

Introduction

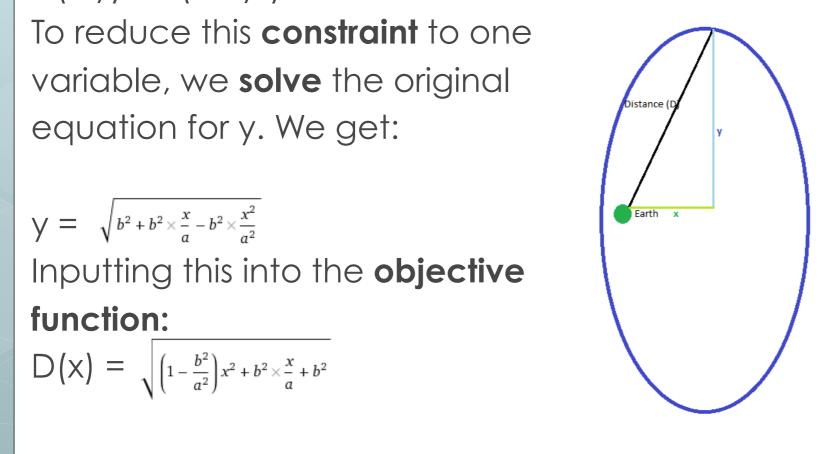
The elliptical trajectory of a **satellite** is modelled by the equation:

 $\frac{x^2}{a^2} - \frac{x}{a} + \frac{y^2}{b^2} = 1$

where x and y represent the x-position and y-position of the satellite relative to the Earth respectively. a and b are constants related to the lengths of the major and minor axes of the ellipse. Our aim is to figure out the **maximum** and **minimum distances** of the satellite from the Earth.

Objective Function

According to **Pythagoras' theorem** $D(x,y) = \sqrt{(x^2+y^2)}$, where D is distance.



Domain of Objective Function

The equation of the ellipse we have is:

 $\frac{x^2}{a^2} - \frac{x}{a} + \frac{y^2}{b^2} = 1$

The **standard form** for ellipses is:

 $5 \times 10^{10} 1 \times 10^{10}$

 $\frac{(x-h)^2}{x^2} + \frac{(y-k)^2}{x^2} = 1$ By completing the square in x and y, we get the standard form of the equation as: $\frac{\left(x-\frac{a}{2}\right)^2}{\left(\sqrt{5}\times\frac{a}{2}\right)^2} + \frac{y^2}{\left(\sqrt{5}\times\frac{b}{2}\right)^2} = 1$ So, the **domain** is [h-a, h+a] = $\left[\frac{a}{2} - \frac{\sqrt{5}a}{2}, \frac{a}{2} + \sqrt{5} \times \frac{a}{2}\right]$

Derivative of objective function

Using the chain rule, power rule and constant multiple rule, we get that:

$$\frac{dD}{dx} = D'(x) = \frac{2\left(1 - \frac{b^2}{a^2}\right)x + \frac{b^2}{a^2}}{2\sqrt{\left(1 - \frac{b^2}{a^2}\right)x^2 + b^2 \times \frac{x}{a^2} + b^2}}$$

To find critical numbers, we will set the derivative equal to 0 and solve, and also find values of x for which the derivative does not exist.

Critical Numbers The derivative is equal to 0 D'(x) = 0, so the numerator = 0 Solving for x, we get x = $\frac{b^2}{b^2 - a^2}$

The derivative is not defined

D'(x) is undefined, so the denominator = 0 Simplifying that, we get

 $\left(1 - \frac{b^2}{a^2}\right)x^2 + b^2 \times \frac{x}{a^2} + b^2 = 0$ Which is basically saying D(x) = 0 which is impossible because then the satellite would crash into Earth. $\frac{b^2}{b^2 - a^2}$ So the only critical number is x =

Finding the max and min

The original problem states $a = 7.5 \times 10^{10}$, $b = 2.5 \times 10^{10}$ So, we evaluate D(x) at the following points:

Point	Approximate Value of x	Approximate value of D(x)
Lower Endpoint	-4.6353 x 10 ¹⁰	4.6353 x 10 ¹⁰
Upper Endpoint	12.1353 x 10 ¹⁰	12.1353 x 10 ¹⁰
$\frac{b^2}{b^2 - a^2}$	1.0989 x 10 ¹⁰	2.654 x 10 ¹¹

So, the minimum value of the function is 4.6353×10^{10} and the maximum value of the function is 2.654×10^{11} .

Answer to the question

Using the process of **differentiation** and **finding critical** values, we were able to locate the maximum and **minimum** values of the distance function.

Our final answer is:

In terms of a and b, the minimum occurs at $\frac{a}{2} - \frac{\sqrt{5}a}{2}$ and the maximum occurs at $\frac{b^2}{b^2 - a^2}$ The **maximum** distance from the Earth is **2.654x10¹¹** m The **minimum** distance from the Earth is **4.6353x10¹⁰** m This process is an example of the uses of differential calculus in real life applications