
21-110: Problem Solving in Recreational Mathematics
Homework assignment 6 solutions

Problem 1. Normal Pennsylvania license plates have three capital letters followed by four numerical
digits. Assuming there are no other restrictions, how many possible license plates can Pennsylvania
issue? Why?

Solution. Our task is to choose a valid sequence of letters and digits for a Pennsylvania license plate.
We can divide this task into seven steps: in the first three steps we choose a letter from A through Z
(in other words, we are choosing three letters, with replacement, and order is important), and in the
last four steps we choose a digit from 0 through 9 (we are choosing four digits, with replacement,
and order is important). There are 26 possible ways to perform each of the first three steps, and
there are 10 possible ways to perform each of the last four steps. Therefore, by the multiplication
principle, in all there are 26× 26× 26× 10× 10× 10× 10 = 175,760,000 ways to perform the task of
choosing a valid license plate. In other words, Pennsylvania can issue 175,760,000 license plates.

Problem 2. In the handout about finding a formula for a sequence of numbers from earlier in the
course, we made the conjecture that the number of diagonals of a regular n-gon is

n(n− 3)
2

.

Prove this conjecture.

Solution. Our task is to choose one of the diagonals of a regular n-gon. We can divide this task
into two steps, namely, choosing each of the two endpoints of the diagonal. We begin by choosing
one of the vertices of the n-gon to be the first endpoint of the diagonal; there are n ways to perform
this step. Next we choose another vertex of the n-gon to be the second endpoint. However, we may
not choose the vertex that has already been chosen, and we may not choose either of the vertices
immediately adjacent to it (because a side of the n-gon is not a diagonal). So there are n− 3 ways
to perform the second step. By the multiplication principle, there are n(n − 3) ways in which the
two steps may be performed together.

But we have counted every diagonal twice: if the endpoints of a diagonal are the vertices A
and B, then we counted the diagonal once when A was the “first” endpoint and B was the “second”
endpoint, and again when B was the “first” endpoint and A was the “second” endpoint. So we have
overcounted by a factor of 2. To correct for this overcounting, we must divide our total by 2. We
conclude that the number of diagonals of a regular n-gon is n(n− 3)/2.

Problem 3. (From The Colossal Book of Short Puzzles and Problems by Martin Gardner.) In this
country a date such as July 4, 1971, is often written 7/4/71, but in other countries the month is
given second and the same date is written 4/7/71. If you do not know which system is being used,
how many dates in a year are ambiguous in this two-slash notation?

Solution. There are two key observations to be made. The first is that a date can be ambiguous
only when the day is between 1 and 12, inclusive, since there only 12 months in a year. The second
observation is that dates such as 1/1/71, 2/2/71, 3/3/71, etc. are not ambiguous.

Our task is to choose an ambiguous date. We can divide this task into two steps: choosing a
month from 1 to 12, and choosing a day from 1 to 12. By the multiplication principle, there are
12× 12 = 144 ways in which this task can be performed. But we have included the 12 unambiguous
dates 1/1/71, 2/2/71, 3/3/71, . . . , 12/12/71, so from this total we must subtract 12. Therefore we
conclude that there are 132 ambiguous dates in a year.

Alternatively, we can observe that in each month there are 11 ambiguous days (each of the days
from 1 to 12 except the day having the same number as the month). Since there are 12 months in
a year, there are 12× 11 = 132 ambiguous dates in a year.
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Problem 4. An artist has painted n landscapes, all different. One of her paintings is unlike all the
others, because it shows an unusual white barn. The artist must select r of her landscapes to be
displayed in an exhibition. (Assume r ≤ n.)
(a) In how many ways can she choose r of her n landscapes to be exhibited?
(b) Suppose the artist decides that she likes the painting with the white barn and wants to include

it in the exhibition. In how many ways can she choose r of her n landscapes to be exhibited, if
one of the r landscapes must be the one with the white barn?

(c) Suppose, on the other hand, that the artist decides she does not like the painting with the white
barn and wants to keep it out of the exhibition. In how many ways can she choose r of her
n landscapes to be exhibited, if the one with the white barn must not be chosen?

(d) Use the ideas of the previous three parts to prove the general fact that(
n

r

)
=

(
n− 1
r − 1

)
+

(
n− 1

r

)
.

Solution.

(a) Since the artist is choosing r of her n landscapes without replacement, and the order in which
the landscapes are chosen is not important (the only thing that is important is which landscapes
are chosen), the number of choices is

(
n
r

)
.

(b) If the artist has made up her mind to include the painting with the white barn, then she has
already chosen one of the r landscapes. To complete her decision, she must choose r− 1 landscapes
out of the remaining n − 1. So the number of ways in which she can choose r of her n landscapes,
if one of the chosen landscapes is the one with the white barn, is

(
n−1
r−1

)
.

(c) If the artist has decided not to include the painting with the white barn, then she must choose
all r of the landscapes to be exhibited out of the n − 1 landscapes that do not include the white
barn. Therefore, the number of ways in which she can choose r of her n landscapes, if the one with
the white barn is not chosen, is

(
n−1

r

)
.

(d) Let’s count the number of ways the artist can choose r of her n landscapes—but let’s do it in
two different ways.

First, we count directly, as we did in part (a). We see that the number of possible choices for
the artist is

(
n
r

)
.

Second, we observe that any choice of r landscapes must either include the one with the white
barn, or exclude it. In part (b), we saw that the number of choices that include the landscape
with the white barn is

(
n−1
r−1

)
; in part (c), we saw that the number of choices that exclude this

landscape is
(
n−1

r

)
. Therefore, by the addition principle, the total number of choices for the artist

is
(
n−1
r−1

)
+

(
n−1

r

)
.

Since both of these expressions count the same thing, they must be equal. This proves that(
n

r

)
=

(
n− 1
r − 1

)
+

(
n− 1

r

)
.
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Problem 5. You find yourself at point A in a city with streets running north–south and east–west
that form a square grid (i.e., not Pittsburgh). You need to get to point B, which is five blocks east
and five blocks north of point A. (See the street map below.) In how many different ways can you
walk from point A to point B, if you always walk only north or east?

A

B

Solution. Any route from point A to point B must be exactly 10 blocks long (if we always walk only
north or east). Out of those 10 blocks, five blocks must be northward and five must be eastward.
Choosing which of the 10 blocks are to be northward completely and uniquely determines a route
from point A to point B. For example, if we decide that the first, second, fifth, eighth, and ninth
blocks should be northward, we have chosen the route “north–north–east–east–north–east–east–
north–north–east.”

Therefore, to choose a route from point A to point B, we simply choose which five of the
10 blocks of our journey are to be northward. So we are choosing 5 items out of 10, without
replacement (since we cannot choose one of the 10 blocks to be northward twice). Furthermore,
the order in which the 5 items are chosen is not important, because choosing the first block to be
northward before choosing the second block to be northward results in the same route as if we had
chosen the second block to be northward before choosing the first block to be northward—the only
thing that matters is which blocks we choose, not the order in which we choose them.

Hence there are
(
10
5

)
ways to choose a route from point A to point B. This number is(

10
5

)
=

10!
5!× 5!

= 252.

Problem 6. How many five-letter “words” formed from the letters A, B, C, and D (with repetition
allowed) contain exactly two A’s?

Solution. Our task is to form a sequence of five letters, chosen from A, B, C, and D, that contains
exactly two A’s. We can divide this task into four steps. In the first step, we decide which two of
the five positions should be filled with A’s. In the remaining three steps we fill each of the other
three positions (from left to right, say) with either B, C, or D.

There are
(
5
2

)
= 10 ways to perform the first step. Each of the other three steps can be performed

in three ways. So, by the multiplication principle, the number of ways in which the task can be
performed is 10× 3× 3× 3 = 270, which is to say that there are 270 such five-letter “words.”

Problem 7. How many integers from 1 to 10,000 are divisible by 3 or 7 (or both)?

Solution. Let A be the set of integers from 1 to 10,000 that are divisible by 3, and let B be the set
of integers from 1 to 10,000 that are divisible by 7. In symbols,

A =
{

x ∈ N
∣∣ x ≤ 10,000 and 3 | x

}
,

B =
{

x ∈ N
∣∣ x ≤ 10,000 and 7 | x

}
.

[Note that the second vertical bar in each line above is the symbol meaning “divides,” not the symbol
meaning “such that.”] Then the set of integers from 1 to 10,000 that are divisible by 3 or 7 or both
is A ∪B. So we aim to find |A ∪B|.

First we note that every third integer is divisible by 3. Since 10,000÷3 = 3,333.33 . . . , there are
3,333 integers from 1 to 10,000 that are divisible by 3; that is, |A| = 3,333. Similarly, every seventh
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integer is divisible by 7. Since 10,000 ÷ 7 = 1,428.57 . . . , there are 1,428 integers from 1 to 10,000
that are divisible by 7, which is to say |B| = 1,428.

Some integers are divisible by both 3 and 7; the set of such integers between 1 and 10,000 is A∩B.
An integer is divisible by both 3 and 7 precisely when it is divisible by 21 (because the least common
multiple of 3 and 7 is 21). Every 21st integer is divisible by 21. Since 10,000÷21 = 476.19 . . . , there
are 476 integers from 1 to 10,000 that are divisible by 21. Hence |A ∩B| = 476.

Now, by the principle of inclusion–exclusion, we have

|A ∪B| = |A|+ |B| − |A ∩B|
= 3,333 + 1,428− 476
= 4,285.

So there are 4,285 integers from 1 to 10,000 that are divisible by 3 or 7 or both.

Problem 8. (Choosing with replacement, order not important.) Five pirates have decided to divide
a treasure of 12 identical gold coins among them. The question we will explore in this problem is:
In how many ways can this be done?
(a) One possible way to divide the treasure is as follows: The first pirate gets 3 coins, the second

gets 5, the third gets 1, the fourth gets none, and the fifth gets 3. Explain how the following
sequence of symbols represents this possibility.

◦ ◦ ◦ | ◦ ◦ ◦ ◦ ◦ | ◦ | | ◦ ◦ ◦
(b) Another possible way to divide the treasure is as follows: The first pirate gets 5 coins, the second

gets 1, the third gets 3, the fourth gets 3, and the fifth gets none. [Note that this division of
the gold is different from the division in part (a).] Write a sequence of symbols similar to the
one above representing this possibility.

(c) Consider all such sequences of symbols representing possible ways to divide the gold. What
defining characteristics do all such sequences share? Be as precise as you can.

(d) Explain why the number of possible ways to divide the treasure is
(
16
4

)
.

(e) Explain why, in general, if r indistinguishable objects are to be distributed into n distinguishable
boxes, there are

(
n+r−1

n−1

)
ways to do so.

(f) In what sense can this be described as “choosing r elements from a set of size n with replacement,
when the order in which the elements are chosen is not important”?

Solution.

(a) Each circle represents a coin, and the bars separate the pirates’ shares. The first pirate’s share
is illustrated by the three circles to the left of the first bar, the second pirate’s share is represented
by the five circles between the first and second bars, and so on; the fifth pirate’s share is shown as
the three circles to the right of the last bar. Note that the third and fourth bars are adjacent—in
other words, there are no circles between them—because according to this division of the treasure
the fourth pirate gets nothing.

(b) The division of the treasure described in part (b) can be represented by the following sequence
of symbols.

◦ ◦ ◦ ◦ ◦ | ◦ | ◦ ◦ ◦ | ◦ ◦ ◦ |
The fifth pirate gets nothing, so there are no circles following the last bar.

(c) Every sequence of symbols representing a possible way to divide the gold must have 12 circles
(for the 12 coins) and four bars (to divide the five pirates’ shares). Note that there will be one fewer
bar than the number of pirates, because the bars serve to separate the shares of the pirates. So each
such sequence will have 16 symbols in all.

As long as these conditions are met—12 circles and four bars—any sequence of symbols will
represent a possible way to divide the treasure. In fact, we can read such a sequence of symbols as
a description of the division of the treasure; the first pirate gets as many coins as there are circles
to the left of the first bar, and so on.
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(d) In part (c) we saw that every sequence of 16 circles and bars having 12 circles and four bars
represents one possible way for the pirates to divide the gold. So we can count the number of ways to
divide the gold by counting instead the number of sequences of 16 circles and bars having 12 circles
and four bars.

To make such a sequence of symbols, we start with 16 empty positions for symbols. We then
choose four of the positions to be filled with bars; the remaining 12 positions must be filled with
circles. There are

(
16
4

)
ways to choose the four positions for the bars, and so there are

(
16
4

)
such

sequences of symbols. Therefore there are also
(
16
4

)
possible ways to divide the treasure, because

each such sequence of symbols corresponds to one way to divide the treasure.

(e) We can abstract the reasoning we used in parts (a) through (d) to find the number of ways to
distribute r indistinguishable objects into n distinguishable boxes. The r indistinguishable objects
correspond to the 12 identical gold coins, and the n distinguishable boxes correspond to the five
pirates (who are certainly distinguishable—a situation in which the first pirate gets all of the coins is
different from a situation in which the second pirate gets all of the coins). In parts (a) through (d),
we were examining the case in which r = 12 and n = 5.

When we write a sequence of circles and bars representing a possible way to distribute the
r objects into the n boxes, we will need r circles to represent the objects and n− 1 bars to separate
the contents of each box. We interpret such a sequence of symbols as we did before: the number
of circles to the left of the first bar will represent the number of objects placed in the first box,
the number of circles between the first bar and the second bar will represent the number of objects
placed in the second box, and so on.

To make such a sequence of symbols, we start with r + (n − 1) empty positions for symbols,
and then we choose n− 1 of the positions to fill with bars; the remaining r positions must be filled
with circles. The number of ways to choose the positions of the bars, and hence the number of such
sequences of symbols, is

(
r+(n−1)

n−1

)
, which of course is the same as

(
n+r−1

n−1

)
, just by rearranging the

top. Each such sequence of symbols corresponds to one way to distribute the objects into the boxes,
so there are

(
n+r−1

n−1

)
ways to do so.

(f) It is a little difficult to find an interpretation of the distribution of r indistinguishable objects
into n distinguishable boxes as “choosing r elements from a set of size n with replacement, when
the order in which the elements are chosen is not important,” but here is one way to look at it:
Suppose the n pirates each write their name on a slip of paper and put the slips in a hat. Then a
name is drawn from the hat to determine which pirate gets the first coin. This name is replaced,
and another name is drawn to determine who gets the second coin; this continues until all r coins
have been distributed.

In the end, the order in which the names are drawn from the hat is not important, because the
coins are identical—the only thing that matters is how many times each name has been drawn. So
this process of drawing names from a hat is simply a way of choosing r elements (the drawn names)
from a set of size n (the set of all names in the hat) with replacement (because the names are replaced
after having been drawn), and the order in which the elements are chosen is not important.

[ Note: The counting technique described in this problem traditionally uses stars instead of circles
so that it can be called “stars and bars,” which is a catchier name. ]
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Problem 9. Given n points on the circumference of a circle, how many ways are there to draw two
different chords connecting pairs of these points such that the chords intersect in the interior of the
circle? (Chords sharing one endpoint do not count.) The picture below shows seven points on the
circumference of a circle and one way to draw two chords that intersect in the interior.

Solution. To draw two such chords, we can first select the four points that will serve as the endpoints
of the chords. We select these four points without replacement, and the order in which we select
them is not important (the only important thing is which four points we select). No matter how we
choose these four points, there will be only one way to connect them so that the chords intersect in
the interior of the circle. (Why?) So the number of ways to draw two chords that intersect in the
interior equals the number of ways to select four out of the n points; this number is

(
n
4

)
.

Problem 10. Use the pigeonhole principle to prove that, if any five points are chosen inside a square
whose sides are 2 meters long, there must be two of these points that are no more than

√
2 meters

apart.

Solution. We divide the square into four congruent smaller squares, each of side length 1 meter, as
shown below.

2 m

2 m

1 m

1 m

√
2 m

By the Pythagorean theorem, the diagonal of each of the small squares is
√

2 meters; this is the
greatest possible separation of two points that are in the same small square.

Consider any five points in the large square. Since there are four small squares, the pigeonhole
principle says that one of the small squares must contain at least two of the five points, and therefore
these two points must be no more than

√
2 meters apart.

Page 6


