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Abstract

This paper provides an easy verifiable regularity condition under
which the investor’s utility maximizer depends continuously on the
description of her preferences in a general incomplete financial set-
ting. Specifically, we extend the setting of Jouini and Napp (2004)
to 1) noise generated by a general continuous semi-martingale and 2)
the market price of risk is allowed to be a general adapted process
satisfying a mild integrability condition. This extension allows us to
obtain positive results for both the mean-reversion model of Kim &
Omberg (1996) and the stochastic volatility model of Heston (1993).
Finally, we provide an example set forth in Samuelsen’s complete fi-
nancial model illustrating that without imposing additional regularity
the continuity property of the investor’s optimizer can fail.
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1 Introduction and summary

We assume that the investor’s preferences can be described via a von Neumann-
Morgenstern utility function U and that the investor seeks to maximize ex-
pected utility of terminal wealth W where W is replicable by trading in the
financial market at costs x. In other words, the investor seeks a random
variable Ŵ that satisfies

u(x) , sup
W

E[U(W )] = E[U(Ŵ )],

where the supremum is taken over all terminal wealths available to the in-
vestor through trading with initial costs at most x. An important piece of
input data is the description of the investor’s risk preferences given by U .
The specific U to be used in any given implementation is ultimately an em-
pirical task and hence is subject to measurement errors. We are therefore
naturally led to the following question:

“How are the investor’s optimizer Ŵ and the corresponding value

function u affected by a small misspecification of the investor’s

utility function U?”

In order to quantify this question, we need to describe the domain in
which U varies and the domains in which Ŵ and u vary. Following [JN04],
we place a growth condition on the possible choices for U , U(·) ≤ U(·) for
some universal upper utility bound U . Since both U and u are real valued
functions it is natural to consider pointwise convergence, however, for the
optimal terminal wealth Ŵ several possible domains are available. [JN04]

establish almost surely convergence as well as L1-convergence of Ŵ . It is
a main contribution of this paper to show that by relaxing the notion of
convergence to L0 equipped with the topology induced by convergence in
probability, we can obtain continuity properties of both u and Ŵ in a much
more general setting than [JN04]:

1. We replace [JN04]’s uniform boundedness condition placed on the mar-
ket price of risk process with an easy verifiable integrability condition.
This relaxation allows us to examine e.g., the complete mean-reversion
model presented in [W02].
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2. Perhaps more importantly, we relax the complete Brownian financial
setting of [JN04] to a general continuous incomplete semi-martingale
framework. This allows us to examine two of the most prominent and
most widely applied models in finance: Heston’s stochastic volatility
model [Hes93] and Kim & Omberg’s mean-reversion model [KO96].
In the first model volatility is a non-traded asset whereas in the latter
model the drift component is a non-traded asset and hence both models
are incomplete but embedded in the framework of the present paper.

In the complete Brownian financial setting, [KLS87] and [CH89] devel-
oped what has become known in the literature as the martingale method
which allows an explicit characterization of the value function u and the op-
timal terminal wealth Ŵ in terms of the pricing kernel present in the econ-
omy. We apply the martingale method to exemplify that without further
regularity imposed on the set of possible utility functions U , the quantities
u and Ŵ can fail to depend continuously on the description of the investor’s
preferences modeled by U . This illustrates the need for a regularity condition
like U(·) ≤ U(·) suggested by [JN04] and adopted in this paper. Based on the
general existence result of [KS99], we are able to prove continuity of both the
investor’s value function u as well as the investor’s optimal terminal wealth
Ŵ within this class of utility functions and provided that the market price
of risk process satisfies a simple and easy verifiable integrability condition.

In a discrete setting, the case where the investor’s utility function is de-
fined over R and with prices processes being bounded, [CR05] study a similar
continuity problem as we do. Their setting is not embedded in our analysis
as our approach fundamentally hinges on the assumption of noise generated
by a continuous semi-martingale and on the assumption that the investor’s
utility function is defined over the positive real numbers.

A related stability question is that of robust utility maximization: here
the idea is for a fixed utility function to create decision rules that takes into
account several possible specifications of the financial market. The seminal
work [GS89] provides a set of axioms which the investor’s preference order
has to satisfy in order to be numerical represented as a worst-case scenario.
Instead of providing a complete overview of this literature we refer to [Mae04]
and [Con06] as well as the textbook [FS04] for more discussions on robust
utility maximization.

Another part of the literature considers the entire description of the finan-
cial market as input data to the utility maximization problem and provides
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conditions under which the investor’s optimizer depends continuously on this
description. One application of this analysis is the passage from discrete time
models to continuous time models which is particular relevant for numeri-
cal implementations, see e.g., [He91] and [DP92] as well as the extensive
monograph [Pri03]. Our analysis builds on the results of [LŽ06] where a

condition is derived under which both u and Ŵ depend continuously on the
specification of the market price of risk process for a given and fixed utility
function.

The paper is organized as follows: the next section describes the financial
market, the main theorem is stated and several examples are provided to
illustrate both the scope and the limitations of this result whereas the last
section contains all the proofs.

2 Formulation and results

2.1 The financial market

Our analysis is based on a filtered probability space (Ω,F , F, P) for a fil-
tration F , (Ft)t∈[0,T ] satisfying the “usual conditions” of right-continuity
and completeness where T > 0 denotes the investor’s time horizon. To keep
the notation as simple as possible, we only consider a market consisting of a
numéraire security carrying a zero interest rate as well as one risky security
with dynamics

dSt , λtd〈M〉t + dMt, t ∈ (0, T ], S0 , 1. (2.1)

Here, M denotes a continuous local martingale with quadratic variation pro-
cess 〈M〉. We refer to λ as the market price of risk process and we will assume
throughout the paper that λ satisfies the following regularity condition:

Assumption 2.1. The market price of risk process λ of (2.1) is adapted to
the filtration F and satisfies:

∫ T

0

λ2
ud〈M〉u < ∞, P-almost surely.

Given this assumption, we can follow [Sch95] and define the minimal mar-
tingale density Z by the Doléans-Dade exponential E(·)

Zt , E(−λ · M)t , exp

(
−
∫ t

0

λudMu −
1

2

∫ t

0

λ2
ud〈M〉u

)
, t ∈ [0, T ]. (2.2)
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The connection between the concept of no arbitrage - or the concept of no
free lunch with vanishing risk - and the assumption that the dynamics of
the financial securities are given by (2.1) has a long history within the field
of mathematical finance and we only report that Assumption 2.1 is slightly
stronger than the assumption of no arbitrage, see the discussions in [DS95a].

Example 2.2. A popular model is to let F be the standard filtration gener-
ated by two Brownian motions (B,W ) on the interval [0, T ]. The dynamics
of the risky security is then taken to be

dSt , St(µtdt + σtdBt), t ∈ (0, T ], S0 , 1, (2.3)

where the adapted processes µ (drift) and σ > 0 (volatility) are allowed to
depend on both B and W . In this case, we see that Mt = (Sσ · B)t and
the market price of risk process is given by λ = µ/Sσ2. However, given the
Brownian setting (2.3), the market price of risk is often refereed to as the
process λ̃ , µ/σ, see e.g., the textbook [Duf01]. We will refer to λ as the
market price of risk in the general setting (2.1) and we refer to λ̃ , µ/σ as
the market price of risk in the Brownian setting (2.3). Given the dynamics

(2.3), we see that Assumption 2.1 is satisfied if
∫ T

0
λ̃2

udu < ∞, P-a.s., in which

case Zt = E(−λ · M)t = E(−λ̃ · B)t is a well-defined strictly positive super
martingale for t ∈ [0, T ].

2.2 The investor’s problem

The investor’s risk preferences are modeled by a utility function U defined
on the positive semi-axis. We will call a continuous differentiable strictly
increasing, concave real-valued function U that satisfies the Inada conditions

lim
z↓0

U ′(z) = +∞, lim
z↑+∞

U ′(z) = 0,

as well as the reasonable asymptotic elasticity condition AE[U ] < 1, where

AE[U ] , lim sup
z↑+∞

zU ′(z)

U(z)
,

for a utility function and we write U ∈ U . The investor’s initial wealth is
denoted by x > 0 and we will call a predictable process H a strategy if the
stochastic integral (H ·S)t is well-defined for t ∈ [0, T ] in which case we write
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H ∈ L(S). Furthermore, if x + (H · S) is a non-negative process we call
H x-admissible and we write X (x) for the set of replicable terminal wealths
W = x + (H · S)T for H x-admissible. The investor is assumed to maximize
expected utility of terminal wealth over x-admissible strategies:

u(x; U) , sup
W∈X (x)

E[U(W )]. (2.4)

Assumption 2.1 and the main result in [KS99] grant the following:

Theorem 2.3 (Kramkov-Schachermayer). For any U ∈ U with u(x, U) < ∞
there exists a unique element Ŵ = Ŵ (x, U) ∈ X (x) that optimizes (2.4),

u(x; U) = E[U(Ŵ )].

The main result in [KS99] is stated under the assumption that there ex-
ists an equivalent probability measure Q ∼ P such that (H · S) is a local
Q-martingale for any 1-admissible strategy H, however, as we prove1 their
result remains valid under our weaker Assumption 2.1. Proposition 1 of
[LW00] provides an analogue result for the complete Brownian model (2.3).
Alternatively, we can make the strictly stronger assumption that the mini-
mal martingale measure exists, i.e., E[ZT ] = 1 where Z is defined by (2.2).
However, this assumption would exclude a model like the following.

Example 2.4. Let F be the standard filtration generated by a Brownian
motion B on the interval [0, T ]. We define the risky security by

dSt , St(λ̃tdt + dBt), t ∈ (0, T ], S0 , 1.

The market price of risk process λ̃ is modeled by the 3-dimensional Bessel
process, λ̃t , 1

Rt
where R solves the following stochastic differential equation

dRt , dBt +
1

Rt

dt, t ∈ (0, T ], R0 , 1,

see e.g., [KS88] p.158. This specification constitutes an example of a complete
market with the property that the density Zt , E(−λ̃ · B)t is a strict local
martingale, E[ZT ] < 1. To see this, we apply Itô’s Lemma to get that

1Thanks to Dmitry Kramkov for pointing out this relaxation.
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d
(

λ̃t

Zt

)
= 0 for all t ∈ [0, T ], hence Z = λ̃. From e.g., [KS88], Exercise 3.36.i

on p.168 we know that λ̃ is a strict local martingale and the claim follows.
Even though free lunches with vanishing risk exist, it can still be the case

that u(x, U) < ∞ for an unbounded utility function U in this setting. One
concrete exemplification is given by the log-investor, U(x) , log(x), leading
to the Growth Optimal Portfolio (GOP). The value function (2.4) can be
represented by

u(x, log) = log(x) +
1

2
E

[∫ T

0

λ̃2
udu

]
. (2.5)

This follows since a log-investor optimally invests a proportion of λ̃ in the
risky security S. The finiteness of the integral present in (2.5) can be deduced
from e.g., [KS88], Exercise 3.36.ii on p.168, hence we have u(x, log) < ∞.
For more information about the relevancy of the GOP in settings where the
minimal density Z lacks the martingale property, we refer to the discussions
in the recent textbook [PH06].

2.3 Problem formulation

Problem 2.5. Given a sequence of utility functions {Un}n∈N0
⊆ U with

corresponding optimizers Ŵ n = Ŵ (x, Un), n = 0, 1, ..., does pointwise con-
vergence of Un → U0 imply the following:

1. Convergence of the value functions, u(x; Un) → u(x; U0) for all x?

2. Convergence of the optimal terminal wealths, Ŵ n → Ŵ 0 in L0
+?

As usual L0 denotes the space of real-valued F-measurable random vari-
ables equipped with the metrizable topology induced by convergence in prob-
ability and L0

+ denotes its positive cone.

2.4 Regularity condition

As exemplified in Section 2.7, pointwise convergence of Un to U0 alone is
not sufficient to ensure that the corresponding optimizers converge, hence
additional regularity needs to be imposed. Inspired by the condition on
p.136 in [JN04], we introduce the following subset U of U :
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Definition 2.6. For a fixed utility function U ∈ U we will say that U ∈ U
belongs to U if U(x) ≤ U(x) for all x ≥ 0.

Example 2.7. Following [JN04], one choice of U is given by a power utility
function or what is called CRRA-utility in the financial literature. Specifi-
cally, we define the function U = U(δ, k1, k2) by

U(x) , k1 + k2x
δ, x ≥ 0,

for constants k1 ≥ 0, k2 > 0 and δ ∈ (0, 1). Often we will take k1 , 0 and
k2 , 1

δ
in which case (1 − δ) is refereed to as the coefficient of constant

relative risk aversion (CRRA) for the investor with preferences U .

2.5 Main result

In order to state our main result, we recall the definition of the Fenchel-
Legendre transform - or simply the convex conjugate - of a utility function
U ∈ U :

V (y) , sup
z>0

U(z) − zy, y > 0. (2.6)

The following theorem constitutes our main result:

Theorem 2.8. Let U ∈ U be a utility function with conjugate V and let

Z be given by (2.2) and assume that V (ZT ) is integrable, E[|V (ZT )|] < ∞.

Then for any U ∈ U we have u(x; U) < ∞ and consequently the optimizer

Ŵ = Ŵ (x, U) exists. Furthermore, the following mappings

(0,∞) × U ∋ (x, U) → u(x; U) ∈ R,

(0,∞) × U ∋ (x, U) → Ŵ (x, U) ∈ L0
+

are jointly continuous when U is equipped with the topology of pointwise con-

vergence and when L0 is equipped with the topology induced by convergence

in probability.

Given the super martingale property of the minimal martingale density
Z defined by (2.2) we have E[ZT ] ≤ 1 and since V is a convex function, we
trivially see that the negative part of V (ZT ) is always integrable, hence for
the conclusions of Theorem 2.8 to hold it suffices that positive is integrable,

i.e., E[V
+
(ZT )] < ∞.

The following result is an incomplete continuous analogue of the setting
in [JN04].
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Corollary 2.9. Assume that the market price of risk λ is a bounded process

or in the Brownian setting (2.3), assume that λ̃ , µ/σ is a bounded process.

Then for the specification U(x) , k1 +k2x
δ with k1 ≥ 0, k2 > 0 and δ ∈ (0, 1)

the conclusions of Theorem 2.8 holds.

This corollary illustrates the difference between Proposition 2.5 in [JN04]
and this paper: by relaxing the financial setting of [JN04] to a general in-
complete continuous setting we pay the cost of using the weaker notion of
convergence in probability of the optimal terminal wealth Ŵ .

2.6 Applications

The section serves to illustrate how to apply our main theorem in various
often applied specifications of the financial market. In all these examples, we
restrict attention to the power utility case with parameter δ ∈ (0, 1), meaning

U
δ
(x) ,

1

δ
xδ, V

δ
(x) =

1

δ′
x−δ′ , δ′ ,

δ

1 − δ
∈ (0,∞). (2.7)

Also, throughout the remaining part of this subsection, (B,W ) are two pos-
sibly correlated Brownian motions generating the filtration F.

We start by examining a class of models, each having a stochastic rate of
return leading to an unbounded market price of risk process λ̃.

Example 2.10 (Kim-Omberg models). The models used by [W02] and
[MS04] are complete financial models with dynamics specified by

dSt , XtStdt + σStdBt, t ∈ (0, T ], S0 , 1, (2.8)

dXt , κ(α − Xt)dt + βdBt, t ∈ (0, T ], λ0 > 0, (2.9)

for positive constants σ, β, κ and α.
The complete Schwartz mean-reversion model is given by

dSt , α
(
µ − log(St)

)
Stdt + σStdBt, t ∈ (0, T ], S0 , 1, (2.10)

for positive constants α, µ and σ. It follows from Itô’s formula that log(St)
is an Ornstein-Uhlenbeck process, see p.689-690 in [BK05].

The mean reversion model originally developed by [KO96] reads

dSt , XtStdt + σStdBt, t ∈ (0, T ], S0 , 1, (2.11)

dXt , κ(α − Xt)dt + βdWt, t ∈ (0, T ], λ0 > 0 (2.12)
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for positive constants σ, β, κ and α. Unlike the models (2.8)-(2.9) and (2.10),
this specification involves the second Brownian motion W and therefore the
model (2.11)-(2.12) is incomplete.

Lemma 2.11. Let U
δ

be given by (2.7) and consider the financial market

given by (2.3) and assume that the market price of risk process λ̃ is normally

distributed:

λ̃t ∼ N
(
f(t), g(t)

)
, t ∈ [0, T ].

Here f and g are non-negative continuous functions with g non-decreasing.

This includes the model specifications (2.8)-(2.9), (2.10) and (2.11)-(2.12).
If the following condition holds

(δ − 1)2 > δ(δ + 1)2Tg(T ), (2.13)

then the conclusions of Theorem 2.8 are valid.

We next turn to stochastic volatility models and the first example is taken
from [FHH03] and it illustrates an application of Corollary 2.9.

Example 2.12 (Fleming & Hernández-Hernández). The stock price is given
by

dSt , St(µdt + σ(ωt)dBt), t ∈ (0, T ], S0 , 1,

for a positive and constant drift µ. The function σ : R → [σmin, σmax]
transforms the state-process ω into volatility and ω is typically taken to
driven by also the second Brownian motion W . If we assume 0 < σmin <
σmax < ∞, it immediately follows that λ̃t ,

µ

σ(ωt)
is a bounded process,

irrespectively of the state process ω. The continuity conclusion now follows
from Corollary 2.9.

The last example is inspired by the celebrated stochastic volatility model
due to [Hes93]. We note that in this example the market price of risk process
is unbounded and that the model is phrased in terms of both Brownian
motions (B,W ) and is therefore also incomplete.

Example 2.13 (Heston models). Assume that there is a non-traded volatil-
ity asset

dωt , κ(θ − ωt)dt + β
√

ωtdWt, t ∈ (0, T ], ω0 > 0, (2.14)
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for positive constants κ, θ and β satisfying Feller’s condition 2κθ > β2. In
this setting, there are several ways to model the risky security and let us
mention two of them: [Liu06] and [Kra05] assume

dSt , St(µ
′ωtdt +

√
ωtdBt), t ∈ (0, T ], S0 , 1, (2.15)

for a positive and constant drift µ′ whereas [CV05] purpose the model

dSt , St

(
µ′′dt +

1√
ωt

dBt

)
, t ∈ (0, T ], S0 , 1, (2.16)

where also µ′′ is a positive constant. Therefore, given our assumption of a
zero risk-free interest rate, for both specifications (2.15) and (2.16) we are
led to the same form of the market price of risk process λ̃.

Lemma 2.14. Let U
δ

be given by (2.7) and consider the financial market

given by (2.3) and assume that λ̃t , µ
√

ωt where µ is a positive constant and

ω solves (2.14) for a set of positive constants κ, θ and β satisfying Feller’s

condition. This includes both model specifications (2.15) and (2.16). If the

following condition holds

µ2 δ(δ + 1)

(δ − 1)2
≤ κ2

2β2
, (2.17)

then the conclusions of Theorem 2.8 are valid.

2.7 The need of a regularity condition

In this section we illustrate why pointwise convergence of Un to U0 alone
is not sufficient to reach a positive continuity result. [KK04] illustrate that

for the utility function U
δ

given by (2.7) the investor’s problem might not
be well-posed. We would like to stress that the following example has a
well-defined finite valued value function u(x; Uk) with corresponding well-

defined optimizers Ŵ k, k = 0, 1, 2.... However, Un → U0 pointwise but
the corresponding value functions do not converge correctly, i.e., u(·; Un) 9

u(·; U0).
To keep the setting as familiar as possible, we consider Samuelsen’s model

(the Black-Scholes-Merton model) where the risky security is modeled by a
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geometric Brownian motion (to keep it simple, we take both the drift and
volatility to be one):

dSt , St(dt + dBt), t ∈ (0, T ], S0 , 1,

where B is a Brownian motion generating the filtration F. In this complete
financial setting the market price of risk process is one, λ̃t , 1 for t ∈ [0, T ],
and therefore the state price density is given by

Zt , exp
(
− Bt − 0.5t

)
, t ∈ [0, T ].

In particular, the terminal value ZT is log-normally distributed, P(ZT ∈
dz) = f(z)dz where f denotes the log-normal density function. To construct
the sequence of utility functions Uk(·), k = 0, 1, 2... we define for n ∈ N, we
define the mapping gn : (0, 1

n
) → (0,∞) by

gn(a) ,

∫ 1

n

a

(√
n − 1√

a

1
n
− a

(
z − 1

n

)
+
√

n − 1√
x

)
f(z)dz. (2.18)

We note that gn is via the monotone convergency theorem continuous on
(0, 1

n
), gn is strictly decreasing and gn satisfies lima→0 gn(a) = ∞. Therefore,

we can find a unique point an ∈ (0, 1
n
) such that gn(an) = 1 which allows us

to define the sequence of conjugate functions {V n}n∈N by

V n(z) ,






1√
z

for z ≥ 1
n√

n− 1√
an

1

n
−an

(
z − 1

n

)
+
√

n for an < z < 1
n

1√
z

for z ≤ an.

It immediately follows that V n(z) → 1√
z

, V 0(z) for all z > 0. The sequence

of utility functions {Uk}k∈N0
is obtained by conjugating V k, k = 0, 1, 2... and

it is straightforward to see how to make smoothness adjustments to the above
constructed sequence {V n}n∈N in order for V n to be continuous differentiable.

We denote by vk(y) the dual value function corresponding to the utility
function Uk, i.e., for k = 0, 1, ... we have vk(y) , E[V k(yZT )]. with deriva-
tives given by

v′
k(y) = − 1

y2

∫ ∞

0

V k(w)f

(
w

y

)
dw − 1

y3

∫ ∞

0

V k(w)f ′
(

w

y

)
wdw, y > 0.
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We will focus on y , 1 and we consider n so large that (0, 1
n
) ⊆ {z > 0 :

f ′(z) ≥ 0}. By the construction of an we get the following relation for n
large enough

−v′
n(1) =

∫ ∞

0

V n(w)f(w)dw +

∫ ∞

0

V n(w)f ′(w)wdw

≥ 1 +

∫ ∞

0

V 0(w)f(w)dw +

∫ ∞

0

V 0(w)f ′(w)wdw = 1 − v′
0(1).

To see that the primal functions do not converge correctly we ague by con-
tradiction. So suppose that u(x; Un) → u(x; U0) for x > 0. The convexity
property implies that the derivatives converge too, u′(x; Un) , ∂

∂x
u(x; Un) →

u′(x; U0) , ∂
∂x

u(x; U0) for x > 0. The primal value function and the dual
value function are mutual conjugates, hence the inverse of u′(·, Uk) is given
by −v′

k(·) for k ∈ N0. Since u′(·; Un) is decreasing, we have

1 = u′(−v′
n(1); Un) ≤ u′(1 − v′

0(1); Un) → u′(1 − v′
0(1); U0).

Applying the decreasing function −v′
0(·) gives us the needed contradiction.

3 Proofs

We start by recalling some notation from [KS99]: Y is defined as the set
of non-negative adapted processes (Yt)t∈[0,T ], Y0 = 1, with the property that
Y (1 + H · S) is a super martingale for any 1-admissible strategy H.

Proof of Theorem 2.3: [KS99] assume Me(S) - the set of pricing mea-
sures - is non-empty and by making appropriate adjustments to their proof
on p.925-927 this assumption can be replaced with our weaker Assumption
2.1. An examination of their proof reveals that only the bipolar relation (ii)
of Proposition 3.1 in [KS99] needs attention.

Instead of considering the financial market (1, S) we define the market
S̃ , (S̃0, S̃1) , (Z,ZS) to obtain P ∈ Me(S̃). Let P̃ ∈ Me(S̃) be arbitrary
and let H = (H0, H1) be an 1-admissible self-financing portfolio in the (1, S)-
market. From Proposition 2.1 in [GK00] we have the invariance property

Zt

(
1 +

∫ t

0

H1
udSu

)
= Zt(H

0
t + H1

t St)

= H0
t S̃0

t + H1
t S̃1

t = 1 +

∫ t

0

H0
udS̃0

u +

∫ t

0

H1
udS̃1

u,
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and since P̃ ∈ Me(S̃) it follows that Z
(
1 + (H1 · S)

)
is a local P̃-martingale,

hence ZZ̃ ∈ Y where Z̃ denotes P̃’s density process with respect to P.
Let g ≥ 0 satisfy E[YT g] ≤ 1 for all Y ∈ Y and we want to construct a

1-admissible portfolio H such that g ≤ 1 + (H · S)T . By the above we have
for any P̃ ∈ Me(S̃)

EP̃[ZT g] = E[Z̃T ZT g] ≤ 1.

Standard arguments, based on e.g., Corollary 10 of [DS95b], grant a 1-
admissible portfolio H = (H0, H1) such that 1+(H0 ·S̃0)T +(H1 ·S̃1)T ≥ gZT .
Using Proposition 2.1 in [GK00] we obtain as before the relation

1 +

∫ t

0

H1
udSu =

1 +
∫ t

0
H0

udS̃0
u +

∫ t

0
H1

udS̃1
u

Zt

,

from which it follows that 1 + (H1 · S)T ≥ g. By defining the sets

C , {g ∈ L0
+ : g ≤ W for some W ∈ X (1)} and

D , {h ∈ L0
+ : h ≤ YT for some Y ∈ Y},

see [KS99] p.912, we can interpret the above as the inclusion

C ⊇ {g ∈ L+
0 : E[gYT ] ≤ 1 for all Y ∈ Y} = D0. (3.1)

Via the Bipolar Theorem [KS99] proved that D = D00 and by the defini-
tion of Y , we trivially have the inclusion D ⊆ C0 and in turn we get C0 = D.
Taking another polar and using the inclusion (3.1) we obtain

C00 = D0 ⊆ C,

hence, D0 = C which concludes the proof.

�

We start by stating a result which we use repeatedly (the proof mimics
that of Proposition 3.9 in [LŽ06]).

Proposition 3.1. Let {Uk}k=0,1,2... ⊆ U and denote by V n the conjugate

of Uk, k = 0, 1, 2..., defined by (2.6). If V n(y) → V 0(y) for y ∈ (0,∞),
then Un(xn) → U0(x0) for any sequence {xn}n∈N ⊆ (0,∞) converging to

x0 ∈ (0,∞). The same conclusion holds true if the roles of V k and Uk are

reversed.
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For the rest of this section V will always denote the conjugate of U for
a generic utility function U ∈ U and V always denotes the conjugate of U .
From (2.6) we have the inequality V (·) ≤ V (·) which will be a key ingredient.
We define the dual value function by

v(y; U) , inf
Y ∈Y

E[V (yYT )], y > 0, U ∈ U .

Since V is convex and bounded above by V , the assumption E[V (ZT )] < ∞
combined with Proposition 6.3(iii) of [KS99] ensure that v is real valued.

Proof of Theorem 2.8 (Existence of Ŵ ): by (2.6) we have for W ∈ X (x)
the following estimate where Z is given by (2.2)

U(W ) ≤ U(W ) ≤ V (ZT ) + WZT ,

P-almost surely. Taking expectations and using that Z ∈ Y gives us E[U(W )] ≤
E[V (ZT )] + x < ∞. The existence now follows from Theorem 2.3.

�

We next turn to proof of the continuity of the primal value function given
by (2.4) which by means of Proposition 3.1 is equivalent to proving conti-
nuity of the dual value function v. This will be done in two steps. We also
recall that given the convexity of members of U , pointwise convergence is
equivalent to uniform convergence on compact subsets of the positive semi-
axis. The topology induced by uniform convergence on compact subsets is
metrizable and therefore sequences suffice for proving continuity relations.

Proof of Theorem 2.8 (Upper semi-continuity of v, step 1): Let yn → y0

and Un → U0 pointwise. Proposition 3.1 says that V n(ζn) → V 0(ζ0) for any
sequence ζn → ζ0, a property needed below.

To proceed, we first find two constants 0 < ymin ≤ ymax < ∞ such that
yn ∈ [ymin, ymax] for all n and then we denote by B the set of orthogonal
martingales L, 〈L,M〉 ≡ 0, for which there exists a constant ǫ > 0 such that
E(L)T ≥ ǫ uniformly in ω ∈ Ω. Therefore, for any L ∈ B we have P-almost
surely the upper bound

V n
(
ynZTE(L)T

)
≤ V (yminZT ǫ) ≤ CV

+
(ZT ) + D, (3.2)
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where the constants C and D are granted by the reasonable asymptotic
elasticity, see Proposition 6.3(iii) of [KS99], and by assumption the right-
hand-side is integrable. Since V n → V 0 uniformly on compact sets, we
can find a universal affine minorant φ such that V n(·) ≥ φ(·) for all n, in
particular we have

V n
(
ynZTE(L)T

)
≥ φ

(
ymaxZTE(L)T

)
, (3.3)

P-almost surely. Since E[ZTE(L)T ] ≤ 1, the right-hand-side is also integrable
and therefore by dominated convergence we have for L ∈ B

E

[
V n
(
ynZTE(L)T

)]
→ E

[
V 0
(
y0ZTE(L)T

)]
.

Corollary 3.4 in [LŽ06] gives the representation

v(y; U) = inf
L∈B

E

[
V
(
yZTE(L)T

)]
, y > 0,

and the upper semi-continuity follows.

�

Before continuing, we recall an equivalent description of the dual value
function. Following [Zit05] we introduce the operator V given by

V(Q; U) , sup
X∈L∞

+

E[U(X)] − 〈Q, X〉, Q ∈ (L∞)∗, U ∈ U ,

where (L∞)∗ - the dual of L∞ - is equipped with the weak*-topology.

Lemma 3.2. When U is equipped with the topology of pointwise convergence

and (L∞)∗ with the weak*-topology, the functional

(L∞)∗ × U ∋ (Q, U) → V(Q; U) ∈ (−∞,∞]

is lower semi-continuous.

Proof: We start by verifying the relationship

V(Q; U) = sup
X∈L∞

++

E[U(X)] − 〈Q, X〉 (3.4)
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where X ∈ L∞
++ if we can find a positive constant M such that X(ω) ∈ [ 1

M
,M ]

for all ω ∈ Ω. “≥” is obvious and for the other inequality we pick X ∈ L∞
+

and n ∈ N and define

Xn ,

(
1 − 1

n

)
X +

1

n

which is in L∞
++. The concavity of U yields the relation

E[U(Xn)] − 〈Q, Xn〉 ≥
(

n − 1

n

)
E[U(X)] +

1

n
U(1) −

(
n − 1

n

)
〈Q, X〉 − 1

n

and passing n to infinity yields the desired inequality.
Given the representation (3.4), the proof can be concluded by showing

that for any X ∈ L∞
++ the following two mappings are continuous

U ∋ U → E[U(X)], (L∞)∗ ∋ Q → 〈Q, X〉.

The first mapping is continuous by means of the dominated convergence
theorem: we can find M > 0 such that X ∈ [ 1

M
,M ]. Since Un → U0

pointwise we see Un( 1
M

) and Un(M) are convergent and we can therefore
find a universal constant K > 0 such that −K ≤ Un(X) ≤ K for all n,
hence E[Un(X)] → E[U(X)].

The latter mapping is also continuous: by the very definition of the weak*-
topology we have Qα → Q0 if 〈Qα, X〉 → 〈Q0, X〉, X ∈ L∞

+ , where {Qα}α∈A

is a net in (L∞)∗ (A is some directed set).
All in all, we have showed that V is given as a supremum of continuous

functions and hence is itself lower semi-continuous.

�

We define the none-empty weak*-compact set

D , {Q ∈ (L∞)∗+ : 〈Q, 1〉 ≤ 1 and 〈Q,W 〉 ≤ x ∀W ∈ (X (x) − L0
+) ∩ L∞}.

From [Zit05] we have the relation

v(y; U) = inf
Q∈D

V(yQ; U), y > 0, U ∈ U . (3.5)

Furthermore, [Zit05] shows by means of the Banach-Alaoglu theorem that

we can find Q̂ = Q̂(y; U) ∈ D attaining the infimum of (3.5) for y > 0 and
U ∈ U .
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Proof of Theorem 2.8 (Continuity of v, step 2): Let yn → y0 in (0,∞)

and let Un → U0 pointwise in U . For each n ∈ N, we let Q̂n ∈ D be a
minimizer. Given the weak*-compactness of D, we can extract a weak*-
convergent subnet, {Q̂α}α∈A for a directed set A, of these optimizers

D ∋ Q̂0 = lim
α

Q̂α,

where the limit is weak*. We then have

v(y0; U0) ≥ lim sup
n

v(yn; Un)

≥ lim sup
α

v(yα; Uα)

= lim sup
α

V(yαQ̂α; Uα)

≥ lim inf
α

V(yαQ̂α; Uα)

≥ V(y0Q̂0; U0) ≥ v(y0; U0),

where the first inequality follows from the already proven upper semi-continuity,
the second inequality follows by the subnet property, the forth inequality fol-
lows from the previous lemma and the last inequality follows since Q̂0 ∈ D.
This shows that

v(y0; U0) = lim sup
n

v(yn; Un) (3.6)

for any sequence {(yn, Un)}n∈N converging to (y0, U0). To see that this im-
plies v(y0; U0) = lim infn v(yn; Un) we argue by contradiction: suppose that
v(y0; U0) > lim infn v(yn; Un). We can then find a subsequence {(ynk , Unk)}k∈N

such that limk v(ynk ; Unk) = lim infn v(yn; Un) < v(y0; U0) which contradicts
(3.6) since (ynk , Unk) → (y0, U0).

�

Finally, we can conclude the proof of our main theorem by proving the
continuity of the optimal terminal wealth.

Proof of Theorem 2.8 (Continuity of Ŵ ): Given the above proved conti-
nuity of v, we get via convexity that also the derivatives of u(x; U) converge
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implying that the Lagrange multipliers converge, yn → y0. Therefore, by the
relation

(Un)′(Ŵ n) = ynŶ n, Ŷ n , ZTE(L̂n)T ,

the fact that (V n)′ converges uniformly on compact sets and since the in-

verse of (Un)′(·) is given by −(V n)′(·), it suffices to prove that Ŷ n → Ŷ 0 in
probability. The analysis on p.23 of [LŽ06] gives for any ǫ > 0, ϕ ∈ (0, 1)
and N > ǫ the following estimate

P(yn|Ŷ n − Ŷ 0| > ǫ) ≤ 2ynϕ

ǫ
+

2yn

N
+

1

2βn

(
E[V n(ynZT Hϕ)] − v(yn; Un)

)

(3.7)

where Hϕ , (1−ϕ)E(L̂0)T + ϕ ≥ ϕ > 0 and the constant βn is given by the
convexity of V n on the interval [ǫ,N ]. Specifically, we can take

βn ,
V n(N − ǫ) + V n(N)

2
− V n

(
N − ǫ

2

)
> 0

and we see that βn → β0 > 0. Since Hϕ is bounded away from zero we can
obtain estimates similar to (3.2) and (3.3) which allow limit operation and
expectation to be interchanged and we get

(
E[V n(ynZT Hϕ)] − v(yn; Un)

)
→ E[V 0(y0ZT Hϕ)] − v(y0; U0),

using the continuity of v. The convexity of V 0 gives us the estimate

E[V 0(y0ZT Hϕ)] − v(y0; U0) ≤ ϕ
(
E[V 0(y0ZT )] − E[V 0(y0Ŷ 0)]

)
.

Applying the lim sup-operator on both sides of (3.7), passing ϕ to zero and

finally passing N to +∞ show that yn(Ŷ n− Ŷ 0) → 0 in probability, however,
as already used yn → y0 and the result follows.

�

The remaining proofs are based on the same inequality that provides an
upper bound for E[V (ZT )]. Recall for any continuous local martingale X ′ the
stochastic exponential E(X ′) is a super martingale and hence E[E(X ′)T ] ≤ 1.
In particular, for any continuous local martingale X we have

E[exp(−XT − 〈X〉T )2] = E[exp(−2XT − 0.5〈2X〉T )] = E[E(−2X)T ] ≤ 1.
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We will apply this with the Xt , −α
∫ t

0
λudMu for some model of the market

price of risk process λ and α being a constant. X’s quadratic variation reads
〈X〉t = α2

∫ t

0
λ2

ud〈M〉u. This combined with Hölder’s inequality allow us to
compute the following upper bound

E

[
exp

(
−
∫ T

0

λtdMt −
1

2

∫ T

0

λ2
t d〈M〉t

)α]

= E

[
exp

(
− XT − 〈X〉T

)
exp

((
α2 − 1

2
α

)∫ T

0

λ2
t d〈M〉t

)]

≤ E

[
exp

(
− XT − 〈X〉T

)2
] 1

2

E

[
exp

(
α

(
α − 1

2

)∫ T

0

λ2
t d〈M〉t

)2
] 1

2

≤ E

[
exp

(
α (2α − 1)

∫ T

0

λ2
t d〈M〉t

)] 1

2

For ZT defined by (2.2), V
δ

and δ′ given by (2.7) we therefore obtain the
following estimate

δ′E
[
V

δ
(ZT )

]
≤ E

[
exp

(
δ(δ + 1)

(δ − 1)2

∫ T

0

λ2
t d〈M〉t

)] 1

2

. (3.8)

Proof of Corollary 2.9: Let V denote the conjugate of k1 + k2x
δ with

k1, k2 positive constants and δ ∈ (0, 1). A computation shows that for y > 0

we have V (y) = k1 + V
δ
(y/k2) where V

δ
is given by (2.7). Therefore for λ

bounded, (3.8) shows E[V (ZT )] < ∞ and the result follows. In the Brownian
setting (2.3) with λ̃ , µ/σ being a bounded process, we have

∫ T

0

λ2
t d〈M〉t =

∫ T

0

λ̃2
t dt

is uniformly bounded in ω ∈ Ω and the result follows as before.

�

The following proof is a generalization of Lemma 4.3 in [BK05].
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Proof of Lemma 2.11: To ease the notation we define the constant K ,
δ(δ+1)
(δ−1)2

. The estimate (3.8) and Jensen’s inequality give us

δ′E
[
V

δ
(ZT )

]
≤ E

[
exp

(
K

∫ T

0

λ̃2
udu

)]
≤ 1

T

∫ T

0

E

[
exp

(
TKλ̃2

u

)]
du,

where V
δ

is given by (2.7). For a normally distributed random variable
X ∼ N (m, v) we have for any constant ξ satisfying 1 > 2ξv the moment
generating function

E
[
exp

(
ξX2

)]
=

exp
(

ξm2

1−2ξv

)

√
1 − 2ξv

.

The regularity condition (2.13) allows us to apply this computation with

ξ , TK and we see u → E

[
exp

(
TKλ̃2

u

)]
is a continuous function on the

interval [0, T ] and the result follows.

�

Proof of Lemma 2.14: Condition (2.17) ensures that µ2K ≤ κ2

2β2 , K ,
δ(δ+1)
(δ−1)2

. Therefore Proposition 5.1 in [Kra05] together with (3.8) give

δ′E[V
δ
(ZT )] ≤ E

[
exp

(
K

∫ T

0

λ̃2
udu

)]
= E

[
exp

(
µ2K

∫ T

0

ωudu

)]
< ∞,

where ω is the solution of (2.14) and V
δ

is given by (2.7).

�
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