
Combinatorial Optimization
Final examination: solutions

1. In the simplex tableau below, several variables are candidates to become basic in the next
basic feasible solution.

x1 x2 x3 s1 s2 s3 s4 z RHS

−5 0 0 −2 0 0 −6 1 245

5 1 0 1 0 0 −3 0 40
2 0 0 1/2 1 0 2 0 18

1/2 0 0 −4/3 0 1 3 0 12
1 0 1 2/3 0 0 1/2 0 24

Which variable should be made basic in the next basic feasible solution if the goal is

(a) for the new objective value to be 285? Why?

(b) for the next basic feasible solution to be degenerate? Why?

(c) to have s3 = 0 in the next basic feasible solution? Why?

(d) to achieve the greatest increase in the objective value? Why?

. Solution. First we observe that the three variables that are candidates to become basic in
the next basic feasible solution are x1, s1, and s4, because these are the columns that have
negative entries in the objective row. In the x1 column, the minimum test ratio is 40/5 = 8,
which occurs in the first row of the body of the tableau, In the s1 column, there is a tie
for the minimum test ratio: 18/(1/2) = 36 in the second row of the body of the tableau,
and 24/(2/3) = 36 in the fourth row. In the s4 column, the minimum test ratio is 12/3 = 4
in the third row. For convenience, these possible pivot locations are marked in the tableau
below.

x1 x2 x3 s1 s2 s3 s4 z RHS

−5 0 0 −2 0 0 −6 1 245

5 1 0 1 0 0 −3 0 40
2 0 0 1/2 1 0 2 0 18

1/2 0 0 −4/3 0 1 3 0 12
1 0 1 2/3 0 0 1/2 0 24

(a) If x1 is chosen as the pivot column, then to make the entry in the objective row zero,
we must add the first row of the body of the (given) tableau to the objective row. This
will cause the objective value to increase by 40 to 285, as desired. So x1 should be
made basic.

(b) There is a tie for the minimum test ratio in the s1 column, so pivoting in this column
will result in a zero in the RHS column (below the objective value), which means the
corresponding basic feasible solution is degenerate. So s1 should be made basic.

(c) We can make s3 = 0 by kicking it out of the basis. To do so, we will need to pivot
in the third row of the body of the tableau. This is possible only if we pivot in the
s4 column, so s4 should be made basic.

(d) Pivoting in the x1 column will increase the objective value by 40, as we saw in part (a).
Pivoting in the s1 column will increase the objective value by 72. Pivoting in the
s4 column will increase the objective value by 24. Therefore s1 should be made basic.

1

2. Consider the following linear program.

minimize 5y1 + 3y2 + 6y3

subject to y1 + y3 ≥ 60

y1 + 2y2 + y3 ≥ 72

2y1 + y2 + 2y3 ≥ 84

y2 − y3 ≥ 24

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0.

The optimal feasible solution to this linear program is y1 = 60, y2 = 24, and y3 = 0.
Determine the dual linear program and its optimal solution. Use the optimal dual solution
to demonstrate that the claimed optimal solution to the primal is indeed optimal.

. Solution. The dual of the given linear program is

maximize 60x1 + 72x2 + 84x3 + 24x4

subject to x1 + x2 + 2x3 ≤ 5

2x2 + x3 + x4 ≤ 3

x1 + x2 + 2x3 − x4 ≤ 6

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

By complementary slackness applied to the primal variables and the dual constraints:

1. Either y1 = 0 (which is false) or x1 + x2 + 2x3 = 5.

2. Either y2 = 0 (which is false) or 2x2 + x3 + x4 = 3.

3. Either y3 = 0 (which is true) or x1 + x2 + 2x3 − x4 = 6.

Therefore we can deduce that the optimal dual solution must satisfy the following system
of equations. {

x1 + x2 + 2x3 = 5

2x2 + x3 + x4 = 3.
(?)

By complementary slackness applied to the dual variables and the primal constraints:

1. Either x1 = 0 or y1 + y3 = 60 (which is true).

2. Either x2 = 0 or y1 + 2y2 + y3 = 72 (which is false).

3. Either x3 = 0 or 2y1 + y2 + 2y3 = 84 (which is false).

4. Either x4 = 0 or y2 − y3 = 24 (which is true).

So we know that x2 = 0 and x3 = 0. Hence the system (?) from above becomes x1 = 5,
x4 = 3, so the optimal dual solution is

x1 = 5, x2 = 0, x3 = 0, x4 = 3.

To demonstrate that the claimed optimal primal solution is indeed optimal, we use the
optimal dual solution as multipliers for the constraints in the primal:

5 (y1 + y3 ≥ 60)

0 (y1 + 2y2 + y3 ≥ 72)

0 (2y1 + y2 + 2y3 ≥ 84)

+ 3 (y2 − y3 ≥ 24)

5y1 + 3y2 + 2y3 ≥ 372.

Because y1, y2, and y3 are all nonnegative, we have

5y1 + 3y2 + 6y3 ≥ 5y1 + 3y2 + 2y3 ≥ 372,

so any feasible solution to the primal must have objective value at least 372. It is easy to
check that the given primal solution is feasible, and it has objective value 5(60) + 3(24) +
6(0) = 372, so it is optimal.

2

3. Formulate a linear or integer program to answer the following question.

A company manufactures three product lines. Each production run of line i involves
a fixed cost Fi and a per-unit cost pi, so that the cost of xi units of line i is Fi+pixi.
These costs, together with the per-unit revenue, are given in the table below.

Product Fixed Per-unit Per-unit
line cost cost revenue

1 $1500 $45 $240
2 900 38 190
3 1000 40 210

There are two key production processes, A and B. The time requirements for each
product line on each process, and the hours available, are given in the table below.

Product line Hours
Process 1 2 3 available

A 0.25 0.20 0.30 300
B 0.40 0.50 0.20 400

The company will upgrade exactly one of the two processes. The upgrade to
Process A will raise the number of effective hours by 20%; that to Process B will
raise the number of effective hours by 10%.

Which process should the company upgrade, and how much of each product
line should be manufactured in order to maximize the difference between revenue
and cost?

. Solution. For i ∈ {1, 2, 3}, let xi ≥ 0 denote the number of units of product line i to
produce, and let bi ∈ {0, 1} denote whether to pay the fixed cost for line i. Let a ∈ {0, 1}
denote whether to upgrade Process A. (If a = 0, then Process B will be upgraded instead.)
The objective is to maximize the difference between revenue and cost:

maximize 240x1 + 190x2 + 210x3 [revenue]

− 1500b1 − 900b2 − 1000b3 [fixed cost]

− 45x1 − 38x2 − 40x3. [per-unit cost]

Equivalently,

maximize 195x1 + 152x2 + 170x3 − 1500b1 − 900b2 − 1000b3.

We have resource constraints for the available time on Processes A and B. The number of
available hours on Process A is 300+30a, because upgrading Process A gives us 30 additional
hours, and the number of available hours on Process B is 400+40(1−a), because upgrading
Process B (indicated by a = 0) gives us 40 additional hours. So the resource constraints for
the two processes are

0.25x1 + 0.20x2 + 0.30x3 ≤ 300 + 60a,

0.40x1 + 0.50x2 + 0.20x3 ≤ 400 + 40(1− a).

Furthermore, we cannot produce any units of a product line unless we pay the corresponding
fixed cost, so we have

x1 ≤ 1,000,000 b1,

x2 ≤ 1,000,000 b2,

x3 ≤ 1,000,000 b3.

These constraints force xi = 0 when bi = 0. The coefficient 1,000,000 here just needs to be
large enough so that xi is not practically constrained when bi = 1.

3

So the complete IP formulation is

maximize 195x1 + 152x2 + 170x3 − 1500b1 − 900b2 − 1000b3

subject to 0.25x1 + 0.20x2 + 0.30x3 ≤ 300 + 60a

0.40x1 + 0.50x2 + 0.20x3 ≤ 400 + 40(1− a)

x1 ≤ 1,000,000 b1

x2 ≤ 1,000,000 b2

x3 ≤ 1,000,000 b3

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, b1 ∈ {0, 1}, b2 ∈ {0, 1}, b3 ∈ {0, 1}, a ∈ {0, 1}.

4. In the following network, capacities of arcs are shown as circled numbers, and flows along
arcs are shown in blue. Is the given s–t flow optimal? If so, prove that it is optimal. If not,
find (methodically) a better flow.

s

a

b

c

d

e

f

g

h

t

10

7

8

8

5

5

3

3

8

4

15

9

2

1
7

4

15

12

5

1

6 0

3

0

2

0
4

4

5

0

12

12

8

4

. Solution. The value of the given s–t flow is 20. The result of one iteration of the Ford–
Fulkerson algorithm is shown in the figure at the top of the next page. In this figure, the
capacities of the arcs are shown circled in gray, the node labels are in green, and nonzero flows
along arcs are in light blue. The node labels are given in the form (from[i], how-much[i]).
Arcs with zero flow are drawn as straight black arrows, saturated arcs are drawn as double
red arrows, and unsaturated arcs with nonzero flow are drawn as wavy light blue arrows.
Below the figure is the LIST of vertices built up as the Ford–Fulkerson algorithm progresses
through the network. We treat the LIST as a queue here: nodes are added to the right-
hand side when they are labeled, and they are removed from the left-hand side (indicated
by crossing them out) when they are scanned.

4

s

a

b

c

d

e

f

g

h

t

10

7

8

8

5

5

3

3

8

4

15

9

2

1
7

4

15

12

5

1

6 0

3

0

2

0
4

4

5

0

12

12

8

4

(—,∞)

(s, 3)

(−d, 2)

(−e, 1)

(f, 2)

(−b, 1)

(a, 3)

(d, 2)

(e, 1)

(h, 1)

LIST : \s; \a; \f ; \d; \b, \g; \e; \c, \h; t.

The node t received a label, which means that the current flow is not optimal. By following
the labels backward from t, we discover the augmenting path s–a–f–d–b–e–h–t. We augment
the flow along this path by 1, bearing in mind that the path traverses the arcs (b, d) and
(e, b) in the backward direction, so augmenting the flow along the path involves decreasing
the flow on these arcs. This results in the following flow.

s

a

b

c

d

e

f

g

h

t

10

8

8

8

5

5

3

3

8

5

15

8

2

1
7

4

15

12

5

0

6 0

3

1

2

1
4

4

5

0

12

12

8

5

This new s–t flow has value 21, which is better than the flow given in the problem.

5

5. Constraint programming is an important area of combinatorial optimization that we did
not discuss in this course. An instance of a constraint programming problem (in particular,
a constraint satisfaction problem) consists of a finite set X of variables; a finite set dom(x)
for each variable x ∈ X, called the domain of x; and a set of constraints, each of which
specifies, directly or indirectly, a set of allowable combinations of values for a subset of the
variables. The objective is to find an assignment of values to all of the variables such that
for every variable x ∈ X the value assigned to x is an element of dom(x) and such that all
constraints are satisfied, or to determine that no such satisfying assignment exists.

One type of constraint is the alldiff constraint, which specifies that the values of a subset
of the variables must all be different. For example, the constraint alldiff (x1, x3, x4, x8) means
that the values assigned to the variables x1, x3, x4, and x8 must all be different; no two of
those variables may be assigned the same value.

Suppose you are given an alldiff constraint and the domains of the variables in the
constraint. Carefully describe an efficient algorithm to determine whether the alldiff con-
straint is satisfiable (alone, independently of any other constraints that happen to be in the
constraint satisfaction problem). Justify that your algorithm is correct. You may use any
of the algorithms we discussed in the course as subroutines in your algorithm.

. Solution. Construct a bipartite graph G = (U ∪ V,E) where U is the set of variables in
the given alldiff constraint and V is the union of the domains of these variables. Put an
edge between a vertex x ∈ U (i.e., a variable x) and a vertex v ∈ V (i.e., a value) if and
only if v ∈ dom(x). Now find a maximum matching M in the bipartite graph G, using (for
example) the augmenting-path algorithm or the network flow formulation we discussed in
class. If |M | = |U |, then return “yes”; otherwise, return “no.”

Why is this algorithm correct? If |M | = |U |, then every variable x ∈ U is matched
by M to a value vx ∈ V . By the construction of G, we must have vx ∈ dom(x) for all x ∈ U .
And because M is a matching, no two variables are matched to the same value. So the
alldiff constraint can be satisfied (in fact, M gives a satisfying assignment of values to the
variables). On the other hand, if |M | < |U |, then, because M is a maximum matching in G,
it is impossible to match each variable x ∈ U with a value vx ∈ V such that vx ∈ dom(x)
for all x and the values vx are all different, so the alldiff constraint cannot be satisfied.

6. In the SET PACKING problem, an instance is a collection C of finite sets and a positive
integer k, and the question is whether C contains k disjoint sets. Prove that SET PACKING

is NP-hard.

. Solution. To show that SET PACKING is NP-hard, it suffices to give a polynomial-time
transformation from a known NP-complete problem to SET PACKING.

Here is a polynomial-time transformation from INDEPENDENT SET to SET PACKING.
Let (G, k) be an instance of INDEPENDENT SET, where G = (V,E) is a graph and k is a
positive integer. (The question in this instance is whether G contains an independent set of
size k.) For v ∈ V , let Ev = { e ∈ E : v ∈ e } be the set of edges incident upon v. Construct
the instance (C , k) of SET PACKING, where C =

{
{v} ∪ Ev : v ∈ V

}
and k is the same as

in the instance of INDEPENDENT SET.
For any v ∈ V , the set Ev can be determined in O(|E|) time, so C can be constructed

in O(|V | · |E|) time, which is polynomial in the size of the instance (G, k).
Now we show that (C , k) is a “yes” instance of SET PACKING if and only if (G, k) is a

“yes” instance of INDEPENDENT SET.
Suppose (C , k) is a “yes” instance of SET PACKING. Then C contains k disjoint sets of

the form {v1}∪Ev1 , {v2}∪Ev2 , . . . , {vk}∪Evk . Because these sets are disjoint, for i 6= j no
edge is in both Evi and Evj , which is to say that no edge is incident upon both vi and vj , so
vi and vj are not adjacent. Therefore {v1, v2, . . . , vk} is an independent set of size k in G,
so (G, k) is a “yes” instance of INDEPENDENT SET.

Conversely, suppose (G, k) is a “yes” instance of INDEPENDENT SET. Then G contains
an independent set {v1, v2, . . . , vk} of size k. The corresponding sets {v1}∪Ev1 , {v2}∪Ev2 ,
. . . , {vk}∪Evk in C must be disjoint, because for i 6= j plainly vi 6= vj and also Evi∩Evj = ∅

6

because no edge is incident upon both vi and vj . Moreover {vi} ∪ Evi and {vj} ∪ Evj are
distinct, because the first set contains vi but the second does not. So these are k disjoint
sets in C , which means (C , k) is a “yes” instance of SET PACKING.

We showed in class that INDEPENDENT SET is NP-complete, so this polynomial-time
transformation from INDEPENDENT SET to SET PACKING establishes that SET PACKING is
NP-hard.

7

