Homework Assignment 1

Assigned Wed 1/22. Due Fri1/31.

21-640 Spring 2020 (R. Pego)

- 1. Let ℓ^2 denote the vector space of complex sequences $\boldsymbol{x} = \{x_k\}_{k=1}^{\infty}$ such that $\|\boldsymbol{x}\| < \infty$, where $\|\boldsymbol{x}\|^2 = \sum_{k=1}^{\infty} |x_k|^2$. Prove that ℓ^2 is complete. (Hence it is a Hilbert space.)
- 2. Any compact set S in a metric space must be closed and bounded. Moreover, for any $\boldsymbol{x} = \{x_k\}_{k=1}^{\infty} \in \ell^2$ we have

$$\sum_{k=N}^{\infty} |x_k|^2 \to 0 \quad \text{as } N \to \infty.$$
⁽¹⁾

Suppose S is a closed and bounded subset of ℓ^2 . Prove: S is compact if and only if (1) holds *uniformly* for all $x \in S$.

- 3. (Reed-Simon p34 #27) Use an $\varepsilon/3$ argument to prove the following: Let X be a complete normed linear space. Suppose that for each $n \in \mathbb{N}$, $T_n : X \to X$ is linear, and these maps are uniformly bounded, i.e., $M := \sup_n ||T_n|| < \infty$. Suppose further that the sequence $(T_n x)$ converges for each x in a set D that is *dense* in X. Then the maps T_n have a pointwise limit T for every $x \in X$. (It was shown in class that such a limit determines a bounded linear map.)
- 4. (20 points) Let a > 0 and let E be the Banach space C[0, a] of continuous functions $u : [0, a] \to \mathbb{C}$, with norm $||u||_{\infty} = \sup_{x \in [0, a]} |u(x)|$. Define $T : E \to E$ by

$$(Tu)(x) = \int_0^x u(s) \, ds.$$

- (a) Find ||T||.
- (b) Show that T is injective. Also show T is not surjective, and that T^{-1} is not bounded from the image range $(T) \to E$. (Remark: If $E = \mathbb{C}^N$, any injective linear $T : E \to E$ is automatically bounded and surjective with bounded inverse.)
- (c) Find $||T^n||$ for n = 2, 3, ..., and show that T is quasinilpotent, meaning

$$||T^n||^{1/n} \to 0 \quad \text{as } n \to \infty.$$

(d) Show that T has no eigenvalues. I.e., show that for any $\lambda \in \mathbb{C}$ and $u \in E$, if $Tu = \lambda u$ then u = 0.