocity u

j
∗

according to

uj
∗ = uj + ∇qj , ∆qj = ∇ · uj

∗ in Ω, n · ∇qj = 0 on Γ. (26)

We denote the nonlinear terms corresponding to the divergence-free velocities
uj by

hj = (∇× uj) × uj = (∇× uj
∗) × (uj

∗ −∇qj). (27)

We will indicate backward differentiation formulas of order k and extrapolation
formulas of order m using the notation

Dkun+1 =
1

∆t

∑

j≥0

αk
j un+1−j , Emun+1 =

∑

j≥1

βm
j un+1−j . (28)

The nonzero coefficients for these formulae are listed in Table 1.

3.1 Slip-corrected projection methods

One can describe rather simple time-discrete schemes that formally achieve high-
order accuracy without using any explicit approximation to pressure at all. The
idea is to adjust slip at the boundary, in a fashion similar to that in the classic
2nd-order projection method of Kim & Moin [18].
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αk
j j = 0 j = 1 j = 2 j = 3 j = 4

k = 1 1 -1 0 0 0
k = 2 3/2 -2 1/2 0 0
k = 3 11/6 -3 3/2 -1/3 0
k = 4 25/12 -4 3 -4/3 1/4

βm
j j = 1 j = 2 j = 3 j = 4

m = 1 1 0 0 0
m = 2 2 -1 0 0
m = 3 3 -3 1 0
m = 4 4 -6 4 -1

Table 1: Coefficients for backward-differentiation and extrapolation

To determine the approximate velocity un+1 at time tn+1 = (n+1)∆t, sup-
pose that for all j ≤ n the decomposition (26) is available. Fix a pair of integers
(k,m) with k ≥ m > 0. We discretize (1) in time using the kth-order backward
differentiation formula for the time derivative and kth-order extrapolation to
approximate hn+1. We use mth-order extrapolation to approximate ∇qn+1 on
the boundary. We update velocity by computing un+1

∗ and qn+1 to satisfy

1

∆t



αk
0un+1

∗ +
∑

j≥1

αk
j un+1−j



 = ν∆un+1
∗ + fn+1 − Ekhn+1 in Ω, (29)

un+1
∗ = gn+1 + ∇Emq

n+1 on Γ, (30)

∆qn+1 = ∇ · un+1
∗ in Ω, n · ∇qn+1 = 0 on Γ. (31)

Then we can write
un+1 = un+1

∗ −∇qn+1. (32)

We refer to this scheme as the (k,m) SC scheme. (SC is for slip correction.)
The case (k,m) = (3, 2) is perhaps most interesting, yielding 3rd-order accuracy
with good stability in tests.

This scheme is just as efficient as many classic projection methods, involving
the solution of one scalar Poisson equation in addition to N decoupled scalar
elliptic equations for velocity per time step. Note that with finite-element dis-
cretization, the quantities uj need not be computed every time step. One can
use u

j
∗ − ∇qj for uj (j ≤ n) in (29), as in (27). Also note ∇ · un+1 = 0, and

n · un+1 = n · gn+1 on Γ, but tangential components of un+1 and gn+1 may
not match. Following the advice in [22] for avoiding a weak instability in the
Kim-Moin scheme, in implementing (30) one should enforce normal-component
matching explicitly, requiring

n · un+1
∗ = n · gn+1 and n × un+1

∗ = n × (gn+1 + ∇E2q
n+1) on Γ, (33)

and not rely on the boundary conditions in (31).
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Accuracy for velocity. Though the pressure is neglected in the step (29), it is
easy to see that the velocity un satisfies a formally kth-order-accurate discretiza-
tion of the momentum equation in the following way. Apply the projection P
to (29), noting that n · uj = n · gj , hence as in (16),

Puj
∗ = Puj = uj −∇R(gj). (34)

Because P∆un+1
∗ = ∆Pun+1

∗ −∇pS(u
n+1
∗ ) = ∆un+1−∇pS(u

n+1), we find that

DkPun+1 + ν∇pS(u
n+1) = ν∆un+1 + Pfn+1 − PEkhn+1, (35)

whence un+1 satisfies

Dkun+1 + ∇p̄n+1 = ν∆un+1 + fn+1 − Ekhn+1, (36)

where
p̄n+1 = νpS(u

n+1) −R(Dkgn+1) + Qfn+1 −QEkhn+1. (37)

Clearly (36) and (37) are kth-order accurate discretizations of (1) and (18)
respectively.

Slip error. It remains to study the slip error in the boundary condition for
un+1. From (30) and (32) it follows that this error is given by

un+1 − gn+1 = −∇(qn+1 − Emq
n+1) on Γ. (38)

Comparing (29) and (36) we find (after writing α0 = αk
0)

(α0

∆t
− ν∆

)

qn+1 = p̄n+1. (39)

This equation together with (28) yields

(α0

∆t
− ν∆

)

(qn+1 − Emq
n+1) = p̄n+1 − Emp̄

n+1. (40)

Since p̄n consistently approximates the pressure p, the right-hand side of (40) is
formally ∆tm∂m

t p plus higher-order terms. Since n ·∇qj = 0 on Γ, the quantity

q̂ = qn+1 − Emq
n+1 (41)

also satisfies n·∇q̂ = 0, and we can infer from this boundary value problem that
q̂ = O(∆tm+1) formally. (Indeed, if one knew rigorously that the right-hand
side takes values in a fixed interval [−M,M ] whereM = O(∆tm), then it follows
from the maximum principle that the solution to (40) takes values in [−M̂, M̂ ]
with M̂ = M∆t/α0 = O(∆tm+1).) Presuming the boundary and the data are
smooth, it is reasonable to expect that derivatives tangential to the boundary
are of the same order O(∆tm+1). Then the full gradient ∇q̂ = O(∆tm+1) on
the boundary since the normal component is zero. We conclude that formally
the slip error un+1 − gn+1 is O(∆tm+1). This indicates that overall the order
of accuracy for un+1 is the minimum of k and m+ 1.
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Approximate pressure. Though pressure is not computed explicitly in the
scheme (29)-(32), an approximation p̂n+1 whose formal accuracy matches that
of velocity can be computed at negligible further cost and without solving any
further Poisson equations, by using (39) with (31). Namely we can set

p̂n+1 = p̄n+1 =
α0

∆t
qn+1 − ν∇ · un+1

∗ . (42)

This expression involves computed quantities and by (37) it is a consistent kth-
order approximation to the pressure corresponding to un+1 from (18). Hence it
should approximate the true pressure with order of accuracy min(k,m+ 1).

Remarks. 1. It seems remarkable that equation (36) for the divergence-free
velocity un+1 is fully implicit with respect to Stokes pressure. Evidently this
is due to the commutator formula (9). The same thing naturally happens for
many different kinds of projection and splitting methods.

2. We emphasize that the final projection step (32) should not be regarded
as a fractional step that solves ∂tu + ∇p = 0. (For an interesting perspective
relating fractional step methods to block LU decompositions see [24].) The
quantity qn+1 is not pressure times ∆t, despite its role in enforcing the zero-
divergence condition for un+1. It is instructive to consider the error that occurs
if one takes the approximate pressure to be

p̂n+1 =
α0

∆t
qn+1,

a kind of approximation not uncommon in the literature. Supposing m+ 1 ≥ k
for convenience, the error in this approximation is evidently ν∇·un+1

∗ +O(∆tk).
Put ε =

√

ν∆t/α0. From (29), the quantity w = ν∇ · un+1
∗ satisfies

(1 − ε2∆)w = ε2∇ · (fn+1 − Ekhn+1) =: ε2a1 in Ω, (43)

n · ∇w = −n · ∇p̄n+1 =: a2 on Γ. (44)

Formally a1 and a2 are O(1). We expect a boundary layer, whose leading order
behavior may be described by taking the boundary to be locally flat, a1 and
a2 approximately constant, and presuming w depends only on the distance s to
the boundary. Then the leading-order solution in the boundary layer is

w ≈ ε2a1 − εa2e
−s/ε. (45)

Thus in this case one expects pressure error of order O(∆t) in the interior, with
a boundary layer error O(

√
∆t). And since ∂sw ≈ a2 at s = 0, the pressure

gradient would have error O(1) at the boundary, as one can also see directly
from (42).

3. The slip correction incorporated into the boundary condition (30) is re-
lated to the 2nd-order projection method of Kim & Moin [18] in the following
way. Corresponding to (29) Kim & Moin use a Crank-Nicholson time discretiza-
tion for viscous terms and Adams-Bashforth for convective terms. Instead of
(30) the boundary condition imposed on the intermediate velocity is

un+1
∗ = gn+1 + ∆t∇φn, (46)
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where ∆t φn in [18] corresponds to qn here, which is a first-order extrapolation
approximating qn+1. In [18], this boundary condition is derived in section 3 and
appears two lines below (15). Equation (4) of [18] is a discretized version of (32)
with qn+1 replaced by ∆t φn+1. The potential φn+1 is determined by solving a
discrete Poisson equation to enforce ∇ · Un+1 = 0 discretely. This is done on
a staggered grid “without the need for boundary conditions for φn+1.” How-
ever, equation (9) of [18], written after “incorporation of the velocity boundary
conditions,” indicates that the discretization is based on the single derivative
boundary condition

∆tn · ∇φn+1 = n · (un+1
∗ − gn+1). (47)

(For a similar observation see [29]. To be precise, (9) is obtained using the
replacement

∆t
φn+1(i, 1, k) − φ(i, 0, k)

x2(1) − x2(0)
= ûn+1

2 (i,
1

2
, k) − un+1

2 (i,
1

2
, k),

which corresponds to (47).) If one follows the advice in [22] to modify (46) and
explicitly enforce normal-component matching as in (33), the condition (47)
becomes n · ∇φn+1 = 0.

3.2 Pressure-approximation schemes

An alternative way to achieve 3rd-order accuracy efficiently and with good sta-
bility involves approximating the pressure as determined by the formula (18).
In particular, it was observed by Karniadakis et al. [17] (in a context involv-
ing Adams-Moulton/Adams-Bashforth discretizations for formulas equivalent to
(1), (2) and (20)–(21) but without the commutator formulae) that one can re-
duce the accuracy of approximating the curl-curl term in the boundary condition
(21). For the linear Stokes equations, Leriche et al. [21] studied the numerical
performance of a number of spectral collocation schemes from [17] based on
backward differentiation. Their results indicated unconditional stability using
3rd-order backward differentiation together with 2nd-order extrapolation for
the curl-curl boundary condition. For a smooth test problem they obtained
3rd-order accuracy for velocity but less for pressure (as discussed below).

The following time-discretization scheme is close to ones studied in [17, 21]:
Let us use

hj
∗ = uj

∗ · ∇uj
∗ (48)

in place of (27). Fix a pair of integers (k,m) with k ≥ m > 0, and for conve-
nience assume m + 1 ≥ k. (Again (k,m) = (3, 2) is particularly interesting.)
We update the intermediate velocity un

∗ by succesively determining f̄ , P̄ and
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un+1
∗ to satisfy

f̄ = fn+1 − Ekh∗
n+1 − 1

∆t

∑

j≥1

αk
j un+1−j

∗ , (49)

∆P̄ = ∇ · f̄ in Ω, (50)

n · ∇P̄ = −n · (ν∇×∇× Emun+1
∗ +

αk
0

∆t
gn+1) + n · f̄ on Γ, (51)

αk
0

∆t
un+1
∗ + ∇P̄ = ν∆un+1

∗ + f̄ in Ω, un+1
∗ = gn+1 on Γ. (52)

We refer to this scheme as the (k,m) PA scheme (PA for pressure approxi-
mation). As before, we do not compute the divergence-free velocity un+1 =
un+1
∗ − ∇qn+1 as in (31)-(32) in each time step, but only as needed—for the

final output, say. (Derivatives of un+1
∗ have weak boundary layers, as we shall

see presently.)
Accuracy for velocity. We can study accuracy by applying P to (52). What

P̄ is does not matter, since P∇ = 0. Exactly as before, we get

Dkun+1 + ∇p̄n+1 = ν∆un+1 + fn+1 − Ekhn+1
∗ , (53)

p̄n+1 = νpS(u
n+1) −R(Dkgn+1) + Qfn+1 −QEkhn+1

∗ . (54)

This yields kth-order accurate discretizations of (1) and (18) (anticipating that
the difference between hj and hj

∗ does not matter, see below). But now the slip
error at the boundary is only due to the decomposition (26):

un+1 = gn+1 −∇qn+1 on Γ. (55)

If we recognize that
Quj

∗ = qj + R(gj), (56)

since uj + ∇qj = u
j
∗ = Pu

j
∗ + ∇Qu

j
∗ = uj − ∇R(gj) + ∇Qu

j
∗, and we write

F n+1 = fn+1 − Ekhn+1
∗ for simplicity, we see that equations (50)-(51) mean

P̄ = νpS(Emun+1
∗ ) − αk

0

∆t
R(gn+1) + QF n+1 − 1

∆t

∑

j≥1

αk
jQun+1−j

∗

= νpS(Emun+1) −R(Dkgn+1) + QF n+1 − 1

∆t

∑

j≥1

αk
j q

n+1−j

= p̄n+1 − νpS(u
n+1 − Emun+1) − 1

∆t

∑

j≥1

αk
j q

n+1−j . (57)

Since (52) means

Dkun+1
∗ + ∇P̄ = ν∆un+1

∗ + fn+1 − Ekhn+1
∗ ,

comparing with (53) using u
j
∗ = uj + ∇qj yields

(α0

∆t
− ν∆

)

qn+1 = νpS(u
n+1 − Emun+1), (58)
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with n · ∇qn+1 = 0 on Γ. From this we see that qn+1 and ∇qn+1 are formally
O(∆tm+1), meaning that un+1 − gn+1 = O(∆tm+1) on Γ. Thus if m + 1 ≥
k, both quantities un+1 and un+1

∗ are kth-order accurate approximations to
velocity. The former has zero divergence and the latter has no slip error.

The divergence wn+1 = ∇ · un+1
∗ = ∆qn+1 can be expected to have a weak

boundary layer, however. This is because, by applying ∆ and taking the normal
derivative at the boundary in (58), we find

(α0

∆t
− ν∆

)

wn+1 = 0 in Ω, (59)

n · ∇wn+1 = n · ∇ ×∇× (un+1 − Emun+1) on Γ. (60)

A formal boundary layer analysis like that in remark 2 of the previous section
yields (45) with a1 = 0 and a2 = O(∆tm), whence wn+1 ≈ O(∆tm)εe−s/ε with
ε =

√

ν∆t/α0. Therefore we expect the maximum norm to be O(
√
ν∆tm+1/2)

and the L2 norm to be O(ν3/4∆tm+3/4).

The presence of weak boundary layers in second derivatives of qn+1 prompts
concern over the accuracy of approximation of hj

∗, which replaces hj in (36).
One has the identity

uj
∗ · ∇uj

∗ − uj · ∇uj = (∇× uj) × (∇qj) +
1

2
∇(|uj

∗|2 − |uj |2). (61)

On the right-hand side, the first term is O(∆tm+1) and the second term is a
gradient. Then one sees Phj

∗ = P(uj · ∇uj) +O(∆tm+1) and since m+ 1 ≥ k,
indeed (36) with hj

∗ for hj is a consistent kth-order accurate approximation to
(1) in this case.

Approximate pressure. If k = m + 1, then the quantity P̄ that appears
in (50)-(51) is not a fully kth-order-accurate approximation to the pressure
corresponding to (18). Using (58) in (57) yields

P̄ = p̄n+1 −Dkq
n+1 + νwn+1. (62)

The error in the boundary layer should be dominated by the last term, being
O(∆tm+1/2) in max norm (the one relevant for boundary forces) andO(∆tm+3/4)
in L2 for fixed ν. This is quite consistent with the numerical results reported
in tables VIII and X of [21] for the pressure in the (3,2) HOS scheme of that
paper, corresponding to k = 3, m = 2. Note that the error in ∇wn+1 and ∇P̄
should be O(∆t2) in max norm in this case, in fact.

For the scheme (49)-(52), the quantities qj are not directly available. How-
ever, the pressure approximation

p̂n+1 = p̄n+1 −Dkq
n+1 = P̄ − ν∇ · un+1

∗ (63)

is computable without solving a further Poisson equation. This should be a kth-
order accurate approximation to the pressure corresponding to (18) for un+1.
For, formally Dkq

n+1 = O(∆tk) because the qj are O(∆tm+1). The expression
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(54) for p̄n+1 is evidently kth-order accurate except in the last term, where we
have hj

∗ instead of uj · ∇uj . But by the identity (61), the difference

Qh
j
∗ −Q(uj · ∇uj) = O(∆tk) +

1

2

(

|uj
∗|2 − |uj|2

)

= O(∆tk). (64)

Thus we expect (54), and hence (63), to be kth-order accurate.
Output. For output on time step N one probably wants to use the final

velocity uN
∗ to compute a divergence-free velocity uN as in (31)-(32), and the

pressure pN that corresponds to uN via (18) (i.e., (20)-(21)).

3.3 Pressure-update methods

Methods that update pressure approximations from previous time steps have
been introduced by a number of authors, especially including van Kan [32], Bell
et al. [5], Timmermans et al. [30], and most recently Ren et al. [26], whose
scheme is formally 3rd-order accurate. Here we describe a class of methods of
this kind.

With basic notation as in the previous subsections, fix a pair of integers
(k,m) with k ≥ m > 0, and suppose u

j
∗, q

j and P j are known for j ≤ n. With
uj given by (26), we determine un+1

∗ , qn+1 and Pn+1 from the following.

1

∆t



αk
0un+1

∗ +
∑

j≥1

αk
j un+1−j



 + ∇EmP
n+1 = ν∆un+1

∗ + fn+1 − Ekhn+1,

(65)

un+1
∗ = gn+1 on Γ, (66)

∆qn+1 = ∇ · un+1
∗ in Ω, n · ∇qn+1 = 0 on Γ. (67)

Pn+1 = EmP
n+1 +

(

αk
0

∆t
− ν∆

)

qn+1 (68)

The divergence-free velocity un+1 is given by (32) as usual. We refer to this
scheme as a (k,m) PU scheme. (PU for pressure update.) Timmermans et
al. [30] introduced what is essentially a (2, 2) PU scheme. The scheme of [26] is
a (3, 3) PU scheme.

Accuracy for velocity and pressure. Applying P , exactly as in subsection
3.1 we find that un+1 satisfies (36), with p̄n+1 given exactly by (37). Thus the
discretization of the momentum equation is kth-order accurate. Subtracting
(36) from (65), we find that

(α0

∆t
− ν∆

)

qn+1 = p̄n+1 − EmP
n+1. (69)

By (68) this means that
Pn+1 = p̄n+1. (70)

Thus by (37) this scheme provides a kth-order accurate approximation p̂n+1 =
Pn+1 to the pressure formula (18).
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Slip error. It remains to consider the slip error un+1−gn+1 on the boundary.
By (70) it follows that the right-hand side of (69) is ∆tm∂m

t p plus higher order
terms. Then formally qn+1 = O(∆tm+1) and the same holds for tangential
derivatives. By (32) it follows that the slip error un+1 − gn+1 = O(∆tm+1) on
Γ, and this indicates kth-order accuracy overall for the scheme if m+ 1 ≥ k.

4 Spatial discretization by C0 finite elements

To obtain fully discrete schemes from the time-difference schemes above using C0

finite elements, a key idea is to treat the Stokes pressure (or curl-curl boundary
condition) by using the weak formulation in (19), as was done in [16]. But this is
unnecessary for the ‘pressureless’ slip-corrected projection scheme of section 3.1,
whose discretization is fairly straightforward—we only have to describe how we
handle the slip boundary condition.

We denote by 〈f, g〉 =
∫

Ω
fg the inner product in L2(Ω) and similarly

〈f, g〉Γ =
∫

Γ
fg for the inner product in L2(Γ). Given a discretization pa-

rameter h > 0, we let Yh be a space of C0 finite elements for approximating
pressure and potentials, with Yh ⊂ H1(Ω)/R, the Sobolev space of functions
with square-integrable gradients, modulo constants. Also let Xh be a space of
C0 finite elements for approximating the velocity field, with Xh ⊂ H1(Ω,RN )
having a nodal basis. Let X0,h = Xh ∩ H1

0 (Ω,RN ) be the subspace of Xh

consisting of vector fields that vanish on Γ.
The decomposition (26) into a divergence-free field and a gradient field with

vanishing normal derivative at the boundary means that qj is determined (up
to constants) by requiring

〈∇qj ,∇ψ〉 = 〈uj
∗,∇ψ〉 − 〈n · uj

∗, ψ〉Γ ∀ψ ∈ H1(Ω)/R. (71)

For consistency the integral
∫

Γ
n · u

j
∗ must vanish. Given a discrete field

u
j
∗h ∈ Xh that we desire to satisfy n · u

j
∗h = n · gj on Γ, where g satisfies

the consistency condition (14), we determine the corresponding discrete decom-
position as follows. We find qj

h ∈ Yh to satisfy

〈∇qj
h,∇ψh〉 = 〈uj

∗h,∇ψ〉 − 〈n · gj , ψ〉Γ ∀ψh ∈ Yh. (72)

Then we write U
j
h = u

j
∗h − ∇qj

h. This need not belong to Xh; the terms u
j
∗h

and ∇qj
h can be handled separately throughout. For output, the vector field U

j
h

may be L2-projected into Xh.
Slip correction. To discretize the slip-correction schemes of section 3.1, we

suppose we have u
j
∗h and qj

h for all j ≤ n, and write

H
j
h = (∇× u

j
∗h) × U

j
h = (∇× u

j
∗h) × (uj

∗h −∇qj
h). (73)

The discrete momentum equations for determining un+1

∗h are

αk
0

∆t
〈un+1

∗h ,vh〉 + ν〈∇un+1

∗h ,∇vh〉 = 〈F n+1

h ,vh〉 ∀vh ∈ X0,h, (74)
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where

F n+1

h = fn+1 − EkHn+1

h − 1

∆t

∑

j≥1

αk
j u

n+1−j
h .

These equations suffice to determine un+1

∗h ∈ Xh once we specify discrete bound-
ary conditions of the form

un+1

∗h = gn+1 + rn+1

h on Γh, (75)

where Γh is the collection of grid nodes on Γ. Then we find qn+1

h ∈ Yh by (72)
and write un+1

h = un+1

∗h −∇qn+1

h as above.
The terms rn+1

h lie in the space of boundary values of functions in Xh and
approximate ∇Emq

n+1

h , which lies in ∇Yh. For consistency with volume conser-
vation, we require

n · rn+1

h = 0 on Γh. (76)

Consider a polygonal domain in 2D, whose boundary is the union of straight
edges Γi. At corners where two edges meet, there are two independent normals
and this forces rn+1

h = 0. Along each edge Γi, the tangential component τ ·rn+1

h

must be found in the space Zi
h of tangential components of functions vh ∈ Xh

that satisfy τ ·vh = 0 at the endpoints of Γi. (When Xh is a space of Lagrange
piecewise polynomial finite elements, the space Zi

h is just a space of scalar
Lagrange piecewise polynomial elements on Γi that vanish at the two endpoints.)
To determine τ ·rn+1

h , it is convenient to simply project the tangential derivative
τ · ∇Emq

n+1

h into Zi
h using the inner product in L2(Γi).

This procedure will generalize naturally to 3D polyhedral domains. The
condition (76) forces rn+1

h = 0 at corners where 3 faces meet. Two components
vanish along edges where two faces meet, and the tangential component can be
determined by L2 projection of τ · ∇Emq

n+1

h for each edge separately. Then
the two tangential components on faces can be determined by L2 projection
separately for each face.

We mention an alternative (and more expensive) method of imposing bound-
ary conditions that led to some stability problems in practice. Namely, in (75)
we could simply take rn+1

n to be the L2 projection of ∇Emq
n+1

h into Xh.
Pressure approximation schemes. Discretization of the pressure-approximation

schemes from section 3.2 by C0 finite elements is based on the weak form equa-
tion (19) for pressure, as was used in [16, 20]. With h

j
h = u

j
∗h · ∇u

j
∗h and

writing

f̄h = fn+1 − Ekhn+1

h − 1

∆t

∑

j≥1

αju
n+1−j
∗h , (77)

we require P̄h ∈ Yh to satisfy

〈∇P̄h,∇ψh〉 = 〈ν∇×Emun+1

∗h ,n×∇ψh〉Γ−
α0

∆t
〈n ·gn+1, ψh〉+ 〈f̄h,∇ψh〉 (78)

for all ψh ∈ Yh. The momentum equations read

α0

∆t
〈un+1

∗h ,vh〉 + 〈∇P̄h,vh〉 + ν〈∇un+1

∗h ,∇vh〉 = 〈f̄h,vh〉 ∀vh ∈ X0,h, (79)

with the boundary conditions un+1

∗h = gn+1 on Γh.
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5 Numerical tests in 1D

5.1 Single-mode Stokes flow in a periodic strip

To study stability and accuracy for the simplest kind of incompressible flows,
we first consider the unsteady Stokes equations in the strip −1 < x < 1, y ∈ R,
with boundary conditions at x = ±1:

∂tu + ∇pS(u) = ∆u + f , u|x=±1 = g, u|t=0 = u0. (80)

We set the force and boundary velocity to zero:

f = 0, g = 0, (81)

and look for normal-mode solutions that we write in the form

u(t, x, y) = eiξy−σt(u(x, ξ), iv(x, ξ)). (82)

With
µ =

√

ξ2 − σ, (83)

the equations reduce to the system

(∂2
x − µ2)u = ∂xp, u|x=±1 = 0, (84)

(∂2
x − µ2)v = ξp, v|x=±1 = 0, (85)

(∂2
x − ξ2)p = 0, (∂xp− ξ∂xv)|x=±1 = 0. (86)

We see p = c1 sinh ξx+c2 cosh ξx. If for definiteness we take p as anti-symmetric,

p = sinh ξx, (87)

we find

u(x) = A

(

cosh ξx

cosh ξ
− coshµx

coshµ

)

, A =
ξ cosh ξ

ξ2 − µ2
, (88)

v(x) = B

(

sinh ξx

sinh ξ
− sinhµx

sinhµ

)

, B =
ξ sinh ξ

ξ2 − µ2
. (89)

Now, we compute that at x = ±1,

∂xp− ξ∂xv = ξ cosh ξ − ξ2 sinh ξ

ξ2 − µ2

(

ξ cosh ξ

sinh ξ
− µ coshµ

sinhµ

)

.

Imposing the boundary condition ∂xp − ξ∂xv = 0 at x = ±1 and simplifying
leads to

ξ coth ξ − ξ2

ξ2 − µ2
(µ cotµ− ξ coth ξ) = 0 (90)

which can be simplified to read µ tanhµ = ξ tanh ξ. This equation indeed implies
∂xu − ξv = 0 by a simple calculation using (88) and (89). Since ξ is real, it is
not hard to see µ = iµ̂ where µ̂ is real and

−µ̂ tan µ̂ = ξ tanh ξ. (91)

In the numerical tests below, we will take ξ = 1, µ̂ = 2.883355658589349, so
that µ̂ tan µ̂+ ξ tanh ξ ≈ 0 numerically.
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5.2 Single-mode stability tests

To investigate the stability of fully discrete k-step schemes, we write the schemes
with f = 0 and g = 0 as

A0u
n+1 + A1u

n + . . .+Akun+1−k = 0. (92)

Looking for a normal mode solution un = κnu, we require (
∑k

j=0
Ajκ

−j)u = 0

which is a polynomial eigenvalue problem for z = κ−1 . This can be rewritten
as a generalized eigenvalue problem as usual—e.g., for a 3-step scheme, k = 2
and we require





0 I 0
0 0 I

−A3 −A2 −A1









u

κu
κ2u



 = κ





I 0 0
0 I 0
0 0 A0









u

κu
κ2u



 . (93)

The matrices Aj depend on ∆t as well as the finite elements being used.
We calculated the eigenvalues of largest magnitude for the generalized eigen-

value problem (93) as a function of ∆t for fixed ξ = 1, using the Matlab function
eigs. The results are plotted in Figures 1–3 and are discussed below. We used
a range of time steps varying from large (∆t = 1010) to small (∆t = 10−5). The
solid curves in Figs. 1 and 2 are determined by the space-continuous normal-
mode theory of Appendix A.

5.2.1 PA and SC schemes with m = 2.

The results for the (2,2) and (3,2) PA and SC schemes indicate that the eigenval-
ues always have magnitude less than 1. We found this result insensitive to spatial
resolution, and it holds with various finite-element pairs for spatial approxima-
tion that were tested. This includes piecewise-polynomial approximations of
equal order for both velocity and pressure, including piecewise linear elements
(P1/P1). Similar results were found also for piecewise quadratic (P2/P2) and
quartic (P4/P4) elements. We will comment on the relation of these findings to
the standard inf-sup stability condition in the Conclusions section below.

This suggests unconditional stability for the (3,2) PA and SC schemes, which
involve reduced-order extrapolation of pressure or slip correction terms. The re-
sult for the (3,2) PA finite-element scheme is consistent with the results reported
by Leriche et al. [21], in a square 2D domain with spectral collocation in space,
using a ‘(3,2) HOS scheme’ that is equivalent to the (3,2) PA scheme at the
time-discrete level for the Stokes equations.

5.2.2 PA and SC schemes with m = 3.

We also tested (4,3) and (3,3) PA and SC schemes, which have unstable eigen-
modes with |κ| > 1 when ∆t large. Only the results for (4,3) schemes are shown,
since the (3,3) results are quite similar. Again we found the results rather in-
sensitive to spatial resolution and the type of finite-element discretization.
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The unstable eigenmodes were found to appear smooth and turn out to fit
rather well a theory of normal modes for a space-continuous version of (92) for
which an explicit dispersion relation can be written that relates κ to ∆t and ξ.
See Appendix A for the details.

The theory indicates that for this single-mode problem, the (4,3) and (3,3)
time-discrete schemes are stable for time steps ∆t less than a critical value ∆tc
independent of wave number ξ. Our numerical results suggest that this holds
independent of spatial resolution. This means that these schemes in 1D do not
appear to be subject to a stability restriction of diffusive type like ∆t ≤ Ch2,
which becomes more restrictive as the grid is refined.

For the PA schemes this finding is not consistent with the corresponding
results of [21] for 2D square domains, where instability for all time steps was
found for (4,3) and (3,3) HOS schemes. It is possible that instability for these
schemes is associated with presence of corners, so we performed numerical tests
in a 2D domain with smooth boundary (a ring domain) that are described in
the next section.

5.2.3 PU schemes.

The results for pressure-update (PU) schemes are reported in Fig. 3 and have a
different character. Of course, one has to augment equation (93) with pressure
variables for PU schemes. The (2,2) and (3,2) PU schemes appear uncondi-
tionally stable only for the P2/P1 velocity/pressure finite element pair, which
satisfies the standard inf-sup condition. With P1/P1 elements, these schemes
are unstable for small ∆t, and almost neutrally stable (|κmax| ≈ 1) for larger ∆t,
with neutral modes dominated by high-frequency oscillations in the pressure.

The (3,3) and (4,3) PU schemes are always unstable with P1/P1 elements.
With P2/P1 elements, however, these schemes exhibit a window of stability,
with instability for both small ∆t and for large ∆t. The lower threshhold for
stability appears to get smaller as the spatial grid is refined, in a way we did not
analyze. (The (3,3) PU scheme was described and tested using finite differences
by Ren et al. [26].)

5.3 Single-mode accuracy tests

We checked the accuracy of various finite-element schemes using an explicitly
specified smooth solution

(u, v, p) = g(t)eiky(u(x), iv(x), p(x)), g(t) = cos(t), (94)

where u(x), v(x), and p(x) are given by (88), (89) and (87), respectively. The
computational domain for x is [0.1, 0.9]. The forcing functions f and g are
determined so that the Stokes equations (80) hold.

Temporal accuracy. In Tables 2–3, we take time steps ∆t = 0.02/2k for k = 0
to 4 and integrate to T = 2 to do a temporal accuracy check. We use P5 finite
elements for both velocity and pressure. We refine the grid when reducing the
time step so that ∆t/h remains constant (= 1), to make spatial errors less than
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Figure 1: Largest magnitude of eigenvalue vs. ∆t. PA scheme. 30 elements for
each variable. Solid lines are theoretical results from Appendix A.
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Figure 2: Largest magnitude of eigenvalue vs. ∆t. SC scheme. 30 elements for
each variable. Solid lines are theoretical results from Appendix A.
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Figure 3: Largest magnitude of eigenvalue vs. ∆t. PU scheme. 30 elements for
each variable. Lines are interpolated to aid visualization.

temporal errors. The main quantity tabulated in all tables is − log10E, where
E is the quantity listed in the left-hand column. (This indicates the number
of essentially correct digits in the approximation.) In parentheses we also list
the local convergence rate α for E. In Tables 3–2 this is determined from the
formula

α =
log10(Ek−1/Ek)

log10(∆tk−1/∆tk)
=

log10 Ek−1 − log10 Ek

0.3010 . . .
. (95)

(Note log10 2 ≈ 0.3010. Values of α in the first column of the tables are based
on values of E for a larger time step not shown.) We only show results for the
divergence-free approximate velocity uh = (uh, vh). We use ph to denote the
pressure obtained from solving a discrete version of (20)–(21), and will use p̂h to
denote the approximate pressure obtained without solving any further Poisson
equations—I.e., p̂h is based on (42) for SC schemes or (63) for PA schemes. Since
discretization of these formulas yields discontinuities across element boundaries
due to the divergence term, we L2-project the result into the finite-element
pressure space to facilitate computation of gradient errors. (In a number of
cases we checked that one gets essentially the same results by computing errors
elementwise without projecting.)

The results of the temporal accuracy check all show 3rd-order convergence
in time consistent with the formal analysis, except for ∇p̂h in the SC scheme at
the finest resolution.

Spatial accuracy. Tables 4–7 contain results of tests of spatial accuracy using
uniform grids with element size h = 0.02/2k for k = 0, 1, 2, 3, 4, with time step
∆t = h3/2 to minimize temporal error, and integrate to time T = 1. We use
P2/P1 finite elements respectively for velocity and pressure in Tables 4 and 5,
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and use P2 elements for both velocity and pressure in Tables 6 and 7.

For the (3,2) PA scheme with P2/P1 elements, all errors in Table 4 exhibit
the same convergence rate as interpolation. For the (3,2) SC scheme, however,
the velocity errors in Table 5 exhibit fine-scale oscillations near the boundary,
particularly the horizontal velocity, and the order of convergence is degraded.
See the error plots in Fig. 4.

Results using P2 elements for all variables are in Tables 6 and 7. Note that
while the pressure gradient ∇ph exhibits 2nd-order accuracy in space (the same
order as interpolation error for P2 elements), the pressure ph itself exhibits only
the same 2nd-order accuracy, which is one order less than interpolation error.
This may be due to a breakdown of the typical duality argument for optimal
approximation in the elliptic problem (10) that determines the Stokes pressure.
The sharp estimate from [19] in (22) indicates that the Stokes pressure gradient
is a second-order operator on the velocity field, and consequently the pressure
is a first-order operator. The 2nd-order accuracy in space for pressure with
P2 elements is consistent with this similarity to velocity gradients. We might
then expect the pressure gradient to exhibit 1st-order accuracy (like second
derivatives of velocity) instead of the observed 2nd-order accuracy.

For the (3,2) PA scheme with P2/P2 elements, we remark that the error
p − p̂h is smaller than the error p − ph. But the former is dominated by grid-
scale oscillations, resulting in gradient errors of similar magnitude.

The spatial convergence rates for the (3,2) SC scheme with the P2/P2 finite
element pair are less than optimal for horizontal velocity and especially its gra-
dient. The error u − uh appears to be dominated by high-frequency grid-scale
oscillations near the boundary. The pressure error p− p̂h based on the approxi-
mation in (42) is also dominated by oscillations in this case. Note that only the
vertical velocity vh is corrected by the projection step in this 1D problem—the
horizontal velocity is not affected by slip-correction.

E \ ∆t 0.01 0.005 0.0025 0.00125
‖u− uh‖L∞ 7.2 (2.95) 8.1 (2.97) 9 (2.98) 9.9 (2.99)

‖∇(u− uh)‖L∞ 6.08 (2.95) 6.98 (2.97) 7.87 (2.98) 8.78 (2.99)
‖v − vh‖L∞ 6.08 (2.95) 6.98 (2.97) 7.87 (2.98) 8.78 (2.99)

‖∇(v − vh)‖L∞ 5.19 (2.95) 6.08 (2.97) 6.98 (2.98) 7.88 (2.98)
‖p− ph‖L∞ 4.77 (2.95) 5.67 (2.97) 6.56 (2.98) 7.49 (3.08)

‖∇(p− ph)‖L∞ 5.19 (2.95) 6.08 (2.97) 6.98 (2.98) 7.88 (2.98)
‖p− p̂h‖L∞ 4.77 (2.95) 5.67 (2.97) 6.56 (2.98) 7.46 (2.98)

‖∇(p− p̂h)‖L∞ 5.19 (2.95) 6.09 (2.97) 6.98 (2.98) 7.72 (2.43)

Table 2: Temporal accuracy of the (3, 2) PA scheme in 1D. − log10E (and local
order α) vs ∆t. P5/P5 FE, T = 2, ∆t = h.
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E \ ∆t 0.01 0.005 0.0025 0.00125
‖u− uh‖L∞ 7.67 (2.87) 8.55 (2.92) 9.44 (2.95) 10.3 (2.98)

‖∇(u− uh)‖L∞ 6.69 (2.89) 7.57 (2.93) 8.46 (2.95) 9.35 (2.96)
‖v − vh‖L∞ 6.69 (2.9) 7.57 (2.94) 8.46 (2.96) 9.36 (2.97)

‖∇(v − vh)‖L∞ 5.92 (2.92) 6.81 (2.95) 7.7 (2.97) 8.6 (2.97)
‖p− ph‖L∞ 5.58 (2.95) 6.48 (2.97) 7.38 (2.98) 8.51 (3.78)

‖∇(p− ph)‖L∞ 5.92 (2.92) 6.81 (2.95) 7.7 (2.97) 8.59 (2.97)
‖p− p̂h‖L∞ 5.59 (2.95) 6.48 (2.97) 7.38 (2.97) 8.25 (2.92)

‖∇(p− p̂h)‖L∞ 5.91 (2.91) 6.8 (2.93) 7.68 (2.92) 8.06 (1.28)

Table 3: Temporal accuracy of the (3, 2) SC scheme in 1D. − log10 E (and local
order α) vs ∆t. P5/P5 FE, T = 2, ∆t = h.

E \ h 0.8/80 0.8/160 0.8/320 0.8/640
‖u− uh‖L∞ 7.74 (3.16) 8.68 (3.11) 9.61 (3.08) 10.5 (3.05)

‖∇(u− uh)‖L∞ 4.94 (2.01) 5.54 (2) 6.14 (2) 6.75 (2)
‖v − vh‖L∞ 6.98 (3.29) 7.97 (3.27) 8.94 (3.25) 9.91 (3.21)

‖∇(v − vh)‖L∞ 4.49 (2.04) 5.1 (2.01) 5.7 (2) 6.31 (2)
‖p− ph‖L∞ 3.88 (2.02) 4.49 (2) 5.09 (2) 5.69 (2)

‖∇(p− ph)‖L∞ 2.66 (1.02) 2.97 (1.01) 3.27 (1) 3.57 (1)
‖p− p̂h‖L∞ 5.44 (2.75) 5.98 (1.82) 6.56 (1.9) 7.15 (1.97)

‖∇(p− p̂h)‖L∞ 2.67 (0.999) 2.97 (0.998) 3.27 (1) 3.57 (1)

Table 4: Spatial accuracy of the (3, 2) PA scheme in 1D. − log10E (and local
order α) vs ∆t. P2/P1 FE, T = 1, ∆t = h1.5.

E \ h 0.8/80 0.8/160 0.8/320 0.8/640
‖u− uh‖L∞ 4 (1.68) 4.51 (1.69) 5.02 (1.7) 5.54 (1.71)

‖∇(u− uh)‖L∞ 1.49 (0.671) 1.7 (0.683) 1.91 (0.696) 2.12 (0.705)
‖v − vh‖L∞ 6.71 (2.74) 7.54 (2.74) 8.36 (2.75) 9.18 (2.72)

‖∇(v − vh)‖L∞ 4.05 (1.78) 4.58 (1.78) 5.12 (1.78) 5.65 (1.77)
‖p− ph‖L∞ 3.88 (1.99) 4.48 (1.99) 5.08 (2) 5.68 (2)

‖∇(p− ph)‖L∞ 2.66 (1.02) 2.97 (1.01) 3.27 (1.01) 3.57 (1)
‖p− p̂h‖L∞ 5.35 (1.96) 5.95 (1.97) 6.55 (1.99) 7.15 (1.99)

‖∇(p− p̂h)‖L∞ 2.67 (0.998) 2.97 (0.997) 3.27 (0.999) 3.57 (0.999)

Table 5: Spatial accuracy of the (3, 2) SC scheme in 1D. − log10E (and local
order α) vs ∆t. P2/P1 FE, T = 1, ∆t = h1.5.
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E \ h 0.8/80 0.8/160 0.8/320 0.8/640
‖u− uh‖L∞ 7.75 (3.15) 8.68 (3.11) 9.61 (3.08) 10.5 (3.05)

‖∇(u− uh)‖L∞ 4.94 (2.01) 5.54 (2) 6.14 (2) 6.75 (2)
‖v − vh‖L∞ 6.98 (3.29) 7.96 (3.27) 8.94 (3.25) 9.91 (3.21)

‖∇(v − vh)‖L∞ 4.49 (2.04) 5.1 (2.01) 5.7 (2) 6.31 (2)
‖p− ph‖L∞ 3.89 (2.02) 4.49 (2.01) 5.1 (2) 5.7 (2)

‖∇(p− ph)‖L∞ 4.26 (2.02) 4.87 (2.01) 5.47 (2) 6.07 (2)
‖p− p̂h‖L∞ 4.7 (2.16) 5.32 (2.06) 5.93 (2.02) 6.53 (2.01)

‖∇(p− p̂h)‖L∞ 2.01 (1) 2.31 (1) 2.61 (1) 2.92 (1)

Table 6: Spatial accuracy of the (3, 2) PA scheme in 1D. − log10E (and local
order α) vs ∆t. P2/P2 FE, T = 1, ∆t = h1.5.

E \ h 0.8/80 0.8/160 0.8/320 0.8/640
‖u− uh‖L∞ 5.31 (1.94) 5.89 (1.94) 6.48 (1.95) 7.07 (1.96)

‖∇(u− uh)‖L∞ 2.6 (0.938) 2.89 (0.94) 3.17 (0.948) 3.46 (0.954)
‖v − vh‖L∞ 7.41 (3) 8.31 (3) 9.21 (3) 10.1 (3)

‖∇(v − vh)‖L∞ 4.5 (2) 5.1 (2) 5.7 (2) 6.31 (2)
‖p− ph‖L∞ 3.89 (1.99) 4.49 (1.99) 5.09 (2) 5.69 (2)

‖∇(p− ph)‖L∞ 4.29 (1.98) 4.88 (1.99) 5.48 (1.99) 6.08 (1.99)
‖p− p̂h‖L∞ 3.7 (1.13) 4.05 (1.16) 4.41 (1.18) 4.77 (1.2)

‖∇(p− p̂h)‖L∞ 0.997 (0.119) 1.04 (0.154) 1.1 (0.178) 1.15 (0.193)

Table 7: Spatial accuracy of the (3, 2) SC scheme in 1D. − log10E (and local
order α) vs ∆t. P2/P2 FE, T = 1, ∆t = h1.5.



Stable and accurate pressure approximation 25

0 0.5 1
−1

0

1
x 10

−7u−uh

0 0.5 1
−1

0

1
x 10

−6v −vh

0 0.5 1
4.5

5

5.5
x 10

−4p −ph

0 0.5 1
−2

0

2
x 10

−5p −̂ph

0 0.5 1
−5

0

5
x 10

−4u−uh

0 0.5 1
−2

0

2
x 10

−6v −vh

0 0.5 1
4.5

5

5.5
x 10

−4p −ph

0 0.5 1
−2

−1

0
x 10

−5p −̂ph

0 0.5 1
−2

0

2
x 10

−7u−uh

0 0.5 1
−1

0

1
x 10

−6v −vh

0 0.5 1
4.5

5

5.5
x 10

−4p −ph

0 0.5 1
−2

0

2
x 10

−4p −̂ph

0 0.5 1
−2

0

2
x 10

−5u−uh

0 0.5 1
−1

0

1
x 10

−8v −vh

0 0.5 1
4.5

5

5.5
x 10

−4p −ph

0 0.5 1
−5

0

5
x 10

−4p −̂ph

Figure 4: From top to bottom: error plots for (3,2) PA-P2/P1, (3,2) SC-P2/P1,
(3,2) PA-P2/P2, and (3,2) SC-P2/P2 schemes. 40 elements for each variable.
∆t = h1.5 = 0.0028, T = 1.
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6 Numerical tests in 2D

In this section, we report the results of tests on the stability, accuracy and
benchmark performance of the PA and SC finite-element schemes described in
section 3 for several basic 2D examples. All the finite-element computations are
performed using Lagrange piecewise polynomial isoparametricC0 finite elements
of equal order for both velocity and pressure [28, 11]. For benchmark problems
including driven cavity flow, flow over a backward-facing step and flow past a
cylinder, for the most part we use piecewise quadratic (P2) elements.

Our stability and accuracy tests all use the same explicitly specified smooth
solution, given by

uex = cos(t) cos2(πx/2) sin(πy), (96)

vex = − cos(t) sin(πx) cos2(πy/2), (97)

pex = cos(t) cos(πx/2) sin(πy/2). (98)

We take ν = 1, and use forcing f and boundary values g for velocity determined
as necessary to yield the same exact solution in each case.

The finite element package we have implemented is in some sense an up-
graded version of iFEM due to Long Chen (work in preparation, see http:

//math.uci.edu/~chenlong/). iFEM is an adaptive piecewise linear finite ele-
ment package based on MATLAB. It uses a beautiful data structure to represent
the mesh and also provides efficient MATLAB subroutines to manipulate the
mesh (e.g., see [8, 1]). In particular, local refinement and coarsening can be done
fairly easily. For our purposes, we have extended it to isoparametric Lagrange
elements up to P5. The finite-element mesh is generated using DistMesh of Pers-
son and Strang [23]. The contour plots on unstructured meshs are generated by
the MATLAB routine tricontour.m due to Engwirda [10].

6.1 Stability

We checked the nonlinear stability of several PA and SC finite element schemes
by integrating the full NSE to time T = 10000. The domains (a square with
hole and an annulus) and meshes used are shown in the left half of Figure 5. If
any element has an edge on the circle, it is an isoparametric element. We used
324 P2 finite elements (dof=740) for each variable.

With (3,2) PA and SC schemes, the computations were observed to remain
stable to time T = 10000, for values of ∆t as large as 8 with errors no larger
than O(1). Similar results were obtained for these schemes with P1 (piecewise
linear) and with P4 finite elements.

The (3,3) and (4,3) PA and SC schemes in a square with hole were observed
to have a time-step restriction for stability of possibly diffusive type. See Table 8.

For (3,3) and (4,3) PA and SC schemes in the annulus, we calculated the
eigenvalues of largest magnitude using the Matlab function eigs, adapting the
formalism of Section 5.2 to the fully discrete scheme in 2D. The largest magni-
tude was observed to be less that 1 for ∆t less than a critical value ∆tc that
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Figure 5: Finite-element meshes for stability and temporal accuracy checks.
Square with hole: {(x, y) | r2 ≤ x2 + y2, |x|, |y| ≤ R}. Annulus: {(x, y) | r2 ≤
x2 + y2 ≤ R2}. (r,R) = (0.2, 0.5).

∆tc \ N 0 1 2
(3,3) P1/P1 0.0448 0.0155 0.00067
(3,3) P2/P2 0.0002685 0.0000733 0.0000182
(4,3) P1/P1 0.0485 0.0168 0.00074
(4,3) P2/P2 0.0002909 0.0000805 0.0000200

Table 8: Largest time step for linear stability of PA schemes in a square with
hole. N = number of refinements from grid in Fig. 5.

depends weakly on the mesh size, in the way reported in Table 9. These results
suggest that the phenomenon observed for these schemes in 1D, namely stability
for small time steps independent of mesh size, may indeed hold also for smooth
2D domains.

6.2 Temporal accuracy

We perform temporal accuracy checks in two different domains: an annulus,
and a square with a hole. One has smooth boundary, and the other has corners.
We use P4 isoparametric finite elements. The coarsest meshes used are pictured
in Figure 5. These meshes were used with ∆t = 0.04 for Tables 10-12. When
∆t is reduced by half, one triangle breaks into 4 triangles.

3rd-order schemes. We only show results for the (3,2) SC scheme, since
results for the PA scheme are similar. See Tables 10 and 11. The pressure
gradient shows slightly degraded accuracy in the square with hole. In Fig. 6
we show a mesh plot of the pressure error in the square with hole for the (3,2)
PA and SC schemes. One sees steep gradients near the corners, where the
formal analysis of section 3 evidently breaks down. Max-norm errors are strongly
affected by behavior in the corner, and for this reason we tabulate L2 norms for
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∆tc \ N 0 1 2
(3,3) P1/P1 0.022 0.014 0.010
(3,3) P2/P2 0.007 0.005 0.005
(4,3) P1/P1 0.024 0.017 0.014
(4,3) P2/P2 0.011 0.011 0.010

Table 9: Largest time step for linear stability of PA schemes in annulus. N =
number of refinements from grid in Fig. 5.

pressure error and its gradient in Tables 10 and 11.
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Figure 6: Pressure error in the square with hole for the (3,2) PA (left) and SC
(right) scheme. ∆t = 0.02. 1296 P4 elements for each variable. T = 2. Only
values at the vertices of triangles are used in the plots.

2nd-order schemes. For purposes of comparison, in Table 12 we provide
results of an accuracy check for a (2,1) SC scheme, which is formally 2nd-order
accurate in time. We are not aware of previously published results using such
a finite element method, which is based on a time discretization close to the
original Kim-Moin finite-difference scheme described for a staggered grid in [18].
Comparison of Tables 11 and 12 indicates that for this smooth test problem the
3rd-order schemes are substantially more accurate than the 2nd-order (2, 1) SC
scheme, with essentially the same cost. Note that here we have nonhomogeneous
boundary conditions and are using P4 elements with an unstructured grid in a
domain with corners and a hole.

4th-order scheme in a smooth domain. We also provide results of
an accuracy check for a (4,3) PA scheme in an annulus (which has smooth
boundary) in Table 13. For stability reasons the largest time step we take
is ∆t = 0.01, smaller than that used in the previous tables. The coarsest
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mesh used is that in Figure 5, used when ∆t = 0.01. The results demonstrate
better absolute accuracy than the (3,2) SC scheme in Table 10 for comparable
step sizes, but they fall short of 4th-order accuracy, especially for ∇p̂h, whose
absolute accuracy is rather good but does not improve with refinement in this
test. It appears that the error in p̂h in Table 13 exhibits fine scale oscillations
like in Figure 4 for the (3,2) PA scheme with P2/P2 elements. The error in ph

and ∇ph decreases steadily, however.

E \ ∆t 0.02 0.01 0.005
‖u− uh‖L∞ 5.76 (2.58) 6.66 (2.99) 7.57 (3.04)

‖∇(u− uh)‖L∞ 4.06 (2.93) 5.01 (3.13) 5.94 (3.1)
‖p− ph‖L2 4.18 (2.5) 5.06 (2.93) 5.96 (2.98)

‖∇(p− ph)‖L2 3.68 (2.52) 4.56 (2.93) 5.45 (2.96)
‖p− p̂h‖L2 4.17 (2.52) 5.06 (2.94) 5.96 (2.98)

‖∇(p− p̂h)‖L2 3.63 (2.8) 4.53 (2.99) 5.4 (2.92)

Table 10: Temporal accuracy, (3, 2) SC scheme in annulus. − log10E (and local
order α) vs ∆t. P4 isoparametric FE, T = 2.

E \ ∆t 0.02 0.01 0.005
‖u− uh‖L∞ 5.74 (3.64) 6.64 (2.99) 7.56 (3.04)

‖∇(u− uh)‖L∞ 3.87 (3.44) 4.87 (3.31) 5.83 (3.2)
‖p− ph‖L2 4.17 (3.71) 5.05 (2.94) 5.96 (3)

‖∇(p− ph)‖L2 3.53 (3.58) 4.38 (2.82) 5.21 (2.77)
‖p− p̂h‖L2 4.16 (3.71) 5.05 (2.95) 5.96 (3)

‖∇(p− p̂h)‖L2 3.38 (3.5) 4.29 (3.03) 5.14 (2.82)

Table 11: Temporal accuracy, (3, 2) SC scheme in square with hole. − log10E
(and local order α) vs ∆t. P4 isoparametric FE, T = 2.

6.3 Benchmark tests with finite elements

In this subsection, we test our schemes on the benchmark problems of driven
cavity flow (with ν = 1/1000), flow over a backward facing step (with ν = 1/100
and ν = 1/600) and flow past a cylinder (with ν = 1/1000). We use P1 finite-
element or P2 and P4 isoparametric finite-element discretization. To save space,
we only show results for the (3, 2) SC and (3,2) PA schemes. We emphasize the
(3,2) SC scheme since the performance of the (3,2) PA scheme is always at least
as good.

For the driven cavity flow, we compute the flow in the domain [0, 1] × [0, 1]
and start from rest, impulsively imposing horizontal velocity u = 1 on the top
boundary for t > 0. Following [7], we plot the contours of vorticity with values
[-5, -4, -3, -2, -1, -0.5, 0, 0.5, 1, 2, 3] and the contours of pressure with values
[0.3, 0.17, 0.12, 0.11, 0.09, 0.07, 0.05, 0.02, 0, -0.002]. the pressure is set to
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E \ ∆t 0.02 0.01 0.005
‖u− uh‖L∞ 3.61 (1.9) 4.21 (1.99) 4.82 (2.04)

‖∇(u− uh)‖L∞ 2.09 (1.92) 2.69 (1.99) 3.3 (2.03)
‖p− ph‖L2 2.02 (1.91) 2.61 (1.98) 3.22 (2.02)

‖∇(p− ph)‖L2 1.41 (1.84) 1.97 (1.87) 2.52 (1.84)
‖p− p̂h‖L2 2.02 (1.91) 2.61 (1.98) 3.22 (2.02)

‖∇(p− p̂h)‖L2 1.41 (1.84) 1.97 (1.87) 2.52 (1.83)

Table 12: Temporal accuracy, (2, 1) SC scheme in square with hole. − log10E
(and local order α) vs ∆t. P4 isoparametric FE, T = 2.

E \ ∆t 0.01 0.005 0.0025
‖u− uh‖L∞ 8.42 9.52 (3.68) 10.6 (3.67)

‖∇(u− uh)‖L∞ 6.97 8.03 (3.52) 9.07 (3.45)
‖p− ph‖L2 7.59 8.71 (3.72) 9.85 (3.79)

‖∇(p− ph)‖L2 6.39 7.56 (3.89) 8.66 (3.64)
‖p− p̂h‖L2 7.57 8.7 (3.74) 9.84 (3.81)

‖∇(p− p̂h)‖L2 6.12 6.58 (1.54) 5.83 (-2.5)

Table 13: Temporal accuracy, (4, 3) PA scheme in annulus. − log10E (and local
order α) vs ∆t. P5 isoparametric finite elements are used. T = 2.

be zero at (0.5,0.5) which is the center of the cavity. (For the SC scheme, we
report the pressure computed from the final velocity field using (19), with the
convective form of the nonlinearity and not the rotational form which yields a
different pressure.) The computational mesh is one more global refinement of
the coarse mesh. We refer to computational results of [18, 7] for comparison.
Although we use a rather coarse mesh, the vorticity and pressure contour plots
agree quite well with [7].

For the backward-facing step, we compute the flow in the domain

Ω = [0, L] × [−0.5, 0.5] \ [0, 0.5]× [−0.5, 0]

with no-slip boundary conditions everywhere except at the inflow boundary
x = 0 and the outflow boundary x = L. We take L = 8 when ν = 1/100,
and take L = 20 when ν = 1/600. But we will only show results near the
step. We start from rest and gradually increase the boundary velocity (u, v)
to (12y(1 − 2y), 0) at the inflow boundary and (−3y2 + 3/4, 0) at the outflow
boundary, with no net influx at each time. The time-dependent function we
used for gradually increasing velocity is (1 − cos(πt))/2 on [0, 1]. So, when t is
large, the mean inflow velocity is 1 which leads to Re=1/ν when we use twice
the step size as reference length. The computational mesh for ν = 1/600 is
shown in Figure 7. Once the velocity field is obtained, we calculate the stream
function and then show its contour plot. Once again, we obtain results that
agree rather well with [2, 18] using a rather coarse mesh.
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For the flow past a cylinder, we follow the setup in [15]. Then the domain
is [0, 2.2] × [0, 0.41]\{(x − 0.2)2 + (y − 0.2)2 ≤ 0.052}. (Note that the hole is
slightly off-center.) The time dependent inflow and outflow profile

u(t, 0, y) = u(t, 2.2, y) = 0.41−2 sin(πt/8)(6y(0.41 − y), 0) (99)

is prescribed. ν is chosen to be 1/1000. Based on the maximum velocity Umax =
1 and the diameter of the cylinder L = 0.1, the Reynolds number of the flow is
100. The computational mesh is shown in Figure 7 and the contour plot of the
stream function at t=[2,4,5,6,7,8] is shown in Figure 11.

For comparison with [15] we also calculate the drag and lift coefficients,
denoted by cd(t) and cl(t), which are the x and y components of the quantity

2

LU2
max

∫

S

ν∂nu − p n , (100)

where S is the surface of the cylinder. Since our goal is to test the scheme,
we faithfully calculate these quantities by surface integration, instead of trans-
forming them into volume integrals, which is known to be more accurate. We
also calculate when the maxima of cd and cl occur, and compute the pressure
difference between the front and the back of the cylinder

∆p(t) = p(t, 0.15, 0.2)− p(t, 0.25, 0.2). (101)

Since we use rotational form for the nonlinear term in the (3,0,2) and (3,1,1)
calculations, the pressure we obtained is different from the standard pressure
by 1

2
|u|2. But because u vanishes on the cylinder surface, we have used our

pressure directly. As we have mentioned, we do not need to solve an extra
Poisson equation to obtain this pressure.

The results for both the (3,0,2) and (3,2,0) schemes with P4 isoparametric
elements are shown in Figure 12. Agreement with the reference results of [15]
appears good, given that we use a grid roughly comparable to the coarsest grid
(level 1) used in [15]. If we follow [15] and use [2.95092, 0.47795,−0.1116] as
reference values for the maxima of cd, cl and ∆p(8), the relative errors of those
quantities are

[0.73%, 0.08%, 0.11%] and [0.11%, 0.25%, 0.02%]

for the (3,0,2) and (3,2,0) schemes respectively. We have also used P2 elements
instead of P4, with the same time step ∆t = 0.0004, but with one global refine-
ment of the mesh in Figure 7, so that the number of degrees of freedom remains
the same. Then the relative errors in the maxima of cd, cl and ∆p(8) change to

[3.19%, 2.10%, 0.14%] and [0.33%, 1.65%, 0.40%]

for the (3,0,2) and (3,2,0) schemes respectively. We mention that if we increase
∆t from 0.0004 to 0.0005, and keep the other parameters the same as in Fig-
ure 11, the solution blows up around t = 3 (after about 6000 time steps).
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Figure 7: Mesh used in backward facing step flow computation when ν = 1/600
and in flow past a cylinder calculation when ν = 1/1000.
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Figure 8: Driven cavity, ν = 1/1000. P1/P1 with 8192 P1 elements (dof=4225)
for each variable. hmin = 0.00594, hmax = 0.0397, ∆t = 0.006, T = 50. Top:
(3,2) SC scheme. Bottom: (3,2) PA scheme. From left to right: vorticity contour
plots, pressure contour plots.
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Figure 9: Backward-facing step. ν = 1/100. P1/P1 with 6640 P1 elements
(dof=3487) for each variable. hmin = 0.00783, hmax = 0.116, ∆t = 0.006,
T = 20. X/S = 2.84. Left: (3,2) SC scheme. Right: (3,2) PA scheme.
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Figure 10: Backward-facing step. ν = 1/600. 1700 P2 elements (dof=3925) for
each variable. hmin = 0.0186, hmax = 0.334, ∆t = 0.003, T = 120. Top: (3,2)
SC scheme, X1/S = 8.86, X2/S = 15.5, X3/S = 9.9. Bottom: (3,2) PA scheme,
X1/S = 8.86, X2/S = 15.55, X3/S = 9.9.
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Figure 11: Flow past a cylinder. ν = 1/1000. 763 isoparametric P4 elements
(dof=6322) for each variable. The velocity at t = [2, 4, 5, 6, 7, 8]. ∆t = 0.0004.
hmin = 0.00822. hmax = 0.117. (3,2) SC scheme.
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Figure 12: From left to right: the drag and lift coefficients cd, cl and pressure
difference between front and back of the cylinder ∆p for flow past a cylinder
with ν = 1/1000. Mesh is in Figure 7. ∆t = 0.0004. 763 isoparametric P4
elements (dof=6322) for each variable. Top: (3,2) SC scheme. Bottom: (3,2)
PA scheme.
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7 Conclusions

The well-posed formula (18) that expresses pressure in terms of current velocity
and forcing fields, via the Laplace-Leray commutator, has enabled us to study
in a rather simple way the formal accuracy of time-difference schemes for incom-
pressible viscous flow. We used the commutator formula in (9) and the concept
of Stokes pressure to explain the accuracy of existing pressure-approximation
and pressure-update projection methods, to devise improved approximations for
computation of pressure, and to derive new higher-order slip-corrected projec-
tion methods. The slip-correction methods are closely related to the original
Kim-Moin scheme from [18] which was devised for a staggered finite-difference
grid. At the space-continuous level, the Kim-Moin scheme corresponds to a (2,1)
SC scheme here with 2nd-order Crank-Nicolson time differencing and 1st-order
extrapolation for slip correction.

Stability. Our numerical tests indicate that, with no more cost than tradi-
tional 2nd-order methods, one can achieve 3rd-order accuracy in time for both
velocity and pressure, using (3,2) PA or SC schemes that retain stability with
large time steps at low Reynolds number. In tests in smooth domains it ap-
pears one may even achieve 4th-order accuracy using (4,3) PA or SC schemes
for the Stokes equations with a stability restriction on ∆t that appears inde-
pendent of the spatial grid size h. In domains with corners, however, (4,3) and
(3,3) schemes appear subject to a diffusive time-step restriction with the spatial
discretizations that we tested.

In general it is not clear just how the implicit treatment of viscous terms
enhances stability, but the effect naturally diminishes when viscosity becomes
sufficiently small. Our tests on benchmarks involve Reynolds numbers in the
hundreds, and here we do encounter practical time step restrictions for sta-
bility of (3,2) PA and SC schemes. For these tests we find that we need
Umax∆t/hmin ≈ O(1) where hmin is the size of the smallest edge in the mesh
and each edge contains k+ 1 grid points for Pk elements. This appears roughly
consistent with a CFL constraint based on the explicit treatment of convection
terms.

Accuracy. An interesting fact seen in our formal accuracy analysis is that the
projected (divergence-free) velocity satisfies a discretized momentum equation
that is fully implicit as regards the Stokes pressure (the viscous part of total
pressure). This is a consequence of the commutator formula in (9) and holds for
many different projection and time-splitting methods. It does not mean that
we need to solve a coupled system for velocity and pressure, however.

The formal analysis indicates that, as with any of the known projection
methods, weak boundary layers usually remain in higher gradients of velocity
and pressure. In the numerical tests for (3,2) PA and SC schemes, there are
some indications of degraded accuracy in such quantities, especially near cor-
ners in the domain. Improved understanding and handling of corners would be
desirable. Future work is also needed to understand better the impact of spatial
discretization on stability and error, especially near boundaries.
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Finite elements and the inf-sup condition. A potentially important finding
in this paper is that for PA and SC schemes we have observed good stability
and accuracy in tests and benchmark problems using simple Lagrange finite
elements of equal order for velocity and pressure. This suggests that there is
far more flexibility in choosing methods for space discretization in schemes of
this type than is traditionally possible for incompressible flow problems using
finite elements without stabilization techniques (as in [3, 4], for example). For
three-dimensional problems, for example, where complex mesh geometry may
demand a simple approach, a (2,2) or (2,1) PA scheme with piecewise linear
elements (P1/P1) could be considered. (Our numerical tests for a smooth test
problem have indicated a substantial improvement in temporal accuracy with
3rd-order schemes, however.) Alternatively, for situations that demand high ac-
curacy, high-degree elements might be used without regard to velocity-pressure
compatibility.

Many traditional finite-element discretizations of mixed formulations of the
Stokes equations with divergence constraint require the spaces for velocity and
pressure approximations to satisfy the inf-sup (Ladyzhenskaya-Babuška-Brezzi)
condition: there should exist c > 0 independent of the discretization parameter
h such that

inf
qh∈Yh

sup
vh∈Xh

〈∇ · vh, qh〉
‖∇vh‖‖qh‖

≥ c > 0. (102)

The role of this condition is to ensure stability and accuracy for the pressure
as determined by the mixed formulation. But as is well known, Lagrange finite
elements of equal order for velocity and pressure fail to satisfy this condition.

As we emphasized in section 2, however, the pressure is necessarily deter-
mined by formula (18), for strong solutions of the Navier-Stokes boundary-value
problem (1)-(3). This should mean that whenever one can compute an accu-
rate velocity, one can compute an accurate pressure from the weak form (19) or
the Poisson BVP (20)-(21). The inf-sup condition (102) should play no role in
this. (See also [20] for more discussion, where stability of a C1 finite element
scheme for steady-state Stokes equations is proved, by using simply the Lax-
Milgram lemma instead of the inf-sup condition.) But while our numerical tests
are suggestive, we have no real reason why PA and SC schemes appear stable
irrespective of the inf-sup condition, while PU schemes do not. Clearly, much
regarding the role of the inf-sup condition with regard to stability and accuracy
of projection methods remains to be explained.

Comparisons. The new slip-correction schemes appear to have stability prop-
erties similar to corresponding pressure-approximation schemes. In our imple-
mentations, however, higher-order PA schemes seem to be somewhat more ro-
bust than their SC counterparts in terms of spatial accuracy and accuracy near
boundaries and corners. Pressure-update (PU) schemes are somewhat simpler
to describe and to code, but appear far less stable with finite element pairs that
violate the inf-sup condition.

Finally, we remark that certainly one can consider schemes that combine
the pressure-approximation, slip-correction, and pressure-update strategies as
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we have discussed. This may involve additional cost per time step, but it allows
one to use lower-order extrapolation while retaining accuracy in the overall
scheme. Whether such combinations might yield gains in stability or mitigate
deficiencies in individual strategies remains to be seen.
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A Time-discrete normal modes in a strip

Here we describe how to determine normal-mode solutions for the time-discrete
schemes of sections 3.1 (slip-correction) and 3.2 (pressure-approximation), in
the strip −1 ≤ x ≤ 1 as in Section 5.1. From this analysis we will get a stability
condition for the time step that is consistent with the numerical observations
from Figs. 1–2, namely that the (4,3) and (3,3) PA and SC schemes are stable
for time steps below a critical value independent of spatial grid size.

With zero forcing and boundary velocity and neglecting nonlinear terms, we
look first for solutions of the time-discrete SC scheme (29)-(31) with the form

un = κnu(x, y) = κneiξy(u(x), iv(x))

with corresponding notation for un
∗ and qn. We will find it convenient to define

Dk(z) =
∑

j≥0

αk
j z

j, Em(z) =
∑

j≥1

βm
j z

j .

We fix ν = 1. The SC scheme requires

1

∆t



αk
0u∗ +

∑

j≥1

αk
j u



 = ∆u∗ in Ω, u∗ = Em(κ−1)∇q on Γ, (103)

u∗ = u + ∇q, ∇ · u = 0 in Ω, n · ∇qn+1 = 0 on Γ. (104)

We write separate equations for u and q as in section 3.1 by applying the
projection P and using the commutator relation (∆P − P∆)u∗ = ∇p, where
p = pS(u) is the Stokes pressure. The equations for u and q correspond to (36)
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and (39) respectively, and take the form

(Dk(κ−1) − ∆)u + ∇p = 0, ∇ · u = 0 in Ω, (105)

∆p = 0 in Ω, n · ∇p = n · (∆ −∇∇·)u on Γ, (106)

u + (1 − Em(κ−1))∇q = 0 on Γ, (107)
(

αk
0

∆t
− ∆

)

q = p in Ω, n · ∇q = 0 on Γ. (108)

With y-dependence proportional to eiξy in the strip −1 ≤ x ≤ 1, and with

µ̃(z) =
√

ξ2 + Dk(z), λ =

√

ξ2 +
αk

0

∆t
, (109)

and z = κ−1, the equations become

(µ̃2 − ∂2
x)

(

u
v

)

+

(

∂x

ξ

)

p = 0, ∂xu− ξv = 0 (−1 < x < 1), (110)

(ξ2 − ∂2
x)p = 0 (−1 < x < 1), ∂xp = ξ∂xv (x = ±1), (111)

u = 0, v + (1 − Em(κ−1))ξq = 0 (x = ±1), (112)

(λ2 − ∂2
x)q = p (−1 < x < 1), ∂xq = 0 (x = ±1). (113)

We can separately study modes for which pressure, for example, has even
or odd symmetry. Looking first for the latter, we find that solutions with
divergence-free velocity tangent to the boundary take the form

p(x) = A sinh ξx (114)

u(x) = Bξ

(

cosh ξx

cosh ξ
− cosh µ̃x

cosh µ̃

)

, (115)

v(x) = B

(

ξ sinh ξx

cosh ξ
− µ̃ sinh µ̃x

cosh µ̃

)

, (116)

q(x) = C

(

sinh ξx

ξ cosh ξ
− sinhλx

λ coshλ

)

. (117)

On the boundaries x = ±1, these forms satisfy u = 0 and ∂xq = 0. The pressure
boundary condition reads ∂xp = ξ∂xv = ∂2

xu, so it will automatically hold once
the first component of (110a) is enforced. Imposing (110a) and the equation
(113a) for q, we find that A, B and C are related by the linear equations

A+
µ̃2 − ξ2

cosh ξ
B = 0, (118)

A− λ2 − ξ2

ξ cosh ξ
C = 0, (119)

so that (µ̃2 − ξ2)ξB+ (λ2 − ξ2)C = 0. Imposing the boundary condition (112b)
for v and using this relation for B and C leads to the equation that determines
the growth factor κ, which we write in the form

Fo(z,∆t, ξ) = 0, z = κ−1, (120)
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with Fo defined via

Fo(z,∆t, ξ)

cosh µ̃
= ξ tanh ξ − µ̃ tanh µ̃− S(z)

(

ξ tanh ξ − ξ2

λ
tanhλ

)

, (121)

S(z) =
∆t

αk
0

Dk(z)(1 − Em(z)). (122)

The factor cosh µ̃ is introduced in order to remove the poles arising from tanh µ̃.
This makes Fo an entire (i.e., globally analytic) function of z.

For the mode with pressure having even symmetry, p = cosh ξx, similar
calculations lead to the dispersion relation

Fe(z,∆t, ξ) = 0, (123)

Fe(z,∆t, ξ)

µ̃ sinh µ̃
= ξ coth ξ − µ̃ coth µ̃− S(z)

(

ξ coth ξ − ξ2

λ
cothλ

)

. (124)

Again, Fe is an entire function of z.
It turns out that exactly the same single-mode dispersion relations govern

the time-discrete PA scheme.
Numerical study via winding number. To count all unstable odd modes

(and similarly for even modes), for given values of ∆t and ξ, we want to count
all solutions of (120) for which |z| < 1. From basic complex function theory,
the number of solutions of (120) satisfying |z| < R, counting multiplicity, is
the winding number around zero of the closed curve Fo(Rγ,∆t, ξ), where γ
parametrizes the unit circle:

γ(θ) = eiθ, 0 ≤ θ ≤ 2π. (125)

If there are no zeros satisfying |z| = R, then the winding number is an integer,
the total change in the complex argument divided by 2π. It turns out there is
always a trivial zero at z = 1, since Dk(1) = 0 and µ̃ = ξ. It is convenient to
remove this zero and scale amplitudes, by defining

F̃ (z) =
Fo(z,∆t, ξ)

1 − z
, f(z) =

F̃ (z)

(1 + |F̃ (z)|)7/8
.

(The parameter 7

8
is just a convenient number close to 1.) Thus, the quantity

N(R) =
1

2π

∫ 2π

0

d
(

arg f(Reiθ)
)

, (126)

the winding number of f(Rγ) around zero, is the number of zeros of Fo satisfying
|z| < R, excluding z = 1 (once, in case of higher multiplicity).

We compute the winding number N(R) numerically using a simple adaptive
stepping algorithm. We evaluate fj = f(R exp iθj) for 0 ≈ θ0 < θ1 < . . . <
θn = θ0 + 2π, and accumulate

∑n
j=1

arg(fj/fj−1)/2π ≈ N . The values θj

are determined successively by doubling or halving the step θj+1 − θj to keep
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|1 − fj+1/fj| within specified tolerances. This controls the relative change in
arg f and |f |, and works well even when there is a zero of f very close to the
circle |z| = R.

Using bisection in R for N(R), we can then find rather accurately (to a tol-
erance τ = 0.0005 with no difficulty) a value R for which the winding number
satisfies N(R) = 0 < N(R+ τ). Then 1/R is approximately the largest magni-
tude of any amplification factor κ for a mode with odd pressure in the space-
continuous scheme. We perform the corresponding calculation for even pressure
modes and take the max. The results provide the solid curves in Figs. 1-2.

Recall that in Figs. 1-2, the results for the (3,3) and (4,3) schemes indicate
that for ξ = 1 there is a largest stable time step ∆tc > 0 independent of spatial
resolution. The present normal mode theory suggests that this remains true
uniformly for all wave numbers ξ. We compute ∆tc as a function of ξ by fixing
R = 1 and using bisection in ∆t to find the largest ∆t where N = 0. The results
are plotted in Fig. 13, and indicate that ∆tc increases with ξ but remains strictly
positive in the limit ξ → 0. (For ξ = 0.01, ∆tc is 0.539 for the (4,3) scheme and
0.349 for the (3,3) scheme.) For the (4,3) scheme with ξ = 1 the critical time
step ∆tc = 0.63 which compares well with the results in Figures 1 and 2.
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Figure 13: Largest stable time step ∆tcr vs. ξ according to normal-mode theory


