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Abstract

Clustering phenomena occur in numerous areas of science. This
includes condensation at the nanoscale in condensed matter physics,
smog and cloud formation in aerosol physics, processes of stellar and
galactic clustering in astrophysics, random graph theory, and merging
of lines of descent in ancestral trees. Some basic models of coagulation
and aggregation take the form of rate equations for cluster size distri-
butions, mathematically closely related to kinetic equations. In these
lectures we describe some of the considerable progress made recently in
this area, by workers in probability, PDE, and combinatorics. A topic
of particular interest concerns the trend toward self-similar behavior.
Methods and insights from probability in tandem with dynamical sys-
tems theory have been found very fruitful in developing a systematic
approach to studying this topic and scaling dynamics more generally.
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Plan of the series of lectures:

1. The problem of universal behavior in complex systems. Some funda-
mental models of clustering and coagulation and their interrelations:
Smoluchowski’s coagulation equations, ballistic aggregation, Burgers’
turbulence model (shock-wave clustering). Dynamic self-similarity in
the simplest mean-field models.

2. A general framework for dynamic scaling analysis. Self-similar behav-
ior and its lack in coagulation equations. Scaling-limit rigidity and
power laws. Role of regular variation.

3. Scaling dynamics in general for a solvable coagulation equation. The
scaling attractor and its Lévy-Khintchine representation. Conjugacy
with dilational dynamics. Signatures of chaos. Analogy to stable laws
of probability and infinite divisibility.

1 Lecture 1

1.1 General aims.

In these lectures we will survey some recent results involving dynamic scaling
limits and scaling relations in systems that form patterns that develop by
coarsening over time. The overarching aim is to understand something about
systems that appear to behave predictably, but whose complexity precludes
detailed analysis. One of the challenges in dealing with such systems, in fact,
is to identify good statistics—some properties of the system —about which
something can be said. Some of the main mathematical themes involve
dynamic scaling limits and their connections to dynamical systems concepts
and limit theorems in probability theory. These concepts can be compared
to renormalization group methods, for example, but the fundamental ideas
really originated with the pioneers of probability theory in the 1920s and
1930s, workers such as Lévy, Khintchine and Doeblin. The power of these
ideas has not been fully appreciated in PDE theory, and I believe there to
be considerable scope for extending their reach to address many problems
not related to the ones we shall consider here.
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1.2 A basic model for clustering.

Smoluchowski’s coagulation equation is an oversimplified model for the ag-
gregation or clustering of matter. It describes the evolution of a simple
statistic, the distribution of cluster size x at time t. One describes this
using a cumulative distribution function (CDF): Let

νt(x) = (expected) number of clusters of size ≤ x at time t

and let n(x, t) denote a density for this distribution (presuming it exists),
so that

νt(x) =

∫ x

0
n(y, t) dy.

The mechanism of clustering can be indicated schematically as follows:

x + y =⇒ x+ y

x− y + y =⇒ x

Clusters of size x and y join to form a cluster of size x + y at rate
presumed to be

K(x, y)n(x, t)n(y, t),

separately proportional to the populations of ‘incoming’ clusters. We assume
the rate kernel is non-negative and symmetric: K(x, y) = K(y, x) ≥ 0.
Integration over y produces the rate of loss of size-x clusters. Size-x clusters
are produced by joining clusters of size y and x− y. Integrating over y and
avoiding double-counting yields the rate equation

∂tn(x, t) = −
∫

∞

0
K(x, y)n(x, t)n(y, t) dy (loss) (1.1)

+
1

2

∫

∞

0
K(x− y, y)n(x− y, t)n(y, t) dy (gain)

This is Smoluchowski’s coagulation equation (first written in this size-
continuous form by Müller). Many forms of it appear in an extensive physical
literature, in a wide range of fields: astrophysics, chemistry of colloids, poly-
mers, aerosols (fog & smog), lines of descent in population biology, and also
in probability theory (renewal processes), and random graph theory. About
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1917 the great Polish physicist Smoluchowski derived the size-discrete form
of this model corresponding to

K(x, y) = (x1/3 + y1/3)(x−1/3 + y−1/3),

to model Brownian particles, and he solved an initial-value problem for an
infinite set of ODEs corresponding to K ≡ 2.

1.3 Dynamic behavior.

In the pure coagulation process we are modeling, cluster sizes simply grow
in time. Claimed in many physical papers and seen in numerics is dynamic
scaling behavior: As time increases, the size distribution approaches a uni-
versal self-similar form,

n(x, t) ∼ a(t)f(b(t)x)

with some scaling profile f . This raises compelling mathematical questions:

Is this true? When? And why?

Naturally one should expect such behavior only if the system is (asymptot-
ically?) scale-free, meaning the kernel K is homogeneous; say

K(ax, ay) = aλK(x, y).

First remarks on dynamic scaling:
1. Conservation of mass imposes the constraint a = b2 because

∫

∞

0
xn(x, t) dx =

∫

∞

0
af(bx) dx =

a

b2

∫

∞

0
f(y)y dy

is a quantity that is constant in time.
2. Explicit self-similar solutions are known for special rate kernels (that

we will consider further later):

K = 2 : n(x, t) =
1

t2
exp(−x/t) (t > 0) (1.2)

K = x+ y : n(x, t) =
1√
2π
x−3/2e−t exp(−xe−2t/2) (−∞ < t <∞)

K = xy : n(x, t) =
1√
2π
x−5/2 exp(−t2x/2) (−∞ < t < 0 = Tgel)

The existence of self-similar solutions in general was a long-standing open
problem; the first results were achieved in 2004 by Fournier and Laurençot
and Escobedo, Mischler and Rodriguez-Ricard. Some kernels important in
applications are not covered by these results, however.
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1.4 Some goals of these lectures

1. Derive Smoluchowski’s equation with K = x + y formally by modeling
random shock clustering in the inviscid Burgers equation

∂tu+ u∂xu = 0.

This formal model actually turns out to be a rigorous description of time
evolution for a class of random initial data that includes (one-sided) Brow-
nian motion: This result is due to Carraro & Duchon (1994) and Bertoin
(1998), and is explicitly described in:

[MP0] G. Menon and R. L. Pego, Universality classes in Burgers turbulence,
Comm. Math. Phys. 273 (2007) 177–202.

For recent results concerning time evolution for a wide class of Markov-
process initial data, see Menon and Srinivasan (preprint, arXiv:0909.4036).

2. Address questions of dynamic scaling, including well-posedness, clas-
sification of all self-similar solutions, characterization of their domains of
attraction, classification of cluster points (the scaling attractor) and descrip-
tion of the “ultimate dynamics” on the scaling attractor. This will be done
for the particular case K = x + y, which is ‘solvable’ by using the Laplace
transform and characteristics. Analyses in this solvable case have suggested
results later proved to hold for other kernels and in related models.

Most of the main results are adapted (and improved) from two papers:

[MP1] G. Menon and R. L. Pego, Approach to self-similarity in Smoluchowski’s
coagulation equations, Comm. Pure Appl. Math. 57 (2004) 1197-1232.

[MP2] G. Menon and R. L. Pego, The scaling attractor and ultimate dynamics
for Smoluchowski’s coagulation equations, J. Nonl. Sci. 18 (2008) 143-
190.

For a treatment of the simpler case K = 2 and discussion of a variety of
other models of coarsening (e.g., 1D bubble bath, Mullins-Sekerka, LSW)
and methods of analysis, see the following book chapter (available online):

[P] R. L. Pego, Lectures on dynamics in models of coarsening and coagu-
lation, in Dynamics in Models of Coarsening, Coagulation, Condensa-
tion and Quantization (Lec. Notes Ser. Inst. Math. Sci. Nat. Univ.
Singapore), Eds. Weizhu Bao and Jian-Guo Liu, World Scientific (Sin-
gapore), 2007.
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1.5 Ballistic motion and clustering

Shock clustering in the inviscid Burgers equation is closely related to a more
general problem of ballistic aggregation that we now describe.

In an influential 1989 paper in large-scale cosmology, Shandarin and Zel-
dovich discuss how the distribution of matter in the universe might become
inhomogeneous, starting from a toy model for mass density ρ(x, t) evolving
by free streaming: Particles follow straight-line paths

x = x0 + tv0(x0),

where v0 : R3 → R3 is smooth, say. This naturally leads to the advection
equations

∂tv + v · ∇v = 0, ∂tρ+ ∇ · (ρv) = 0.

“Pancake” singularities typcially form, when some eigenvalue of the defor-
mation gradient

∂x

∂x0
= I + t∇v0

first vanishes. (This is a nice thing to discuss in teaching a basic PDE
course!)

The problem arises, how should one continue in time past these singu-
larities? Some options are:

• Continue free streaming, with multiple velocities allowed at each “point”,
via Vlasov-type kinetic equations

• Preserve single-valuedness via ad hoc means such as introducing “vis-
cosity”

∂tv + v · ∇v = ǫ∆v.

(This appears in the literature, but whether it is a faithful model of
physical mechanisms is unclear.)

• Forbid interpenetration of matter by a ballistic aggregation mech-
anism, e.g., forming and transporting singular “mass sheets”, say.
There is work on such ‘sticky particle’ models in 1D: Brenier and
Grenier (∼1998), Gangbo and Tudorescu (∼2008). The problem is
completely open in higher dimensions.
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1.6 Random shock clustering for the inviscid Burgers equa-

tion

Here we give a heuristic description of the surprising connection between the
inviscid Burgers equation and the Smoluchowski coagulation equation with
K = x+ y, which actually appeared first as a rigorous result in the theory
of ‘Burgers turbulence’, the study of how nonlinear dynamics propagates
random initial data.

We start considering (entropy) solutions of

∂tu+ u∂xu = 0, x ∈ R, t ≥ 0, (1.3)

consisting of a (random) staircase of shocks (downward jumps):

u(x, t) =
∑

k

−skH(x− xk(t)) (1.4)

We suppose this looks roughly linear on a (very) large scale.

s
1   

I

s2

Figure 1.1: Binary clustering of shocks

Each shock at position xj(t) has constant size sj and constant speed

ẋj =
1

2
(u− + u+)

between collisions. The shocks aggregate upon collision like ballistic par-
ticles, conserving total ‘mass’ (size) and ‘momentum,’ due to the standard
jump conditions.

We formally describe a mean-field statistical model for the shock-size
distribution as follows: Let n(s, t) ds be the expected number of shocks per
unit length I (on the large scale) with size in [s, s + ds], assuming this
distribution is stationary in space. There are two mechanisms of evolution
of the density n:
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1. Net influx of shocks into I: The velocity difference across I is

|uR − uL| ≈
∫

∞

0
s n(s, t) ds =: m1(t).

The net influx of shocks at size in [s, s+ ds] then should be the product
of the rate they are swept into I and the density:

m1(t)n(s, t) ds

2. Shock coalescence in I occurs at relative velocity

ẋ2 − ẋ1 =
1

2
(s2 + s1)

(The labels should be taken to indicate any two consecutive shocks.) The
expected number of pairs with sizes in [s1, s1 + ds1], [s2, s2 + ds2] is

n(s1, t)n(s2, t) ds1 ds2

and the probability that these are near enough to collide in time dt is pro-
portional to the distance swept by the relative speed in time dt, namely
1
2(s1 + s2)dt. So the number of such collisions in time dt is expected to be

1

2
(s1 + s2)n(s1, t)n(s2, t) ds1 ds2 dt.

Considering all cases with s = s1 + s2 fixed and adding up over gain and
loss terms, we obtain the density rate equation

∂tn(s, t) = m1(t)n(s, t) +Q(n, n), (1.5)

Q(n, n) = −
∫

∞

0
n(s, t)n(s2, t)(s + s2) ds2

+
1

2

∫ s

0
n(s− s1, t)n(s1, t)s ds1. (1.6)

Integration over s yields (since
∫

∞

0 sQ(n, n) ds = 0, see below),

ṁ1 = ∂t

∫

∞

0
sn(s, t) ds = m2

1,

whence one easily derives

1

m1
∂t

(

n

m1

)

= Q

(

n

m1
,
n

m1

)

(1.7)
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Up to a change in time scale (dt̂ = m1dt) and size distribution (n̂ = n/m1),
this is exactly Smoluchowski’s coagulation equation with additive kernel
K(s1, s2) = s1 + s2.

Exercise: There is a very nice symmetry of the inviscid Burgers equation
which allows one to add a constant slope to initial data, and express the
solution with initial data ũ0(x) = u0(x) + ax in terms of the solution with
initial data u0(x). Can you find it?

1.7 Weak form of Smoluchowski’s equation

To model cluster size distributions that may either be discrete or have con-
tinuous densities in a unified framework, it is desirable to have a theory of
measure solutions, which satisfy a weak form of the equation. This is based
on a generalized moment identity for Smoluchowski’s coagulation equation.
Multiplying (1.1) by a test function a(x) and integrating we formally get

∂t

∫

∞

0
a(x)n(x, t) dx =

1

2

∫

∞

0

∫

∞

0

(

a(x+y)−a(x)−a(y)
)

K(x, y)n(x, t)n(y, t) dx dy.

This is most easily verified backwards: Using x+ y = x̂, y = ŷ,

1

2

∫

∞

0

∫

∞

0
a(x+ y)K(x, y)n(x)n(y) dx dy =

1

2

∫

∞

0

∫ x̂

0
a(x̂)K(x̂− ŷ, ŷ)n(x̂− ŷ)n(ŷ) dŷ dx̂.

Integrating in t yields the desired weak form for measure solutions t 7→
νt(dx):

∫

∞

0
a(x)νt(dx) =

∫

∞

0
a(x)νt0(dx)

+
1

2

∫ t

t0

∫

∞

0

∫

∞

0

(

a(x+ y) − a(x) − a(y)
)

K(x, y)νs(dx)νs(dy) ds

for a suitable class of test functions a(x) (that depends on K and we will
not specify here).

Formally, total mass is always conserved: a(x) = x⇒ d
dt

∫

∞

0 xn(x, t) dx =
0. This can fail however for fast-growing rate kernels K homogenous of de-
gree > 1:

K(bx, by) = K(x, y)bλ with λ > 1.

Solutions in this case can start to lose mass in finite time. This phenomenon
is called gelation and has attracted much interest. There are basic math
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papers on it by Jeon (1998) and by Escobedo, Mischler and Perthame (2002),
and many physical papers, for example by Leyvraz (2003) and Lushnikov.
Much remains to be understood, however. The term ‘gelation’ suggests the
loss of mass to an ‘infinite cluster,’ but the model as presented does not
contain such a cluster.

1.8 Solutions for K = x + y

For definiteness we restrict attention to this kernel. Consider moments mp =
∫

∞

0 xpn(x, t) dx. By conservation of mass, m1(t) is constant — often we
normalize so m1 = 1. For p = 0, using a(x) = 1 in the weak form yields

ṁ0 = −1

2

∫

∞

0

∫

∞

0
(x+ y)n(x)n(y) dx dy = −m1m0,

m0(t) = m0(0) exp(−tm1).

Then the expected cluster size grows exponentially: m1/m0 = Cem1t .

Weak solutions generally for K = x + y can be characterized using a
variant of the Laplace transform: Note

a(x) = 1 − e−qx ⇒ a(x+ y) − a(x) − a(y) = −a(x)a(y).

Then

ϕ(t, q) :=

∫

∞

0
(1 − e−qx)νt(dx)

satisfies ∂qϕ =
∫

∞

0 e−qxxνt(dx) and the evolution equation

∂tϕ = −1

2

∫

∞

0

∫

∞

0
(1 − e−qx)(1 − e−qy)(x+ y)n(x)n(y) dx dy

= −(m1 − ∂qϕ)ϕ,

or, normalizing m1 = 1,

∂tϕ− ϕ∂qϕ = −ϕ.

This is a damped inviscid Burgers equation, of course, and this time, solu-
tions should be analytic. Solutions can be found from a implicit equation
determined by the method of characteristics as follows.

Solution via characteristics. Along a characteristic curve q = q(t, α) with
q(0, α) = α we have

dq

dt
= −ϕ, d

dt
ϕ(t, q(t, α)) = ∂tϕ− ∂qϕq̇ = −ϕ,
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Hence

ϕ = e−tϕ0(α), etϕ = ϕ0(α),
d

dt
(q − ϕ) = 0,

so

q − ϕ(t, q) = α− ϕ0(α) =

∫

∞

0
(e−αx − 1 + αx) ν0(dx) =: ψ0(α).

Now
α = q + (et − 1)ϕ

so to find ϕ from given (t, q) we can solve the implicit equation

q = ϕ+ ψ0(q + (et − 1)ϕ). (1.8)

Or, to find α = α(t, q) from given (t, q), note

(et − 1)q = (et − 1)ϕ + (et − 1)ψ0(α)

so
etq = α+ (et − 1)ψ0(α) (1.9)

Observe:

ψ′

0(α) =

∫

∞

0
(1 − e−αx)x ν0(dx) ∈ (0, 1) ∀α > 0, (1.10)

α 7→ ψ′′

0 (α) =

∫

∞

0
e−αxx2ν0(dx) (1.11)

∂α

∂q
(t, q) = 1 + (et − 1)

∂ϕ

∂q
(1.12)

1.9 Well-posedness of the initial-value problem

Here we describe a well-posedness theorem from [MP1], for measure solutions
to Smoluchowski’s equation with K = x + y, which requires the initial
data to have only finite mass. A corresponding result for a general class of
homogeneous kernels was obtained by Fournier and Laurençot (2006), using
a Gronwall inequality for a Wasserstein-type distance. (The required finite
moment corresponds to the degree of homogeneity of the kernel.)

Theorem 1.1. Let ν0 be any measure on (0,∞) such that m1 =
∫

∞

0 x ν0(dx) <
∞. Then there exists a unique weakly continuous map t 7→ xνt(dx) such that
∫

∞

0 x νt(dx) = m1 for all t ≥ 0 and νt is a weak solution to Smoluchowski’s
coagulation equation.
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1.10 Self-similar limits with finite 2nd moment

To study self-similar limits it is convenient to consider the normalized mass
distribution, which corresponds to a probability distribution function:

Ft(x) =

∫

[0,x]
y νt(dy)

/

∫

∞

0
y νt(dy)

The following result is a dynamic version of the central limit theorem for
this system. Assuming finiteness of one more moment, there is a universal
scaling behavior:

Theorem 1.2. (Leyvraz (2003), [MP1]) Suppose
∫

∞

0 x2ν0(dx) < ∞. (We
assume = 1 without loss of generality.) Let λ(t) = e2t. Then as t → ∞, in
the weak sense of probability measures

Ft(λ(t) dx) → F∗(dx) =
1√
2π
x−1/2e−x dx.

Proof. 1. Due to the classical continuity theorem that makes weak con-
vergence of probability measures equivalent to pointwise convergence of the
Laplace transform, to establish the conclusion it is equivalent to show

∫

∞

0
e−qxFt(λdx) → LF∗(q) :=

∫

∞

0
e−qxF∗(dx) ∀q > 0.

We have
∫

∞

0
e−qxFt(λdx) = LFt(q/λ) =

∂ϕ

∂q
(t, q/λ)

2. Recall

q

λ
− ϕ

(

t,
q

λ

)

= ψ0(α) with α = α(t, q/λ) =
q

λ
+ (et − 1)ϕ

(

t,
q

λ

)

As t→ ∞ we have for any fixed q > 0 that

α+ (et − 1)ψ0(α) =
etq

λ
→ 0, hence α

(

t,
q

λ

)

→ 0.

3. Since
∫

∞

0 x2ν0(dx) = ψ′′

0 (0) = 1, as α→ 0 we have

ψ′

0(α) = α(1 + o(1)), ψ0(α) =
1

2
α2(1 + o(1)).

Since λ = e2t now it follows that for any fixed q > 0,

q = etα+
1

2
e2tα2(1 + o(1))
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as t→ ∞. From this we can infer etα→ ϕ∗ = ϕ∗(q) where

q = ϕ∗ +
1

2
ϕ2
∗
, ϕ∗(q) = −1 +

√

1 + 2q.

4. Then, by differentiating the implicit characteristic relation (1.8), we find

∂ϕ

∂q

(

t,
q

λ

)

=
1 − ψ′

0(α)

1 + (et − 1)ψ′

0(α)
→ 1

1 + ϕ∗(q)
=

1√
1 + 2q

.

But this yields the result, since

∫

∞

0
e−(q+1/2)x dx√

x
=

1
√

q + 1/2

∫

∞

0
e−y dy√

y
=

√
2π√

2q + 1
=

√
2πLF∗(q).

We remark that if one assumes existence of further moments, rates of
convergence have been obtained by Cañizo, Mischler and Mouhot (to ap-
pear) for K = 2 and Srinivasan for K = x+ y and xy (to appear).
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2 Lecture 2

2.1 A framework for scaling analysis

In the theorem of the last lecture, for convergence to self-similarity we re-
quired finiteness of the 2nd moment. This is analogous to the condition of
finite variance that one sees in the standard central limit theorem in prob-
ability. Without this condition, however, one can achieve a zoo of other
possible limits, involving the Lévy stable laws and infinitely divisible laws.

The question then arises, what kind of scaling limits can arise in co-
agulation without a second finite moment? It turns out that there is an
extensive set of analogies with classical limit theorems in probability. The
pioneers of that subject deeply investigated conditions under which scaling
limits are obtained, and the results are beautifully laid out in W. Feller’s
superb book, Introduction to Probability Theory and its Applications, vol.
2 (2nd ed. 1971).

Using the language of dynamical systems theory, one can list a number
of questions about scaling limits for Smoluchowski’s equation with solvable
kernel, that one can rather completely address using this analogy:

1. What are all the scaling solutions that exist?

2. What are their domains of attraction? (Can one characterize which
initial data converge to self-similar form as t→ ∞?)

3. What other scaling limit points can exist, along subsequences tn → ∞?
(We will call the set such points the scaling attractor for the system.)

4. Can one describe precisely the “ultimate dynamics” on the scaling
attractor?

In probability theory one considers scaled sums of iid random variables,
Sn = (X1 + . . .+Xn)/cn. The scaling limits as n→ ∞ are the Lévy stable
laws, and there is a complete classification of their domains of attraction in
terms of the ‘tails’ of the distribution of the Xj . Limits along subsequences
nj → ∞ are the infinitely divisible laws, which are represented by the famous
Lévy-Khintchine formula in terms of a class of measures.

In this lecture, for K = x+ y we will address the question of domains of
attraction. In the next lecture we discuss the characterization of the scaling
attractor by a Lévy-Khintchine-like representation, and indicate how, in
terms of this representation, the ultimate dynamics becomes conjugate to
pure dilation.
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The results indicate a kind of sensitive dependence of long-time dynamics
on the tails of the initial distribution—a form of ‘chaos.’ In probability
theory it was Wolfgang Doeblin who first saw this kind of behavior, among
the many results he achieved before he died at a young age in World War
II.

2.2 Scaling limits and regular variation

The following basic results on scaling limits and the Laplace transform are
taken from Feller’s book.

Lemma 2.1. Suppose U > 0 is increasing on [0,∞) and

U(tx)

U(x)
−→
t→∞

ψ(x) ≤ ∞ for all x ∈ A, dense in [0,∞).

Then ψ(x) = xp for some p ∈ [0,∞].

Proof.
U(tx1x2)

U(t)
=
U(tx1x2)

U(tx2)

U(tx2)

U(t)
.

If xj ∈ A, ψ(xj) <∞ then

ψ(x1x2) = ψ(x1)ψ(x2). (2.1)

ψ is increasing and ψ(1) = 1. If 0 < ψ(x) < 1 for some x0 < 1 then this
is true for all x0 ∈ A ∩ (0, 1). Extend ψ0 as right continuous to R+. Then
(2.1) holds for all x > 0; Hence ψ(er) = ψ(e)r for all r (at first in N, then
in Q, then in R). Now with x = er, r = log x so ψ(x) = (ep)log x = xp with
p = logψ(e).

Corollary 2.2. Let L(t) = U(t)/tp if p <∞. Then for all x > 0,

L(tx)

L(t)
−→
t→∞

1. (2.2)

Definition 2.1. A function L : (0,∞) → (0,∞) is slowly varying at ∞ if
(2.2) holds for all x > 0. Any function of the form U(t) = tpL(t) is regularly
varying at ∞ with exponent p.

Lemma 2.3. (Rigidity of scaling limits) Suppose U > 0 is increasing on
(0,∞) and

anU(bnx) −→
n→∞

g(x) ≤ ∞ for all x ∈ A, dense in [0,∞),
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where bn → ∞, an+1/an → 1 and 0 < g(x) <∞ in some interval.
Then necessarily U(x) = xpL(x) where L is slowly varying at ∞, and

g(x) = cxp for some c > 0, p ∈ (0,∞).

Proof. Without loss (rescale otherwise) we assume 1 ∈ A. For large t > 0
we map t 7→ n = min{m : bm+1 > t}. Then

an+1

an

an

an+1

U(bnx)

U(bn+1)
≤ U(tx)

U(t)
≤ U(bn+1x)

U(bn)

an+1

an

an

an+1

Taking t→ ∞ we infer that

1 · g(x)
g(1)

= lim
t→∞

U(tx)

U(t)
=
g(x)

g(1)
· 1

for all x ∈ A. Apply the previous Lemma to conclude.

2.3 Karamata’s Tauberian theorem

Let U be a measure on [0,∞) with U(0) = 0, and

ω(q) =

∫

∞

0
e−qxU(dx)

We use the notation U(x) =
∫

[0,x]U(dx), U(0) = 0. For t > 0 let

τ =
1

t
, then ω(τq) =

∫

∞

0
e−qx̂U(t dx̂).

Suppose that for some p ∈ [0,∞),

U(tx)

U(t)
−→
t→∞

xp ∀x > 0. (2.3)

Then (with q = 1)

ω(τ)

U(t)
=

∫

∞

0
e−xU(t dx)

U(t)
−→
t→∞

∫

∞

0
e−xd(xp) = pΓ(p) = Γ(1 + p).

This means
ω(τ) ∼ U(t)Γ(1 + p) (2.4)

Then
ω(τq)

ω(τ)
∼ U(t/q)

U(t)
−→
τ→0

1

qp
. (2.5)
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So (2.3) =⇒ (2.5). We claim (2.5) =⇒ (2.3). Note
∫

∞

0 e−qxd(xp) =
q−pΓ(1 + p).

ω(τq)

ω(τ)
=

∫

∞

0
e−qxU(t dx)

ω(τ)
→ 1

qp

implies, by the usual (2nd) continuity theorem for Laplace transforms, that

U(tx)

ω(τ)
→ xp

Γ(1 + p)
∀x > 0.

Taking x = 1 gives (2.4), then

U(tx)

U(t)
∼ ω(τ/x)

ω(τ)
→ xp.

This gives the following classic theorem.

Theorem 2.4. If L is slowly varying at ∞ and 0 ≤ p < ∞, then the
following are equivalent:

(i) U(t) ∼ tpL(t) as t→ ∞.

(ii) ω(τ) ∼ τ−pL(1/τ)Γ(1 + p) as τ → 0+.

2.4 Necessary & sufficient for self-similarity with K = x + y

We shall see that necessary and sufficient conditions for convergence to self-
similar form involve regular variation. Here we emphasize necessity:

Theorem 2.5. Let F0(dx) = x ν0(dx) be a probability measure on (0,∞)
and let Ft(dx) = x νt(dx) (0 ≤ t < ∞) correspond to the weak solution of
Smoluchowski’s equation with K = x+ y.

Suppose (1):

Ft(λ(t)x) → F∗(x) as t→ ∞ for a.e. x > 0,

where λ(t) → ∞ and F∗(dx) is a (proper) probability measure on (0,∞).

Then (2):
∫

[0,x]
y2 ν0(dy) = xρL(x),

where 0 ≤ ρ < 1 and L is slowly varying at ∞.

(The converse (2) =⇒ (1) is also true, with F∗ depending on ρ, and λ
depending on ρ and L.)
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Proof. 1. Assume (1). Then

∫

∞

0
e−qxFt(λ(t)dx) = LFt(q/λ) = ∂qϕ(t, q/λ) → LF∗(q) ∀q > 0.

The limit is decreasing in q and lies in (0, 1), and we infer

λϕ
(

t,
q

λ

)

=

∫ q

0
∂qϕ

(

t,
q̂

λ

)

dq̂ → ϕ∗(q) :=

∫ q

0
LF∗(q̂)dq̂.

2. Recall

q

λ
− ϕ

(

t,
q

λ

)

= ψ0(α), α = α(t, q/λ) =
q

λ
+ (et − 1)ϕ

(

t,
a

λ

)

As t→ ∞,

q − λϕ
(

t,
q

λ

)

= λψ0(α) → q − ϕ∗(q).

Hence α→ 0 and hence et ≪ λ (since etϕ(t, q/λ) = (et/λ)(ϕ∗(q)+o(1)) → 0.
It follows

α ∼ β(t)ϕ∗(q) where β(t) = et/λ→ 0.

3. Recall

∂ϕ

∂q
=

1 − ψ′

0(α)

1 + (et − 1)ψ′

0(α)
→ 1

1 + ϕ∗(q)
→ LF∗(q) ∀q > 0.

With a little work (using comparisons α−ε < β(t)ϕ∗(q) < α+ε, not shown)
we can infer that there is a limit g(q) depending on q such that

etψ′

0(β(t)ϕ∗(q)) ∼ etψ′

0(α) → g(q) = ĝ(ϕ∗) (0 < ϕ∗ <∞).

4. By the scaling rigidiy argument (inverted) we have that necessarily

ψ′

0(α) = αpL(1/α) as α→ 0,

where L is slowly varying at ∞. Since

ψ′

0(α) =

∫

∞

0
(1 − e−αx)x ν0(dx),

one can show (it’s not trivial but not hard) that

ψ′′

0 (α) =

∫

∞

0
e−αxx2 ν0(dx) ∼ pαp−1L(1/α) as α→ 0.
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By the Tauberian theorem it follows

∫

[0,x]
y2 ν0(dy) ∼ px1−p L(x)

Γ(2 − p)
as x→ ∞.

This finishes the proof of the Theorem.

Self-similar profiles. Let us go a little further to describe the limit F ∗.
By the scaling rigidity argument, we also infer

ĝ(ψ∗) = cψp
∗

for some c > 0, p ∈ R.

Then

LF∗(q) = ∂qϕ∗(q) =
1

1 + cϕp
.

This is decreasing in p so p > 0, and we can scale so that c = p+ 1, whence
we find

q = ϕ∗ + ϕp+1
∗

.

Also p ≤ 1 follows by computing −(LF∗)
′(q) and observing that this must

be positive and decreasing in q, so ϕp−1
∗ can’t vanish at q = 0.

By use of the Lagrange inversion formula, one can derive an explicit
series representation for F∗(x), and it turns out quite remarkably that

F∗(dx) = xν∗(dx) = n(xβ)xβ−1 dx

where n(x) is the density of one of the Lévy stable laws of probability theory!
See [MP1] for details.
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3 Lecture 3

In this lecture our aim is to describe the scaling attractor, its measure
representation (based on a result of Bertoin 2002) analogous to the Lévy-
Khintchine formula for infinitely divisible laws, and how the dynamics on
the attractor is made purely dilational in terms of this representation. Al-
though the proofs available now certainly rely on the Laplace transform, it
seems plausible that only the scaling properties of Smoluchowski’s equation
should be important. Exactly how this should work for a general class of
kernels is a mystery at present.

Scaling symmetries. Let νt be a measure solution of Smoluchowski’s
equation with K = x+ y (for t ≥ 0, m1 = 1). Then for all T ∈ R and λ > 0
the quantity

ν̃t(dx) = λνt+T (λdx)

is a measure solution also (for t ≥ −T , m̃1 = 1). Correspondingly,

ϕ̃(t, q) =

∫

∞

0
(1 − e−qx)ν̃t(dx) = λϕ(t+ T, q/λ), F̃t(dx) = Ft+T (λdx).

3.1 The scaling attractor, and eternal solutions

Consider any sequence of solutions ν
(n)
t (dx) (defined for t ≥ 0, with m1 = 1)

and suppose sequences Tn, λn → ∞ such that

F
(n)
Tn

(λndx) −→
n→∞

F̂0(dx) (3.1)

where F̂0(dx) is a probability distribution on [0,∞]. Note that one can
always pass to a subsequence to ensure that such a F̂0 exists—with the usual
weak topology, the space of probability distributions on [0,∞] is compact.
Of course, defective limits in (0,∞) are possible; probability can concentrate
at 0 or leak off to ∞.

The set of F̂0 that arise in this way comprise all the cluster points of the
set of solutions up to an arbitrary rescaling of cluster size.

Definition 3.1. The set of probability measures F̂0 on [0,∞] such that
sequences exist yielding (3.1) is the scaling attractor A.
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We aim to characterize elements of this scaling attractor and their dy-
namics. In terms of corresponding ‘Laplace exponents,’

ϕ̃(n)(0, q) = λnϕ
(n)

(

Tn,
q

λn

)

=

∫

∞

0

1 − e−qx

x
F

(n)
Tn

(λndx)

−→
n→∞

∫

∞

0

1 − e−qx

x
F̂0(dx) =: ϕ̂0(q).

Since ϕ̃(n)(t, q) is defined for t > −Tn, one can show without much
difficultly that if we allow a finite advance or delay in time, convergence still
holds. This means that for each fixed t ∈ (−∞,∞) and all q > 0,

ϕ̃(n)(t, q) −→
n→∞

ϕ̂(t, q),

and then one can deduce (details omitted) that the corresponding probabil-
ity measures converge weakly:

F
(n)
t+Tn

(λndx) −→
n→∞

F̂t(dx), −∞ < t <∞ (3.2)

where F̂t is a probability measure on [0,∞], with

ϕ̂(t, q) =

∫

[0,∞]

1 − e−qx

x
F̂t(dx), q > 0.

(This has to be interpreted properly to account for possible atoms at 0 and
∞.)

Naturally, by forward-backward continuity of the solution along charac-
teristics for the PDE, the limit ϕ̂(t, q) satisfies the same PDE:

∂tϕ̂− ϕ∂qϕ = −ϕ̂, ϕ(0, q) = ϕ̂0(q), q > 0. (3.3)

It is striking that rescaled limits of solutions that concentrate probability
at 0 or ∞ have Laplace exponents ϕ̂ that solve the same damped Burgers
equation. We take this to mean that Ft corresponds to a solution of Smolu-
chowski’s equation in an extended sense that allows for the presence of ‘dust’
and ‘gel’ — here, a positive probability that mass distribution includes clus-
ters of size 0 or ∞. (Practically, this means sizes that are either negligible
or too huge to account for precisely.)
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It turns out that ‘dust’ and ‘gel’ cannot appear or disappear in finite
time: For all t,

• F̂0(0) > 0 ⇔ LFt(0) = ∂qϕ̂(t,∞) > 0 (dust)

• F̂0(∞−) < 1 ⇔ F̂t(∞−) < 1 ⇔ ∂qϕ(t, 0+) < 1 (gel)

Definition 3.2. The proper scaling attractor

Ap := {F̂0 ∈ A : F̂0 is a proper probability distribution on (0,∞)}.

Theorem 3.1. F̂0 ∈ Ap ⇔ F̂0 = F̂t|t=0, where F̂t is a (proper) eternal
solution, defined for −∞ < t <∞.

We remark that the (proper) scaling attractor is invariant: F̂0 ∈ Ap if
and only if F̂t ∈ Ap for all t.

3.2 Characterizing eternal solutions via t → −∞
The key result here is due to Bertoin (2002). My main aim here is to give
some idea how one might discover such a thing, and hint at the consequences
for dynamics that were described in [MP2]. We first scale to simplify the
dynamics of the damped inviscid Burgers equation:

1. Let νt(dx) be a (proper) eternal solution (for K = x + y as usual)
with

∫

∞

0 x νt(dx) ≡ 1. Recall

ϕ(t, q) =

∫

∞

0
(1−e−qx)νt(dx), ∂tϕ−ϕ∂qϕ = −ϕ (q > 0, −∞ < t <∞).

Along characteristics ϕ(t, q(α, t)) = e−tϕ(α),

q − ϕ(t, q) = α− ϕ0(α) = ψ0(α),

α = q + (et − 1)ϕ = etq − (et − 1)(q − ϕ).

2. We rescale via x = s(t)x̂ with s(t) = et. (An important point is that it
is not well-understood why this choice of rescaling works!) Then

∫

∞

0
(1 − e−qx̂)νt(s dx̂) = ϕ

(

t,
q

s

)

,

and replacing q by q/s yields

ψ(s, q) :=
q

s
− ϕ

(

t,
q

s

)

= ψ0(α)
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with
α = et

q

s
− (et − 1)

(q

s
− ϕ

)

= q − (s − 1)ψ.

Thus
ψ(s, q) = ψ0(q − (s− 1)ψ), ∀s = et > 0, q > 0. (3.4)

This is just the implicit formula for the usual inviscid Burgers equation:

∂sψ + ψ∂qψ = 0, ψ(1, q) = ψ0(q). (3.5)

*
 q

s

1
q

q0

1

Figure 3.1: Geometry of characteristics

3. As usual, ψ is constant along straight-line characteristics, whose speed
increases with increasing q:

dq

ds
= ψ = ψ0(α), q(1, α) = α, q = α+ (s− 1)ψ.

At this point it seems natural to wonder what happens as s ↓ 0. It is not
hard to see there is a limit:

Proposition 3.2. For each q > 0, Ψ(q) := lims→0+ ψ(s, q) exists and
determines ψ(s, q) via ψ = Ψ(q − sψ) for all s, q > 0.

Proof. For all s, q > 0 we have ψ > 0, ∂qψ > 0 hence ∂sψ = −ψ∂qψ < 0.
Thus we only need to prove the bound

Ψ(q) = sup
s>0

ψ(s, q) <∞ ∀q > 0. (3.6)

Along characteristics: q = q̂(s, α) = α+ (s− 1)ψ0(α), so

q̂(0+, α) = α− ψ0(α) = ϕ0(α) =

∫

∞

0
(1 − e−αx)ν0(dx) > 0 (α > 0).
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1. For s > 0, 0 < q < q∗ := ϕ0(1), say, by monotonicity in q we have the
bound

ψ(s, q) ≤ ψ(s, ϕ0(1) + sψ0(1)) = ψ0(1).

2. The map q 7→ ψ(s, q)/q2 is decreasing, since

ψ(s, q)

q2
=

∫

∞

0

(

e−qx − 1 + qx

q2x2

)

x2νt(s dx) (3.7)

=

∫

∞

0

(
∫ 1

0
(1 − y)e−qxydy

)

x2νt(s dx)

and the inner integral is decreasing in q. Hence ∀s > 0 and ∀q ≥ q∗, by
monotonicity again,

ψ(s, q) ≤ q2
ψ(s, q∗)

q2
∗

≤ Cq2.

This proves the Proposition.

Once one sees this, there arises the question:

What does this proposition mean in terms of the measure solution νt(dx)?

An answer is suggested by the formula in (3.7). Define the measure

Gt(dx) = x2νt(e
t dx). (3.8)

Then the convergence ψ(s, q) → Ψ(q) suggests (and it is true) that

Gt(dx) → H(dx) weakly as t→ −∞,

where H is some measure. (One should note
∫

∞

0 x−1Gt(dx) = 1/s = e−t →
∞, and possibly

∫

∞

0 Gt(dx) = ∞.)

Now one can ask:

What measures H are possible limits?

The answer formulated in [MP2] goes as follows. We write a∧ b = min(a, b).

Definition 3.3. A measure G on [0,∞) is a g-measure if

∫

[0,∞)
(1 ∧ y−1)G(dy) <∞.
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We say a sequence G(n) g−→ G as n → ∞ if x(G(n)) → x(G) for a.e. x > 0,
where

x(G) :=

∫

[0,∞)
(x−1 ∧ y−1)G(dy) =

1

x
G(x) +

∫

∞

x
y−1G(dy).

We say G is a divergent g-measure if x(G) → ∞ as x→ 0+.

Theorem 3.3. (Bertoin 2002, [MP2]) 1. If t 7→ νt is a (proper) eternal

solution for K = x + y, then as t → −∞ we have Gt
g−→ H for some

divergent g-measure H.
2. For each divergent g-measure H, there is a unique proper eternal

solution νt such that Gt
g−→ H as t → −∞. The solution νt is determined

from

Ψ(q) :=

∫

[0,∞)

e−qx − 1 + qx

x2
H(dx)

through the implicit relation ψ(s, q) = Ψ(q − sψ) and (3.7).
3. The correspondence

F̂0(dx) ↔ H(dx),

from probability measures on (0,∞) to divergent g-measures, is a bicontin-
uous bijection.

This result is the analog of the Lévy-Khintchine representation formula
for infinitely divisible laws in probability theory. The proof in [MP2] re-
lies on a (rather easy) extended continuity theorem for ‘2nd order Laplace

exponents’ of g-measures. Roughly, a sequence G(n) g−→ G if and only if
ψ(n)(q) → ψ(q) for all q > 0, where

ψ(n)(q) =

∫

[0,∞)

e−qx − 1 + qx

x2
G(n)(dx).

See [MP2] for details.

3.3 Scaling dynamics on the scaling attractor

The limit theorem above gives a remarkable simple representation of non-
linear clustering dynamics on the scaling attractor, as follows.

Let T ∈ R, λ > 0. Then we map eternal solutions to eternal solutions
by the scaling

νt(dx) → ν̃t(dx) = λνt+T (λdx).
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This is the time-T map, scaling size by λ. Correspondingly,

F0(dx) = x ν0(dx) → FT (λdx),

Gt(dx) = x2νt(e
tdx) → G̃t(dx) =

e2T

λ
Gt+T (λe−T dx) (3.9)

because

x2ν̃t(e
tdx) = x2λνt+T (etλdx) = νt+T (et+Tλe−T dx)(λe−Tx)2

e2T

λ
.

Now, just using the previous theorem to take the limit t → −∞ in the
scaling relation (3.9) yields the following result!!

Theorem 3.4. To the map νt 7→ ν̃t on the scaling attractor Ap corresponds
the map H 7→ H̃ = HT,λ of divergent g-measures given by

HT,λ(dx) =
e2T

λ
H(λe−T dx).

To summarize: In the Lévy-Khintchine representation of an eternal solu-
tion νt by divergent g-measure H, the time-T map corresponding to nonlin-
ear coagulation dynamics is represented by a pure dilational scaling as in the
theorem. This is analogous to Bernoulli shift dynamics on sequences (after
a log change of variables), and suggests a form of sensitive dependence on
initial conditions, the shape of the tail in the distribution of large clusters
in particular. For further developments of this idea see [MP2].

So, we have seen on the one hand an analog of the central limit theorem,
for well-localized initial data, and on the other hand, how for heavy-tailed
data one can classify domains of attraction and cluster points mod scaling
on the other hand. These results are strongly analogous to the treatment
of the stable laws and infinite divisibility in probability, as in Feller’s book
for example. A few results, such as asymptotic shadowing of solutions with
initially similar tails, for example, go a little farther, however.


