
Another interpretation of duality

(Based on an example in Chapter 5 of Linear Programming: Foundations and Extensions, third
edition, by Robert J. Vanderbei.)

Consider the following maximization problem:

maximize 8x1 + 5x2 + 6x3

subject to x1 + x2 + x3 ≤ 8 (1 )

4x1 + 2x2 − x3 ≤ 7 (2 )

x1, x2, x3 ≥ 0.

Let z∗ denote the optimal value of the objective function in this maximization problem. We would
like to determine upper and lower bounds for z∗.

Finding lower bounds is easy: every feasible solution demonstrates a lower bound for z∗. For
example, the feasible solution x1 = 1, x2 = 2, x3 = 3 yields an objective value of 8(1)+5(2)+6(3) =
36, so we know that z∗ ≥ 36. If we choose a different feasible solution, we can get another lower
bound for z∗. For instance, the feasible solution x1 = 0, x2 = 5, x3 = 3 yields an objective value of
8(0) + 5(5) + 6(3) = 43, so we can now conclude that z∗ ≥ 43.

However, finding lower bounds this way is like trying to solve the maximization problem by trial
and error. A better method is to use the simplex algorithm to solve the maximization problem. The
simplex algorithm produces the optimal solution x1 = 3, x2 = 0, x3 = 5, with an objective value of
8(3) + 5(0) + 6(5) = 54. This feasible solution demonstrates that z∗ ≥ 54.

In fact we know that the simplex algorithm produces optimal solutions, so we know that z∗

actually equals 54. But how could we prove this to someone who doesn’t know about the simplex
algorithm, who doesn’t believe that the simplex algorithm always produces the optimal solution, or
who doesn’t want to check all the work that was done in the simplex algorithm? For this we need
upper bounds for z∗.

Upper bounds for z∗ come from linear combinations of the constraints in the maximization
problem. For example, we can multiply constraint (1 ) by 8 and constraint (2 ) by 2 and add them
together to get the following inequality:

8( x1 + x2 + x3) ≤ 8(8)

+ 2( 4x1 + 2x2 − x3) ≤ 2(7)
16x1 + 12x2 + 6x3 ≤ 78.

Since all of the variables x1, x2, and x3 are nonnegative, and each of the coefficients in 16x1 +12x2 +
6x3 is at least as large as the corresponding coefficient in the objective function 8x1 + 5x2 + 6x3,
this demonstrates that z∗ ≤ 78:

z = 8x1 + 5x2 + 6x3 ≤ 16x1 + 12x2 + 6x3 ≤ 78.

The inequality 16x1 +12x2 +6x3 ≤ 78 is a direct consequence of the constraints of the maximization
problem, and we could show this inequality to a skeptic (by providing the multipliers 8 and 2) in
order to prove that the objective value can be no greater than 78.

But can we do better? We can find other linear combinations of the constraints by trying
other multipliers, and as long as the coefficients of the inequality we get are at least as large as the
corresponding coefficients in the objective function, we will get an upper bound for z∗. Finding upper
bounds this way, though, is again a trial-and-error process; we would like to be more methodical.

So let’s assign variable names to the multipliers we use. We’ll multiply constraint (1 ) by y1 and
multiply constraint (2 ) by y2 to get the following inequality:

y1( x1 + x2 + x3) ≤ y1(8)

+ y2( 4x1 + 2x2 − x3) ≤ y2(7)
(y1 + 4y2)x1 + (y1 + 2y2)x2 + (y1 − y2)x3 ≤ 8y1 + 7y2.



This will give us an upper bound for z∗ as long as the coefficients in this new inequality are at least
as large as the corresponding coefficients in the objective function; so we need

y1 + 4y2 ≥ 8,

y1 + 2y2 ≥ 5,

y1 − y2 ≥ 6.

We also need y1 ≥ 0, y2 ≥ 0 so that when we multiply the constraints by these values we don’t flip
the direction of the inequality.

If these conditions are satisfied, then we can conclude that

z∗ ≤ 8y1 + 7y2.

To make this upper bound as good as possible, we want to minimize the value of 8y1 + 7y2. This
gives us the following minimization problem:

minimize 8y1 + 7y2

subject to y1 + 4y2 ≥ 8

y1 + 2y2 ≥ 5

y1 − y2 ≥ 6

y1, y2 ≥ 0.

This minimization problem is the dual of the original maximization problem.
If we solve this minimization problem, we get the optimal solution y1 = 6.4, y2 = 0.4. Using

these multipliers for the constraints of the original maximization problem, we obtain the inequality

6.4( x1 + x2 + x3) ≤ 6.4(8)

+ 0.4( 4x1 + 2x2 − x3) ≤ 0.4(7)
8x1 + 7.2x2 + 6x3 ≤ 54.

This proves that the optimal value of the objective function of the maximization problem can be no
greater than 54, because

z = 8x1 + 5x2 + 6x3 ≤ 8x1 + 7.2x2 + 6x3 ≤ 54.

Together with the feasible solution x1 = 3, x2 = 0, x3 = 5 that actually gives us an objective value
of 54, this provides a proof that the optimal value of the original maximization problem is indeed 54.


