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Abstract
Ruppert’s algorithm is an elegant solution to the mesh generation problem for

non-acute domains in two dimensions. This thesis develops athree-dimensional
Delaunay refinement algorithm which produces a conforming Delaunay tetrahedral-
ization, ensures a bound on the radius-edge ratio of nearby all tetrahedra, generates
tetrahedra of a size related to the local feature size and thesize of nearby small in-
put angles, and is simple enough to admit an implementation.To do this, Delaunay
refinement algorithms for estimating local feature size areconstructed. These es-
timates are then used to determine an appropriately sized protection region around
acutely adjacent features of the input. Finally, a simple variant of Ruppert’s algo-
rithm can be applied to produce a quality mesh. Additionally, some finite element
interpolation results pertaining to Delaunay refinement algorithms in two dimensions
are considered.
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Chapter 1

Overview

Consider computing a numerical approximation to the solution of a partial differential equation
in a two dimensional polygonal domain via the finite element method. The classical convergence
theory involves a conforming triangulation of the domain which satisfies a lower bound over all
the angles in the triangulation and gives an error estimate depending on the length of the longest
side of each triangle. In the simplest case, one requires a uniform bound on the longest edge of
each triangle, but in other cases a graded/adaptive triangulation is desirable. A mesh generator
should be able to produce a triangulation based on the sizingrestriction given by the user.

Ruppert proposed a simple mesh generation algorithm which elegantly solves this prob-
lem [39]. The algorithm is the prototypical Delaunay refinement algorithm: these algorithms
are characterized by the use of a Delaunay triangulation as the “mesh” and the incremental in-
sertion of circumcenters of unacceptable simplices to improve this mesh. (Delaunay refinement
was first introduced by Chew [13] and the term is often closelyassociated with the idea of cir-
cumcenter insertion for mesh refinement. We will use the termto encompass a broader class of
algorithms which allow the insertion Steiner vertices at points other than circumcenters.) For
non-acute input domains, Ruppert’s algorithm produces a mesh which is (up to a constant factor)
as coarse as any conforming triangulation which satisfies the desired minimum angle condition:
in other words, the size of the resulting mesh is necessary due to the input geometry. Moreover,
it is simple to further refine the triangulation according toa user-given sizing function by con-
tinuing to insert circumcenters where necessary. One key toRuppert’s analysis is definition of
the local feature size (informally, the distance from a point to the second nearest feature in the
input) which is shown to be the correct size for the mesh produced. The primary limitation of
Ruppert’s algorithm is the restrictive condition that all features of the input (i.e. segments in the
“boundary” of the domain) must meet at non-acute angles.

As Ruppert’s algorithm is extended to mesh more general domains, it is desirable to preserve
several properties of the mesh: triangles satisfy a minimumangle condition and are as large as
the input complex allows. For acute input, this is not alwayspossible: a small angle in the input
mustmeans a triangle with a small angle must be present in any conforming triangulation. How-
ever, a compromise can be reached: a triangulation satisfying a similar relationship between the
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size of the triangles and the local feature size with respectto the input can be produced which
contains no large angles and thus admits good interpolants for the finite element method (by in-
terpolation results in [2, 22]). This estimate on the size ofthe resulting triangulation deteriorates
as the smallest angle of the input approaches zero. Despite this, algorithms of this form are very
effective in practice and are widely used.

The analysis of Delauany refinement algorithms for general three dimensional domains fol-
lows the same guiding principle as those in two dimensions: relax requirements on the resulting
mesh when necessary to ensure termination of the algorithm.Compared to the elegant theory of
Ruppert’s algorithm for 2D non-acute domains, these algorithms suffer from two major draw-
backs. The first is the issue of case explosion. Ruppert’s original proof involves five cases (a few
of which are trivial) and is simple to verify. As the algorithm is extended, the number of cases can
often double with each modification of the algorithm. To reduce (yet not completely eliminate)
this issue, we will focus on isolating the key properties of Ruppert’s algorithm and proving anal-
ogous results for the simplest possible algorithms. This will be seen to be an effective method
for developing a sound Delaunay refinement algorithm without a single monolithic analysis. The
result will be to form a sequence of Delaunay refinement algorithms which gradually build the
desired output properties and isolate different technicaldetails.

The second uniquely three dimensional issue pertaining to Delaunay refinement is the sliver
tetrahedra. A sliver tetrahedra has a poor aspect ratio but agood circumradius-shortest edge
ratio: thus it appears acceptable to Delaunay refinement algorithms but is poor for the finite ele-
ment method. To alleviate the problems associated with slivers, three lines of research have been
followed: methods for removing slivers from bounded radius-edge meshes have been shown
to produce sliver free meshes based on some theoretical constants [8, 26? ], experimental ap-
proaches have been developed that often remove all slivers but lack rigorous guarantees [18, 24],
and the convergence of a simple numerical method in the presence of slivers has been shown [32].
The algorithms we will develop are compatible with each of these programs but do not further
these lines of research.

The goal of this thesis is to develop a 3D Delaunay refinement algorithm which
• produces a conforming Delaunay tetrahedralization,

• ensures a bound on the radius-edge ratio of nearby all tetrahedra,

• generates tetrahedra of size related to the local feature size and size of nearby small input
angles, and

• is simple enough to admit an implementation.

In the process, we develop an alternative 2D Delaunay refinement algorithm for which our
algorithm (and other previous algorithms) is an extension and discuss where the difficulty arises
when attempting to extend the best/most used 2D algorithms.This isolates the key obstacles (in
addition to the issue of slivers) that tetrahedral mesh generation faces which are not present in
triangular mesh generation.

2



While possibly the most studied feature of Delauany refinement algorithms is the property
that the simplices in the meshes generated are not too small,of nearly equal importance is the fact
that these simplices are small enough. Ruppert’s analysis uses the requirement of mesh quality to
ensure that the mesh generated (and any quality triangulation of the input complex) is sufficiently
small. In Chapters 3 and 4, we show that the the fact that the resulting mesh is small enough near
important parts of the input is a result of the definition of encroachment in the algorithm and
does not rely on the quality criteria. This leads to simple Delaunay refinement algorithms which
yield practical estimates on the local feature size over theset of(d − 2)-dimensional features of
the input.

In Chapters 5 and 6, Delauany refinement algorithms for generating quality conforming De-
launay triangulations of arbitrary input complexes are given. The estimates in the previous chap-
ters are exactly what is necessary to determine an acceptable size for protected regions near
acute input angles which are needed to ensure termination ofthe algorithm. In 2D, it is possible
to avoid explicitly computing a protection size around acute input angles (see [30]), but it is not
known how to generalize this approach to 3D. We carefully describe and analyze the simplest
Delauanay refinement algorithms in 2D and then extend these approaches to 3D. The result is
a practical algorithm which resembles the previously unimplemented algorithms of Cheng and
Poon [11] and Pav and Walkington [36]. In the process, we willbe required to mesh certain
smooth complexes (not just straight segments and planar faces) and this involves a stronger ver-
sion of a result on curved meshing in 2D.

Finally in Chapter 7, we will consider the mesh generation problem in two dimensions by
reconsidering the requirements of the finite element method. In the 1970s, it was shown that
the requirement that all simplices have bounded aspect ratio can be relaxed: the minimum angle
condition can be replaced by a maximum angle condition (which has also inspired a mesh gen-
eration algorithm [31]). We reinterpret standard interpolation estimates to see the relationship
between interpolation error (the important quantity in theanalysis of finite element methods)
and the circumradius of a triangle (the important quantity in the analysis of Delaunay refine-
ment methods). We describe a simple mesh generation algorithm in the spirit of Chew’s original
Delaunay refinement method [13] which utilizes this relationship.

This simple 2D mesh generation algorithm really highlightsthe difference between Delaunay
refinement in two and three dimensions. In 2D, ensuring the resulting Delaunay triangulation
conforms to the input is as simple as initially splitting adjacent input segments at equal length
and then splitting segments with non empty diametral balls until termination. Then, interpolation
error estimates can be determined in terms of only the lengths of edges in the triangulation, even
in the presence of bad angles! In 3D, producing a conforming mesh is quite involved, a bounded
radius-edge mesh does not imply the desired interpolation estimates and open questions persist
in the characterization of interpolation error over general tetrahedra. The purpose of this thesis
is to understand which properties of 2D Delaunay refinement algorithms can be extended to 3D
and to investigate the simplest such algorithms which can actually be implemented.
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Chapter 2

Delaunay Refinement Preliminaries

2.1 Basic Definitions

Two important types of sets are simplices (triangles in general dimension) and balls (disks in
general dimension). Simplices always refer to closed sets while balls are always open sets. The
ball of radiusr centered atx will be denotedB(x, r). Without ambiguity, given a simplexs,
the circumball ofs, denotedB(s), is the smallest ball containing all of the vertices ofs on its
boundary. Similarly, for a curvec with endpointsp1 andp2, thenB(c) := B(p1p2).

We will focus on algorithms for generating simplicial meshes which are Delaunay triangula-
tions of point sets inRd whered is either2 or 3. For completeness, the definition of Delaunay
triangulation is now given.

Definition 2.1.1. Let P be a finite subset ofRd.
• The Delaunay triangulation of P, denoted DT(P) refers to the set of simplices with

vertices inP and with circumballs which are disjoint fromP.
• Two verticesp, q ∈ P are calledDelaunay neighborsif there is some simplext ∈ DT(P)

with verticesp andq.

The term Delaunay tetrahedralization will be used when working specifically in 3D, but De-
launay triangulation will be used when discussing the general case (as well as in 2D situations).
From the definition of Delaunay triangulation, the existence of Delaunay neighbors can be char-
acterized by the proposition below.

Proposition 2.1. [Delaunay Property] LetP be a finite subset ofRd. LetB be a ball with point
q ∈ P on the boundary ofB. If there is a point ofP insideB, thenq has a Delaunay neighbor
that is insideB.

There are many ways to assess the quality of a triangulation.For example, [25] identifies five
qualitative properties of simplices (or other polyhedra) and suggests an approach for forming
metrics which effectively differentiate simplices based on any combination of these properties.
However, we will focus on the metrics described below.
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Definition 2.1.2. Let t be a simplex.
• Theaspect ratioof t, denotedAR(t), is the ratio of the smallest sphere containingt to the

largest sphere contained int.
• Thecircumradius-shortest edge ratio, or radius-edge ratio, of t, denoted RE(t), is the

ratio of the circumradius oft to the length of the shortest edge oft.

The standard analysis of the finite element method relies on auniform bound on the aspect
ratio over the triangulation. Analysis of Delaunay refinement algorithms naturally involves the
radius-edge ratio. In 2D, aspect ratio and radius-edge ratio are equivalent, while in 3D sliver
tetrahedra have good radius-edge ratios but arbitrarily poor aspect ratios.

The mesh generation algorithms discussed will be given somedescription of the area/volume
to be meshed and produce a conforming Delaunay triangulation. We will assume that the input is
described as a piecewise linear complex, defined below. Separate definitions are given in two and
three dimensions. This makes the simplicity in the 2D case clear and avoids excessive notation
which is necessary for a definition in general dimension.

Definition 2.1.3. In two dimensions:
• A 2D piecewise linear complex(PLC), C = (P,S), is a pair of sets of input verticesP

and input segmentsS, such that the endpoints of each segment ofS are contained inP and
the intersection of any two segments ofS is also contained inP.

• A PLC C′ = (P ′,S ′) is arefinement of the PLCC = (P,S) if P ⊂ P ′ and each segment
in S is the union of segments inS ′.

• A PLC C∗ = (P∗,S∗) is asubcomplexof the PLCC = (P,S) if eitherC∗ = C or there is
a featuret ∈ P ∪ S such that

P∗ = {p ∈ P | p ⊂ t} and

S∗ = {s ∈ S | s ⊂ t}.

Definition 2.1.4. In three dimensions:
• A 3D piecewise linear complex(PLC),C = (P,S,F), is a triple of sets of input vertices
P, input segmentsS, and polygonal input facesF such that the boundary of any feature
or the intersection of any two features is the union of other lower-dimensional features in
the complex.

• A PLC C′ = (P ′,S ′,F ′) is a refinement of the PLCC = (P,S,F) if P ⊂ P ′ and each
segment inS is the union of segments inS ′ and every face inF is the union of faces inF ′.

• A PLC C∗ = (P∗,S∗,F∗) is asubcomplexof the PLCC = (P,S,F) if eitherC∗ = C or
there is a featuret ∈ P ∪ S ∪ F such that

P∗ = {p ∈ P | p ⊂ t},
S∗ = {s ∈ S | s ⊂ t}, and

F∗ = {f ∈ F | f ⊂ t}.

When refining a PLC, certain simplices near the boundaries ofinput features have special
importance in the analysis. These are defined below.
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Definition 2.1.5. Consider a refinement(P ′,S ′,F ′) [or (P ′,S ′)] of an input PLC(P,S,F) [or
(P,S)].

• An end segmentis a segment inS ′ for which at least one endpoint is an input vertex inP.

• An end triangle is a triangle inF ′ for which at least one vertex lies on an input segment
in S.

• Thespindle of a segments in S ′, denoted Spind(s), is the set containing

s if s is not an end segment, or

s and all end segments adjacent tos if s is an end segment.

For a simplexs, Rs denotes its circumradius. For any pointq inserted into the mesh by our
refinement algorithms,rq denotes the insertion radius of pointq, i.e. the distance fromq to its
nearest neighbor inP ′ when it is inserted into the Delaunay triangulation.

An appropriate notion of feature size is essential in the analysis of Delaunay refinement
algorithms. The standard definition of local feature size isgiven below as well as another useful
sizing function (called mesh feature size).

Definition 2.1.6. Let PLCC′ be a refinement of PLCC.

• Thei-local feature sizeat pointx with respect toC, lfsi(x, C) is the radius of the smallest
closed ball centered atxwhich intersects twodisjoint features ofC of dimension no greater
thani.

• Thei-mesh feature sizeat pointxwith respect toC, mfsi(x, C) is the radius of the smallest
closed ball centered atx which intersects two features ofC of dimension no greater thani.

• Thenearest neighbor function,N(x,P ′) := lfs0(x, C′), returns the distance fromx to its
second nearest neighbor inP ′.

The above definitions do not require any distinction betweenthe input PLC and its refinement.
However, we state the definitions in this way as local featuresize functions will usually be
evaluated with respect to some initial PLC while the nearestneighbor function will be analyzed
on the intermediate or resulting triangulations. Figure 2.1 depicts the feature size at the vertex of
a mesh during a possible refinement. Note that the feature size is defined at all points inRd, not
just vertices of the mesh. Each of these functions is Lipschitz (with constant1). For a fixed PLC,
local feature size is strictly positive while mesh feature size can equal zero.

If the argument supplied to any of the above feature size functions is a set of points, rather
than a point, then the result is defined to the be infimum of the function over the set,

lfsi(s, C) := inf
x∈s

lfsi(x, C).

To simplify the notation in the most common cases, a few conventions will be followed.

7



q

lfs(q)

lfs0(q)
mfs(q)

N(q)

Figure 2.1: Example of sizing functions in Definition 2.1.6 for a 2D PLC. The black points
represent input points while the white points represent vertices inserted during the refinement.

Conventions
• If the PLC argument is omitted in the mesh or local feature size function, it is assumed

to be the input complex, e.g. lfsi(x) := lfsi(x, C).

• If the vertex set argument is omitted in the nearest neighborfunction, it is assumed to be
the vertex set of the current refined complex, e.g.N(x) := N(x,P ′).

• If the dimension argument is omitted in the mesh or local feature size function, it is
assumed to be(d− 1), e.g. lfs(x, C) := lfsd−1(x, C).

Often it will be important to show identical estimates on thelocal feature size of end segments
and the mesh feature size of non-end segments. It is useful torefer to these two cases with the
same notation.

Definition 2.1.7. Thei-feature sizeof segments is defined as follows.

fsi(s) =

{

lfsi(s) if s is an end segment,

mfsi(s) if s is a non-end segment.

Given simplexs in C′, point x is called ani-feature size witnessfor s if x is contained in a
feature ofC of dimension at mosti which is disjoint froms. Given simplexs in C′, pointx is
called alocal feature size witnessfor s if x is contained in a feature ofC which is disjoint from
another feature ofC containings. Simplexs′ is called ai-feature size witness for simplexs if
every point ofs′ is ani-feature size witness fors.

The definition of feature size is closely related to the definition of local gap size used by
Cheng and Poon [11]. The notion ofi-feature size witness is used by recognizing that ifx is an
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i-feature size witness of segments, then

fsi(s) ≤ dist(x, s).

In Chapters 5 and 6, we will consider meshing particular inputs which include curved, rather
than straight, features. These complexes belong to the class of piecewise smooth complexes
which are defined below.

Definition 2.1.8. A 2D piecewise smooth complex(PSC),C = (P,S), is a pair of sets of input
verticesP and non-self-intersecting smooth input curvesS, such that the boundary points of
each curve ofS are contained inP and the intersection of any two curves ofS is also contained
in P.

Definition 2.1.9. A 3D piecewise smooth complex(PSC),C = (P,S,F) , is a triple of sets of
input verticesP, non-self-intersecting smooth input curvesS, and non-self-intersecting smooth
input facesF such that the boundary of any feature or the intersection of any two features is the
union of other lower-dimensional features in the complex.

The definitions of a refinement of a PSC, a subcomplex of a PSC and local/mesh feature size
are identical to those given for PLCs. This definition of local feature size does not include any
dependence on the curvature or distance to the medial axis ofa curve or surface (as is done in
[20]). While in general local feature size should include this information, the simpler definition
will be sufficient for the simple PSC that will be considered.

The termination and quality guarantees of Delaunay refinement algorithms involve a number
of parameter relating to the input PLC and the triangulationproduced. The notation for these
parameters is given in Table 2.1.

Table 2.1: Important parameters for Delaunay refinement algorithms.
α The smallest angle between any two adjacent features of the input

complex.
α1 The smallest angle between an input segment and any other adjacent

input feature of the input complex.
α2 (3D only) The smallest angle between any two adjacent input faces.
τ The radius-edge threshold for the Delaunay refinement algorithm.
κ (2D only) The minimum angle threshold for the Delaunay refine-

ment algorithm.

2.2 Ruppert’s Algorithm

Ruppert’s algorithm [39] serves as a prototype for the algorithms we will consider. In the most
basic form, the algorithm accepts a non-acute 2D PLC as inputand produces a quality, conform-
ing Delaunay triangulation. Quality is achieved in the sense that all triangles satisfy a uniform
minimum angle condition via a bound on the radius-edge ratio.
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Ruppert’s algorithm is given in Algorithm 2.1. In this description, a segments is called
“encroached” if there is any vertex in its diametral ball. A triangle is poor quality if has a radius-
edge ratio larger thanτ .

Algorithm 2.1 Ruppert’s Algorithm
Compute the Delaunay triangulation of the input points.
Queue all encroached segments and poor quality Delaunay triangles.
while the queue of simplices is nonemptydo

Pop the front simplexs from the queue.
if s is a segmentthen

Insert the midpoint ofs.
end if
if s is a trianglethen

Compute the circumcenterc of s.
if c encroaches upon a segments′ then

Queues′.
else

Insertc into the Delaunay triangulation.
end if

end if
Remove any queued triangles which no longer exist in the triangulation.
Queue any newly encroached simplices and poor quality triangles.

end while

An important advance in Ruppert’s work is the observation that the insertion radius of every
vertex added to the mesh is bounded below by the local featuresize (which is a strictly positive
function). This fact is the key in proving that the size of allresulting triangles in the mesh are
proportional to the local feature size of the input.

Theorem 2.2. If α ≥ π
2

and τ >
√

2 [or sinκ < 1
2
√

2
], Ruppert’s algorithm terminates. The

resulting triangulation conforms to the input, is graded tothe local feature size and only contains
triangles with radius-edge ratio less thanτ [or all angles of resulting triangles are at leastκ].

Remark.This theorem can be extended to allowα ≥ π
3

[42]. The largest known input angle
which causes the algorithm to fail isα = 2π

7
[35].

Proof. Termination and grading are implied by the following inequality which is shown induc-
tively at all vertices which are proposed for insertion intothe mesh.

lfs(q) ≤















rq if q is an input point,

C1rq if q is a segment midpoint,

C2rq if q is a circumcenter.
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For each of the input points, the inequality above is immediate as

lfs(q) ≤ lfs0(q) ≤ rq.

This provides the base case for the remaining inductive proof.
We will find appropriate constantsC1 ≥ C2 such that this inequality holds. Further restric-

tions onC1 andC2 will be addressed throughout the argument. Consider the following cases
corresponding to different types of vertices inserted by the algorithm.

Case 1. Let q be a midpoint of some subsegment to be inserted and further that the point en-
croaching the subsegment is also on a segment. By the requirement that the input be non-acute,
the encroaching point is on a disjoint segment. Thus, lfs(q) ≤ rq, soC1 ≥ 1 must be required.

Case 2. Let q be the circumcenter of poor quality trianglet which is proposed for insertion. Let
p be the newer vertex on the shortest edge oft. Thenrp is at most the length of this short edge
which is less than|p−q|

τ
, sincet is a poor quality triangle. Now, the Lipschitz property of the local

feature size can be applied.

lfs(q) ≤ lfs(p) + |p− q|
≤ C1rq + |p− q|

≤
(

C1

τ
+ 1

)

|p− q|

≤
(

C1

τ
+ 1

)

rq.

This gives the requirement

C2 ≥
C1

τ
+ 1. (2.1)

Case 3. Let q be a midpoint of a subsegment which is inserted due to an encroaching (but
rejected) circumcenter,c. Local feature size atq is estimated through this pointc.

lfs(q) ≤ lfs(c) + |c− q|
≤ C2rc + |c− q|
≤
(

C2

√
2 + 1

)

rq.

This gives the requirement
C1 ≥ C2

√
2 + 1. (2.2)

Combining the restrictions in the last two cases, it is possible to choose anyC2 large enough
to satisfy the below inequality and then chooseC1 as follows.

C2 ≥
1 + τ

τ −
√

2
,

C1 :=
√

2C2 + 1.
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q

q0

xs

Figure 2.2: Figure for the proof of Theorem 2.3. The shaded region must containq0 and is a
subset of the diametral disk ofs.

These values are only valid whenτ >
√

2. This restriction cannot be lifted without modifying
the algorithm and a much more thorough analysis [30].

The algorithm only terminates if no triangles are skinny andall subsegments are not en-
croached, so we concluded that the resulting mesh conforms to the input and contains no skinny
triangles.

The previous theorem shows that the size of the mesh producedby Ruppert’s algorithm is no
smaller than (a constant times) the local feature size of theinput. It can also be shown that the
mesh produced is no larger than (a different constant) timesthe local feature size of the mesh.
The simplest example of a theorem of this type is given below.While this is not the strongest
statement which can be shown in this case, it is similar to upcoming results in Chapters 3 and 4.

Theorem 2.3. If α ≥ π
2

and τ >
√

2 (or sinκ < 1√
2
), following the termination of Ruppert’s

algorithm, the following inequality holds for any input vertexq0 of the mesh:

N(q0,P ′) ≤
√

2 lfs(q0).

Proof. Let q0 be an input vertex such thatN(q0,P ′) >
√

2 lfs(q0). Since

N(q0,P ′) = lfs0(q0, C′) ≤ lfs0(q0),

the local feature size atq0 must be realized by an input segment disjoint fromq0. Letx ∈ s ∈ S ′

be a point on a segment disjoint fromq0 such that lfs(q0) = dist(q0, x). Further, letq ∈ P ′ be
the endpoint ofs nearest toq0 as depicted in Figure 2.2.

2 lfs(q0)
2 ≤ N(q0,P ′)2

≤ |q0 − q|2

= lfs(q0)
2 + |x− q|2

Thus|x−q0| = lfs(q0) ≤ |x−q| which implies thatq lies in the diametral disk ofs. Since no
segments are encroached when Ruppert’s algorithm terminates, conclude that the desired bound
holds at termination.
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2.3 The Generic Delaunay Refinement Algorithm

There are several ways to modify and generalize Algorithm 2.1. This is essential to weaken the
restriction in Theorem 2.2 to allow acute input. All of the meshing algorithms which we will
consider (and effectively all algorithms which can be labeled “Delaunay refinement”) match the
form of Algorithm 2.2.

Algorithm 2.2 Delaunay Refinement
Create an initial Delaunay triangulation.
Queue all unacceptable simplices.
while the queue of simplices is nonemptydo

if it is safe to split the front simplexthen
Take an action based on the front simplex.
Queue additional unacceptable simplices.

end if
Remove the front simplex from the queue.
Dequeue any queued simplices which no longer exist.

end while

To specify an algorithm from Algorithm 2.2, it necessary to describe the following state-
ments.

Action Where should a vertex (a Steiner point) be inserted to “split” a simplex?
Should other (usually lower dimensional) features be queued for splitting?

Priority In what order should be queue be processed?
Unacceptability Which simplices are unacceptable?

Safety Which simplices are safe to split?

Additionally, we require that each of these operations involve only local computations in
the Delaunay triangulation of the current point set. In our view, any algorithm which matches
the form of Algorithm 2.2 and can be updated based on the localDelaunay triangulation is a
Delaunay refinement algorithm and any algorithm that does not fit these to requirements is not.

First, we consider how Ruppert’s algorithm (Algorithm 2.1)specializes Algorithm 2.2. The
key four descriptions are given in Algorithm 2.3.

Some of these specifications for Ruppert’s algorithm are so simple that they can be easily
overlooked. However, it is important to generalize Delaunay refinement algorithms in each of
the four ways considered above for different purposes. Hereis a brief description of how this
has been done in the literature. This generic algorithm covers virtually all algorithms which are
considered Delaunay refinement.
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Algorithm 2.3 Ruppert’s Algorithm

Action If triangle’s circumcenter encroaches upon a segment, the encroached upon
segment is added to the queue. Otherwise, when a simplex is processed, its
circumcenter is inserted.

Priority Segments are processed before triangles.
Unacceptability A segment is unacceptable if it has a nonempty diametral disk. A triangle

is unacceptable if it has a radius-edge ratio greater thanτ .
Safety It is safe to split any simplex.

2.3.1 Action

There are many different actions that the mesh can take to remove bad simplices. Chew’s first
Delaunay refinement algorithm [13] used the insertion of circumcenters to remove poor quality
triangles from the mesh. Inserting the circumcenter is a natural choice for Delaunay triangula-
tions since this gives the furthest guaranteed distance between the point and any others in the
mesh based only on the simplex which is being split. Ruppert’s algorithm added the idea of
yielding to lower dimensional features. Off-center vertices and general selection regions have
also been studied [12, 23, 45] using the same yielding procedure as Ruppert’s algorithm. An
example of a very different action taken by the algorithm canbe seen with Chew’s second De-
launay refinement algorithm [14]. This method maintains a constrained Delaunay triangulation,
involves a different yielding procedure and occasionally removes vertices from the mesh follow-
ing certain midpoint insertions. The algorithm of Miller, Hudson, and Phillips includes a yielding
procedure in which circumcenters yield to input vertices which have not been inserted into the
mesh [21].

2.3.2 Priority

The priority queue for most Delaunay refinement algorithms involves prioritizing lower dimen-
sional simplices before higher dimensional ones [28, 39]. For time efficient algorithms, this
priority queue must be modified [1, 21, 27], typically requiring simplices queued for quality to
be processed before those queued based on encroachment. Prioritizing queued simplices of equal
dimension (often by circumradius) has also been used in somealgorithms [27, 38].

2.3.3 Unacceptability

There are typically two types of unacceptability criteria:encroachment criteria which ensure that
the required input features exist in the refined mesh, and quality requirements which are desirable
of the output mesh. For the encroachment criteria, the most common approach involves asking if
a simplex has a nonempty circumball. This is useful since anysimplex with a empty circumball
must appear in the Delaunay triangulation. Methods which utilize constrained Delaunay triangu-
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lations often relax this requirement and consider protecting a smaller lens around each segment
or ignore an explicit encroachment criteria all together [4, 14].

The second type of unacceptability criteria, the quality criteria, is usually based on the radius-
edge ratio (or the closely related Voronoi quality) of the mesh. Quality also may be specified via
a user defined sizing parameter.

2.3.4 Safety

Meshing non-acute domains does not typically require any check that a simplex is safe to split.
When handling domains with small angles, typical approaches involve not splitting triangles
based on quality if they are near a skinny input angle in some sense [30, 41]. In 3D, the Tetgen
code [43, 44] relies on a similar principle for determining when to stop refining near small input
angles.
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Chapter 3

Estimating Feature Size in 2D

We develop an algorithm for estimating the local feature size of a mesh at input points of a 2D
PLC. This estimate is important in order to ensure the termination of quality Delaunay refinement
algorithms in the presence of acute angles between adjacentinput segments. While there are a
number of effective algorithms for quality mesh generationin 2D [30, 41], this algorithm is
developed as a natural predecessor to the 3D version given inChapter 4.

Local feature size is estimated at each input vertex in termsof the distance to its nearest De-
launay neighbor in the resulting triangulation. This is a local quantity in the maintained Delaunay
triangulation. The algorithm is very similar to Ruppert’s algorithm with two key differences: tri-
angles are not split based on radius-edge quality and certain segments are not split to prevent
infinite encroachment sequences near acute angles.

3.1 2D Algorithm

The algorithm for estimating feature size is divided into two steps. These steps are labeled
according to the highest dimensional features in the input complex which are considered in the
step. Thus Step 0 below only depends upon the input vertices while Step 1a involves input
vertices and segments. This convention will be followed with all of the algorithms in the next
few chapters.

Algorithm 3.1 Estimate Feature Size 2D
(Step 0) Compute the Delaunay triangulation of the set of input vertices.
(Step 1a) Estimate lfs at all input points via Delaunay refinement.

3.1.1 Step 0

Compute the Delaunay triangulation of the set of input vertices.
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Step 0 involves computing the Delaunay triangulation of theset of input points. Following
this computation, there is a simple estimate on lfs0 at each of the input points.

Proposition 3.1. Following Step 0, for each vertexq0 in the input PLC,N(q0) = lfs0(q0).

3.1.2 Step 1a

Estimate lfs at all input points via Delaunay refinement.

Step 1a of Algorithm 3.1 is a Delaunay refinement algorithm specified by the four rules given
in Algorithm 3.2. It is important to recognize that adjacentsegments havenotbeen split to equal
lengths as a preprocess to this algorithm. To ensure termination, a segments is not allowed to
split if the encroaching vertex is on a segment adjacent tos and the resulting segments are shorter
than the shortest segment in Spind(s). This criteria is reflected in the unacceptability rule.

Algorithm 3.2 Estimate Feature Size 2D - Step 1a

Action Insert the circumcenter of a segment.
Priority Simplices (only segments in this case) may be processed in any order.

Unacceptability A segments is unacceptable if it has an endpointq with a Delaunay neigh-
bor p inside the diametral disk ofs and eitherp is a 1-feature size witness
for s or s is more than twice the length of the shortest segment in Spind(s).

Safety It is safe to split any simplex.

First, it is shown that the algorithm terminates and that thedistance to the nearest neighbor
provides an appropriate upper bound on local feature size inthe resulting mesh. This estimate is
similar to those shown in Ruppert’s analysis.

Theorem 3.2.Algorithm 3.1 terminates. For any input vertexq0,

1

2
lfs(q0) ≤ N(q0,P ′)

holds throughout the algorithm.

Proof. Let q0 ∈ P be any input vertex. Initially,N(q0) = lfs0(q0) ≥ lfs(q0) so the base case
holds. Suppose a vertexq is inserted in the mesh as the midpoint of segments and q is the
closest neighbor to an input vertexq0. If s is disjoint fromq0, then lfs(q0) ≤ |q0 − q|. If s is
incident toq0, then (by the unacceptability rule) the vertex encroachings, denotedq′, must be on
a segment which is disjoint fromq0. Thus, lfs(q0) ≤ |q0 − q′| ≤ 2|q0 − q|. This bound ensures
the termination of the algorithm.

Next, it can be shown that the distance from an input point to its nearest neighbor in the
resulting mesh also provides a lower bound on the local feature size.
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q0

Figure 3.1: Diagram for proof of Theorem 3.3

Theorem 3.3.Upon the termination of Algorithm 3.1,

N(q0,P ′) ≤
√

2 lfs(q0)

for any input vertexq0 ∈ P.

Proof. If N(q0,P) = lfs(q0) (i.e. the local feature size atq0 is realized by an input point), then
the statement follows by

N(q0,P ′) ≤ N(q0,P) = lfs(q0).

Otherwise, lfs(q0) = dist(q0, s) for some segments ∈ S disjoint from q0 (i.e. the local
feature size ofq0 is realized by a segments). Let x be the nearest point on segments to q0. Let
s′ ∈ S ′ be a subsegment ofs containingx and letq be the nearest endpoint ofs′ to q0. This
situation is depicted in Figure 3.1.

Now, suppose thatN(q0,P ′) >
√

2 lfs(q0). Then the following inequalities hold.

2 lfs(q0)
2 < N(q0,P ′)2

< |q0 − q|2

= lfs(q0)
2 + |x− q|2.

Conclude that|x − q0| = lfs(q0) ≤ |x − q|. This inequality implies thatq0 lies in the diametral
disk of s. So eithers is unacceptable orq is an input vertex and there is a vertexp ∈ P ′ in
B(q0q) \B(q0, |x− q|) which lies on a segment adjacent tos sinceq0 andq cannot be Delaunay
neighbors. The ballB(q0, |x− q|) must be empty by the assumption on the local feature size of
q0. Thus vertexp ∈ B(q0q) \B(q0, |x− q|) and it follows that|p− q| ≤ |x− q| ≤ |s|

2
as seen in

Figure 3.2. Thus|s| is at least double the length of the segment betweenp andq which is in the
spindle ofs. Sos is unacceptable.

Since upon termination there are no unacceptable segments,the desired bound must hold.

The constants in Theorem 3.2 and Theorem 3.3 are both sharp and independent of the small-
est input angle in the mesh. Note that the inequality in Theorem 3.3 is identical to that in Theo-
rem 2.3 for Ruppert’s algorithm in the non-acute case: acuteinput angle slightly complicate the
algorithm but do not weaken the result.
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Figure 3.2: Ifs is an end segment, thenB(q, |x− q|)⋂ (B(q0q) \B(q0, |x− q0|)) = ∅.
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Chapter 4

Estimating Feature Size in 3D

The idea of the previous chapter can be extended to 3D Delaunay refinement. In this case, it
becomes important to estimate local feature size and 1-feature size on all segments (the(d− 2)-
dimensional features) of the input complex. While the distance from an input vertex to its nearest
neighbor was used to estimate feature size in 2D, the 3D analogy uses the length of segments in
the resulting mesh. Following the algorithm, the length of asegment provides a suitable bound
of the feature size at any point on the the segment.

4.1 3D Algorithm

Algorithm 4.1 will yield the desired feature size estimatesin terms of segment lengths. Step 1b
and Step 2b are specific Delaunay refinement algorithms whichwill be described later. Each of
the other steps is a simple procedure which occurs in a singlepass over the Delaunay triangula-
tion.

Algorithm 4.1 Estimate Feature Size 3D
(Step 0) Compute the Delaunay tetrahedralization of the setof input vertices.
(Step 1a) Split adjacent segments at equal lengths based on 0-local feature size.
(Step 1b) Estimate fs1 on all segments via Delaunay refinement.
(Step 2a) Split segments to improve the 1-feature size estimate.
(Step 2b) Estimate lfs on all segments via Delaunay refinement.

The following two theorems demonstrate that in the resulting PLC the length of each segment
is a good estimate for the local feature size or 1-feature size of that segment. The first is a
lower bound on segment lengths. This theorem will be shown bytechniques used in the standard
analysis of Ruppert’s and other Delaunay refinement algorithms. The second theorem is an upper
bound on the lengths of the segments. Theorems of this type have generally not been shown in
previous analysis.
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Figure 4.1: This illustrative example consists of 3 faces: one large square which is slightly below
two smaller squares which are side by side.

Theorem 4.1.At any point during Algorithm 4.1, all segmentss ∈ S ′ satisfy

min

(

1

16
fs1(s),

1

4
lfs(s)

)

≤ |s|.

Theorem 4.2.Following the termination of Algorithm 4.1, all segmentss ∈ S ′ satisfy

|s| ≤ min

(√
2 fs1(s),

5

3
lfs(s)

)

.

In order to show these two theorems, output conditions on thePLC are determined following
each step of the algorithm. Step 2b will yield a mesh satisfying precisely these conditions in the
theorems.

We illustrate this algorithm by considering the results of each step on a simple PLC. The
example consists of three squares (contained inside a sufficiently large bounding box): one large
square which is slightly below two coplanar, disjoint squares as seen in Figure 4.1. Observe that
the small feature size between the sides of the two small squares will be realized in Step 1b,
while the feature size between the small planes and the largeplane will be realized in Step 2b.

4.1.1 Step 0

Compute the Delaunay tetrahedralization of the set of inputvertices.

Computing the Delaunay tetrahedralization of the input points is a natural first step in many
Delaunay refinement algorithms. Typically, this is done with the Bowyer-Watson algorithm [5,
46], since this uses the routines for incremental insertionof vertices which are necessary through-
out the later steps of the algorithm. In our running example,this simply leads to the Delaunay
triangulation of each of the squares as seen in Figure 4.2.

Proposition 4.3.Following Step 0, the following inequalities hold at all input points of the mesh:

lfs2(q0) ≤ lfs1(q0) ≤ lfs0(q0) = N(q0,P ′).
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Figure 4.2: (Left) Example mesh following Step 0. (Right) Enlarged mesh of one of the smaller
squares.

While this gives a poor run-time in the worst cases, it is common to many Delaunay refine-
ment algorithms, especially those which handle small angles in the input in both two and three
dimensions [9, 28, 42, 43, 44].

4.1.2 Step 1a

Split adjacent segments at equal lengths based on 0-local feature size.

This step consists of a single pass of each of the input points. For each input pointq0, all
segments containing this point are split at a distance ofN(q0,P ′)

3
away fromq0. The result of this

step on the running example can be seen in Figure 4.3. Notice that small faces are split at a small
distance on one side due to the close proximity of their corners to each other.

After completing Step 1a, a number of properties hold which are summarized in the next
proposition.

Proposition 4.4. Following Step 1a, the following hold.

(I) N(q0,P ′) = 1
3

lfs0(q0) holds for all input pointsq0 ∈ P.

(II) Adjacent segments do not encroach each other.

(III) If sn is a non-end segment andse is an adjacent end segment,|sn| ≥ |se|.
(IV) If se ands′e are end segments ands′e /∈ Spind(se), then dist(se, s

′
e) ≥ max(|se|, |s′e|).

Property IV is particularly important. As segments in the mesh are refined further, this prop-
erty continues to hold and thus will hold throughout the remaining steps of the algorithm. This
ensures that spindles of end segments corresponding to different input point are sufficiently far
apart.
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Figure 4.3: (Left) Example mesh following Step 1a. (Right) Enlarged mesh of one of the smaller
squares.

4.1.3 Step 1b

Estimate fs1 on all segments via Delaunay refinement.

The goal of this stage is to bound the length of each segment inthe mesh by the 1-feature size
of that segment. This occurs via a Delaunay refinement algorithm specified in Algorithm 4.2.

Algorithm 4.2 Estimate Feature Size 3D - Step 1b

Action Insert the midpoint of a segment.
Priority Longer segments are processed first.

Unacceptability Segments is unacceptable if there is an endpointq of a segment in Spind(s)
with Delaunay neighborp such thatp is a 1-feature size witness forq and
|q − p| < |s|.

Safety It is safe to split any segment.

By the specification given, checking if a simplex is unacceptable requires that only Delaunay
neighbors of the endpoints of the segment in question need tobe queried. This is an important
property of Ruppert’s algorithm that we carefully maintain.

Consider the result of applying this step to the earlier example as seen in Figure 4.4. Notice
that the main effect is that the nearby edges of the two small squares refine to realize the feature
size. The other segments are only split a few times.

First, we show that the algorithm described terminates and that the length of each segment is
bounded below by its feature size. This argument uses the same arguments as the “usual” proofs
of termination and grading of typical Delauany refinement algorithms.
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Figure 4.4: (Left) Example mesh following Step 1b. (Right) Enlarged mesh of one of the smaller
squares.

Lemma 4.5. Throughout Step 1b, any segments in the refinement satisfies

1

4
fs1(s) ≤ |s|.

Proof. Inductively, we show that the lower bound holds at all segments throughout this step.

Base Case. Following Step 1a, any end segment,se, containing input pointq0 has length

|se| =
1

3
lfs0(q0).

The definition of the 1-feature size implies that

lfs0(q0) ≥ lfs1(q0) ≥ lfs1(se) = fs1(se).

Thus|se| ≥ 1
3

fs1(se).
For any initial non-end segment,sn, there is an adjacent end segmentse such that|sn| ≥ |se|.

Sincese contains an input point (which is a 1-feature size witness for sn), it follows that

|sn| ≥ |se| ≥ fs1(sn).

Thus, the lower bound on segment lengths holds initially.
The inductive step is shown in two cases corresponding to theinsertion of end segment mid-

points and the insertion of non-end segment midpoints. These cases are depicted in Figure 4.5.

Case 1. Consider an end segmentse from q0 to q′ which is split at midpointq, forming an new
end segments′e and a non-end segments′n. This means that there is a pointp on a disjoint feature
to se which is of distance at most|se| from some adjacent end segment tose.

fs1(s
′
e) ≤ dist(s′e, p) ≤ dist(q0, p) ≤ |se| + |se| = 4|s′e|.
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(a) Case 1

sn

s′np

(b) Case 2

Figure 4.5: Two Cases in Lemma 4.5.

For the non-end segments′n, q0 is a 1-feature size witness. Observe that

fs1(s
′
n) ≤ dist(s′n, q0) = |s′n|,

so the desired inequality holds.

Case 2. Consider non-end segmentsn which is split. This means that there is a feature size
witnessp such that dist(sn, p) ≤ |sn|. Then for either of the new end segments created, denoted
s′n,

fs1(s
′
n) ≤ dist(s′n, p) ≤ |s′n| + |sn| = 3|s′n|.

We conclude that1
4

fs1(s) ≤ |s| for all segments in the mesh created during Step 1b. This
lower bound on feature size of all segments ensures termination of the algorithm.

Next we seek to bound the length of each segment fromabovein terms of the feature size. In
the previous lemma, the ordering of the queue of segments is not necessary. In order to get the
upper bound, an arbitrary order does not work. To see this, consider a mesh including a portion
similar to Figure 4.6(a). If segments to the left are refined first, a situation similar to Figure
4.6(b) could arise. Then, there is a segment on the right sidewhich is longer than its distance
to the input point which is not on the segment. This segment may not see this nearby point on
its Delaunay cavity. Note: this requires another point to block the long segment from seeing the
nearby disjoint point, but this point could be far away and thus not causing the long segment to
split.

By prioritizing the queue by segment length, this situationcannot arise, and it is possible
to bound the resulting segments lengths by 1-feature size. In order to prove this, a number of
geometric facts are necessary.
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(a) Possible partial initial mesh

Not Delaunay Neighbors

Segment Too Long

(b) Possible refinement

Figure 4.6: Lemma 4.9 does not hold without specifying a refinement order.

Proposition 4.6. Let s and s̄ be segments with|s| ≥ |s̄|. If dist(s, s̄) < |s|√
2
, then there are

endpointsp ons and p̄ on s̄ such that|p− p̄| < |s|.

Proof. Suppose that all pairs of endpoints are such that|p− p̄| ≥ |s|. The Pythagorean theorem
and the fact that|s| ≥ |s̄| imply that

dist(p, s̄) ≥
√

3

2
|s|

for either endpointp of s. Again applying the Pythagorean theorem yields that

dist(s, s̄) ≥ |s|√
2

which completes the proof.

The constant above is sharp. Consider two skew segments, thefirst with endpoints(−1, 0, 0)

and(1, 0, 0) and the second between(0,−1,
√

2) and(0, 1,
√

2). Then the distance between the
two segments of

√
2 and the distance between any pair of endpoints is2.

The next proposition characterizes a special property which holds when the spindle of an end
segment contains segments of equal length.

Proposition 4.7. Let se be an end segment such that

|se| = min
s′∈Spind(se)

|s′|

Let sn be a non-end segment on an input segment which is adjacent tose. If |se| > |sn| and
dist(sn, se) ≤ |sn|√

2
, then there are endpoints ofsn andse, given byqn andqe, respectively, such

that |qn − qe| ≤ |sn|.

Proof. Let q0 be the input vertex contained inse. Pickxe ∈ se andxn ∈ sn such that

|xe − xn| = dist(sn, se).
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Sincesn andse are coplanar, at least one of the points (eitherxn or xe) is an endpoint of its
segment. Sincesn andse are not parallel, the choice ofxn andxe is unique. First, we argue that
xn is an endpoint ofsn. This follows because if not, then the nearest point onsn is the nearest
point on the line containingsn to xe. For either endpoint ofse, the nearest point on this line is
at most a distance|se| away fromq0. Sincese is the shortest segment in its spindle, this point
cannot be contained insn.

So, xn must be an endpoint ofsn. Sincexn is a vertex, it will be denotedqn. If xe is an
endpoint ofse, the desired bound holds since by lettingqe be this endpoint, we observe,

|qe − qn| = dist(sn, se) ≤
|sn|√

2
< |sn|.

Otherwise,xe lies in the interior ofse. Leta,b,c andd denote the distances shown in Figure 4.7(a).
Note thatc = dist(sn, se) andb+ d = |se|. Also,a ≥ |se| and thus

∠q0qeqn ≥ ∠q0qnqe. (4.1)

Moreover, the following inequalities hold.

|se|2 ≤ a2

= b2 + c2

≤ b2 +
|sn|2

2

≤ b2 +
|se|2
2

Thusb2 ≥ |se|2
2

≥ c2. This means that∠qnq0qe ≥ π
4
. Combining this with (4.1) implies that

∠q0qeqn ≥ 3π

8
>
π

4
.

This means thatc > d and thus

|qe − qn|2 = c2 + d2 ≤ 2c2 ≤ |sn|2

which completes the proof.

Proposition 4.8. Let s be a segment with endpointq such that

|s| = min
s′∈Spind(s)

|s′|.

Let p be a Delaunay neighbor ofq such thatp is not a feature size witness fors, p is not an
endpoint of any segment in the spindle ofs, and |q − p| < |s|. Thenp belongs to a segmentsp

such that|sp| ≤ |q − p|.
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(a) Proposition 4.7
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Figure 4.7: Diagrams for the proofs of two propositions.

Proof. If p lies on the same input segment asq, then there clearly existssp betweenp andq such
that|sp| ≤ |p− q|.

Otherwise,s is an end segment andp lies on an adjacent input segment, denoteds0. Let x
be the nearest point on this adjacent input segment toq. The result holds due to the following
sequence of inequalities:

|q − p| > |x− p| > |q′ − p| ≥ |sp|.

See Figure 4.7(b).

With these facts, it is possible to show the desired bound on segments following Step 1b.

Lemma 4.9. At the end of Step 1b, all segments satisfy

|s| ≤
√

2 fs1(s).

Proof. The following statement is shown inductively.

Inductive Hypothesis: If segments is not queued and|s| >
√

2 fs1(s), then the following two
statements hold.

1. If q0 is an input point,q0 /∈ s andq is an endpoint ofs, then|q − q0| ≥ |s|.
2. If s̄ is a 1-feature size witness fors such that dist(s, s̄) < |s|√

2
, q is an endpoint ofs, and

q̄ is an endpoint of̄s, then|q − q̄| ≥ |s|.

The split size property below follows from the inductive hypothesis. From this property, it
will be clear that the inductive hypothesis is sufficient to imply the inequality in the lemma. Also,
when proving the inductive hypothesis, it will be useful to apply the split size property at earlier
steps in the algorithm, rather than use the inductive hypothesis directly.

Split Size Property. If the inductive hypothesis holds, any longest segments such that
|s| >

√
2 fs1(s) is on the queue.
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Assuming the inductive hypothesis, we show that the split size property holds. Lets be a
segment such that|s| >

√
2 fs1(s) ands is not on the queue. Then by the first property of the

inductive hypothesis, the feature size ofs is not realized by an input point. Thus, there exists a
segment̄s which is a 1-feature size witness fors and dist(s, s̄) = fs1(s). By Proposition 4.6,
s̄ is longer thans (otherwise the segments would have endpoints that are nearby, which violates
the inductive hypothesis). The inductive hypothesis and Proposition 4.7 imply thats must be
a 1-feature size witness for̄s (since otherwisēs must be an end segment adjacent to the input
feature containing non-end segments). Combining these facts yields

|s̄| > |s| >
√

2 fs1(s) ≥
√

2 fs1(s̄).

We conclude thats is not the longest segment failing the feature size bound.

From the split size property, conclude that if the inductivehypothesis holds, then the upper
bound on feature size of segments holds when the algorithm terminates. Thus the above inductive
hypothesis is sufficient to imply the lemma. Next, we show that the inductive hypothesis holds
in the base case.

Base Case. First consider initial end segments. Letq0 be an input vertex contained in end seg-
mentse. Proposition 4.4 ensures that for all other verticesq̄ at the end of Step 1a which are
not on an end segment adjacent tose, |q0 − q̄| ≥ 2|se|. Thus, the inductive hypothesis holds
for all end segments. Next, consider non-end segments. Letsn be a non-end segment between
end segmentsse ands′e. Any vertex in the mesh which is not an endpoint ofsn is a 1-feature
size witness forsn. If there is another vertex in the mesh which is of distance less than|sn| to
an endpoint ofsn, thensn must be queued by some 1-feature size witness which is a Delaunay
neighbor to an endpoint ofsn.

Next, we proceed to the inductive step. The inductive hypothesis must be checked on all
segments. There are two types of segments for which this mustbe verified: segments that existed
before the most recent vertex insertion and segments that where formed by this insertion.

Case 1. Consider anynewly formed segments and supposes violates the inductive hypoth-
esis. If the first criterion of the inductive hypothesis fails, let q̄ denote the input point such
that |q̄ − q| < |s| for some endpointq of s. Otherwise, the second criterion fails meaning that
|s| >

√
2 fs1(s), s is not on the queue, and (by Proposition 4.6) there is a pointq̄ and endpointq

of s such that|q − q̄| < |s| andq̄ is a feature size witness fors. In either case,̄q is a feature size
witness fors and the distance betweenq andq̄ is less than|s|. Sinces is not queued, this means
thatq andq̄ cannot be Delaunay neighbors.

Now by the Delaunay property there is some pointp in B(qq̄) which is a Delaunay neighbor
of q. Again,p cannot be a 1-feature size witness fors, as this would causes to be queued.

If s is an end segment, notice that no suchp can exist. Every non-end segment adjacent to a
segment in the spindle ofs has length of|s| or 2|s|, and thus there is no pointp on one of these
segments at a distance of less than|s| which is not an endpoint of some segment in Spind(s).
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If s is a non-end segment, consider the segmentŝwhich was split formings. If q̄ is a 1-feature
size witness for̂s, thenŝ fails the desired feature size bound (see Figure 4.8). However vertexp,
which was inserted beforeq, was inserted as the midpoint of a segment of length2|p− q| < 2|s|.
This violates the split size property (and thus the inductive hypothesis). Otherwisês is an end
segment and̄q lies on an adjacent input segment (see Figure 4.9). Letq0 be the input vertex which
is an endpoint of̂s. In this case, there is a vertex, denotedp̄, on the input segment containinḡq
such that

|q − q0| = |p̄− q0|.

The diametral ball betweenq andp̄ only intersects line containing segments in the interior ofs.
So q has a Delaunay neighbor in this ball and this Delaunay neighbor must be a 1-feature size
for s. Thuss is unacceptable.

sq

p

q̄

Figure 4.8: Diagram for Case 1 in whichs is a non-end segment andp preventsq and q̄ from
being Delaunay neighbors.

sq

q0p

q̄
p̄

ŝ

Figure 4.9: Diagram for Case 1 in whichs is a non-end segment formed as the result of the split
of an end segment.

Case 2. Consider any segments which is not newly formed. Again we assume this segments

fails the inductive hypothesis and seek a contradiction. The first criteria of the inductive hypothe-
sis cannot fail as the input vertices and endpoints ofs did not change in the most recent insertion
to the mesh (and thus this statement holds by the inductive hypothesis). So, to fail the inductive
hypothesis,s cannot be queued,|s| >

√
2 fs1(s), and there is a segments̄ which is a 1-feature

size witness fors, dist(s, s̄) ≤ |s|√
2
, ands̄ has an endpoint̄q is such that|q̄ − q| < |s| for some

endpointq of s. This pointq̄ must be the most recent point added to the mesh since the inductive
hypothesis held at the previous step and thus applies tos.
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Let ŝ denote the super-segment ofs̄ which was split by the insertion of̄q and letq′ denote the
unlabeled endpoint ofs. Next, we possibly relabel̄s andq if there is a better selection for our
purposes.

(Relabel 1) By possibly relabeling,̄s can be selected to be the subsegment ofŝ which is closer
to s. This swap can be made because if the original selection ofs̄ was incorrect,
then the closer subsegment also satisfies the same set of necessary properties. Then
the nearest point on̂s to s must be in the interior of̂s since dist(s, ŝ) ≤ |s|

2
while

dist(q, ŝ) > |s|√
2

and dist(q′, ŝ) > |s|√
2

(by the inductive hypothesis).

(Relabel 2) Supposeq′ is the nearest point ons to s̄ and|q′ − q̄| ≤ |s|. Then replaceq by q′.

Sinces is not on the queue, thenq andq̄ cannot be Delaunay neighbors. As in Case 1,q must
have a Delaunay neighbor inB(qq̄), denotedp, which cannot be a 1-feature size witness forq. If
p is the endpoint of some segment on the spindle ofs, replaceq with p ands with the segment in
Spind(s) which containsp. This news must have the same length as the originals as otherwise
s would be queued. The Delaunay property can be applied again since the newq andq̄ cannot be
neighbors. This can be repeated until a pointp is found which is not the endpoint of a segment in
Spind(s), lies inB(qq̄) and is not a 1-feature size witness fors. This configuration is depicted in
Figure 4.10. Asp cannot be a 1-feature size witness fors, p cannot be an input point and thusp
belongs to some segmentsp.

s q

p

q̄

q′

sp

s̄

ŝ

Figure 4.10: Segments fails the inductive hypothesis,̄q is a nearby feature size witness tos and
p is not a 1-feature size witness fors.

Next, we show thats is a 1-feature size witness fors̄. If not, s must be a non-end segment on
an input feature which is adjacent tos̄ (sinces̄ is a 1-feature size witness fors). In this situation,
p cannot exist since it would lie in the end segment adjacent toq (which is in Spind(s̄)). See
Figure 4.11. Thuss is a 1-feature size witness fors̄.

Now, we will utilize the Delaunay property, the split size property and a couple geometric
facts to assert the following inequalities:

|s| > |q − q̄| > |q − p| > |sp| ≥ |s̄| ≥ |s|
2
.
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s

q

q̄

s̄

ŝ

Figure 4.11: Ifs is a non-end segment ands̄ is an end segment,p cannot exists as it must lie in
the end segment adjacent toq.

Each of these inequalities is now justified.

(i) |s| > |q − q̄| follows from the assumption thats fails the inductive hypothesis.

(ii) |q − q̄| > |q − p| follows from the construction ofp and the Delaunay property.

(iii) |q − p| > |sp| is a result of Proposition 4.8.

(iv) |sp| ≥ |s̄| follows from the split size property at the time whenp was inserted in the mesh.

(v) |s̄| ≥ |s|
2

is a result of the split size property beforeq̄ is inserted in the mesh.

Finally, a contradiction will be achieved by showing|s̄| ≥ |q − q̄| in three different subcases.

Subcase A. Suppose thatq is the nearest point ons to s̄. Letting x̄ be the nearest point on̄s to s
as in Figure 4.12(a), observe that

|s|2
2

+ |x̄− q̂|2 > |q − x̄|2 + |x̄− q̂|2 = |q − q̂|2 ≥ |s|2.

Thus,|x̄−q̂| > s√
2
> |q−x̄|. See Figure 4.12(a). Then|s̄| can be estimated using the Pythagorean

theorem:

|s̄|2 ≥ |q̄ − x̄|2 + |x̄− q̂|2

> |q̄ − x̄|2 + |q − x̄|2

= |q − q̄|2.

Thus|s̄| ≥ |q − q̄|.

Subcase B. Let the nearest point ons to s̄, denotedx, be in the relative interior ofs. In this case,
note that the nearest points between the lines containings ands̄ occur in the segmentss ands̄.
This means that|x− x̄| is orthogonal tos ands̄.

Let P be the plane containinḡswhich is orthogonal to|x−x̄| and letπ denote the projection of
points into planeP , depicted in Figure 4.12(c). Letr be the radius of the diskD = P ∩B(q, |s|)
so r2 + |x− x̄|2 = |s|2. Then q̄ ∈ D (by the failure of the inductive hypothesis) andq̂ /∈ D
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q

s̄x̄q̄ q̂

≥ |s|

< |s|√
2

< |s|

(a) Subcase A

q′

s̄q̄ q̂

≥ |s|≥ |s|

< |s|√
2

(b) Subcase C

π(s) π(q)

s̄

x̄

q̄

q̂

D

r

a

b

(c) Subcase B

Figure 4.12: Diagram for Case 2 of Lemma 4.9
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(since|s̄| ≥ |s|). For an appropriate pointp to exist,(x − q) · (q̄ − π(q)) < 0. If s is a non-end
segment, this is a result of the fact thatp cannot lie in the interior ofs and this does not lie in
π(s). In the case of an end segment,q′ is an input point and the distance fromq′ to p must be
at least3

2
|s|, since|sp| ≥ |s|

2
. The law of cosines gives thatcos(∠pπ(q)π(q′)) ≤ −1

4
and thus

(x− q) · (q̄ − π(q)) < 0 holds.
Let a be the length of the component ofq̄ − q in the direction ofs and letb be the length of

the component ofq − q̄ which is orthogonal to boths andx − x̄ as seen in Figure 4.12(c). This
gives the following sequence of inequalities:

|s̄|2 = |q̄ − q̂|2 ≥ (r + a)2 + b2

> r2 + a2 + b2

≥ |s|2
2

+ a2 + b2

≥ |x− x̄|2 + a2 + b2

= |q − q̄|2.

Thus we have achieved the desired inequality,|s̄| > |q − q̄|.

Subcase C. Suppose thatq′ is the nearest point ons to s̄ as depicted in Figure 4.12(b). By
(Relabel 2), we can conclude that the distance from each of the endpoints of̄s to q′ is at least|s|.
The minimum distance fromq′ to s̄ is less than|s|√

2
, and so|s̄| > |s|. Combining with inequality

(i), this implies that|s̄| > |q − q̄|.
The inequality|s̄| > |q − q̄| holds in each of the three cases, and thus a contradiction has

been reached in each case. Conclude that the inductive hypothesis does hold and the lemma
follows.

The estimates in the Lemma 4.17 will prove essential in the later steps. The current refine-
ment ensures that the length of each segment is a good estimate (up to a factor of4

√
2) of the

1-feature size on the segment.
The proof of the theorem in this step relies on an inductive hypothesis which implies that

the longest segments such that|s| >
√

2 fs1(s) is always on the queue. So ifs is such that
|s| >

√
2 fs1(s) ands is not on the queue, then at all previous steps, any segment split had length

of at least|s|.
Naturally, the proofs would be much simpler if it could be shown that the length of segments

being split formed a nonincreasing sequence. Unfortunately, this is not the case. Consider a
mesh as outlined in Figure 4.13(a). Notice that the length two segment is not queued initially, as
all points are sufficiently far from its endpoints. When the leftmost of the length one segments is
split, this midpoint causes the longer length two segment tobe queued. See Figure 4.13(b).

While the length of segments which are split increases, thisexample does not break the
inductive hypothesis! It is important to notice in this casethat the initial long segment (of length
two which will be denoted bys) has a feature size of1.99 meaning that initially,|s| <

√
2 fs1(s).
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Figure 4.13: Sequence of split segment lengths is not monotone.

4.1.4 Step 2a

Split segments to improve the 1-feature size estimate.

This step is a simple operation: split all segments into fourths. This is needed as the feature
size bound on the segment lengths found in the previous section is not quite strong enough for
the algorithm in the next step. Figure 4.14 shows the result of this step on our initial example.

This additional refinement strengthens to the bound determined in Step 1b which will be
needed in the analysis of Step 2b. The stronger estimate thatwill be used is given in the following
lemma.

Lemma 4.10.Following Step 2a, for any segments in the mesh satisfies

|s| ≤ 1

2
√

2
lfs1(s).

Proof. Following Step 1b,|ŝ| ≤
√

2 fs1(ŝ) ≤
√

2 lfs1(ŝ), for all segmentŝs. If s is a subsegment
of ŝ, then lfsi(ŝ) ≤ lfsi(s). Now lets be one of the four segments created during this step from
segment̂s. Then,

|s| =
1

4
|ŝ|

≤
√

2

4
lfs1(ŝ)

≤ 1

2
√

2
lfs1(s).
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Figure 4.14: Example mesh following Step 2a.

Note that the estimate|s| ≤ 1
2
√

2
fs1(s) maynothold for some segments in the mesh produced

during Step 2a. This is due to the fact that when end segments are split, newly formed non-end
segments may have 1-feature size which is much smaller than the 1-feature size of the original
end segment .

The next lemma is the natural successor to Lemma 4.5.

Lemma 4.11.Following Step 2a, for any segments in the mesh,

1

16
fs1(s) ≤ |s|.

Proof. Let s be a subsegment of some segmentŝ which existed at the end of Step 1b. It follows
that

fs1(s) ≤ fs1(ŝ) ≤ 4|ŝ| = 16|s|
and the lemma holds.

4.1.5 Step 2b

Estimate lfs on all segments via Delaunay refinement.

In this step, segments and triangles (in the current Delaunay triangulation of the faces) are
split to estimate the local feature size on the segments. This is performed via a Delaunay refine-
ment algorithm which is given in Algorithm 4.3.

The priority rule in this algorithm is backwards from the standard approach in Delaunay
refinement: higher dimensional simplices are processed first. This fact will be used in the proof
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Algorithm 4.3 Estimate Feature Size 2D - Step 2b

Action Insert the circumcenter of a proposed segment or triangle.
Priority Triangles are given highest priority, in any order. Segments are then priori-

tized by length.
Unacceptability A segments is unacceptable if it has an endpointq with a Delaunay neigh-

borp such that|q− p| < |s| and eitherp is a local feature size witness fors
or p is a 1-feature size witness fors. A trianglet is unacceptable if it has a
vertexq with Delaunay neighborp such that|p− q| < 2Rt andp does not
lie in the face containingt.

Safety It is not safe to split a triangle in facef if its circumcenterc will have a
Delaunay neighborq which is the endpoint of a segments in facef and
|c− q| < |s|.

but it is mainly used to simplify the arguments. It is likely that the same (or very similar) results
hold using a more traditional priority queue.

The mesh resulting from Step 2b in our running example is given in Figure 4.15. Notice that
this is the first step in which points are added in faces ratherthan just on segments.

First, the lower bound on segment length is shown.

Lemma 4.12.Throughout Step 2b, the following estimate holds for any segments:

min

(

1

16
fs1(s),

1

4
lfs(s)

)

≤ |s|.

Proof. This lemma is shown by induction. Lemma 4.11 implies that|s| ≥ 1
16

fs1(s) holds for all
initial segments, so the base case holds. It must be shown that any new segments which is the
result of a split also satisfies the bound. A segment is only split if it is queued and segments are
only queued if there is a nearby 1-feature size witness or local feature size witness. In the first
case, an identical argument to that in Lemma 4.5 implies that1

4
fs1(s) ≤ |s|. In the second case,

a very similar argument yields1
4

lfs(s) ≤ |s|.

The proof that segment lengths will bound local feature sizefrom below requires a number
of geometric facts. These are stated first.

Proposition 4.13. Let t be a triangle, and letx ∈ t. Then there is a vertexqt of t such that
|x− qt| ≤ Rt.

Proof. Let ct be the circumcenter of trianglet. Observe thatt is covered by the three diametral
balls between each vertex and the circumcenter. See Figure 4.16.

The next proposition ensures that if the nearest point on a face to a segment is in the interior
of a face, then the nearest point on the segment to that face occurs as an endpoint of the segment.

Proposition 4.14.Let s be a segment in a PLC. Then one of the following holds.
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Figure 4.15: (Left) Example mesh following Step 2b. (Right)Enlarged mesh of one of the
smaller squares.

Figure 4.16: Given any triangle, the three diametral balls between vertices and the circumcenter
cover the triangle.

39



• lfs(s) = lfs1(s).
• There is some endpointq of s andx in the interior of a disjoint face such that

dist(q, x) = lfs(s),

andqx is orthogonal to the face containingx.

Proof. Suppose lfs(s) 6= lfs1(s). Then there exists a facef and pointx ∈ f such thatf is
disjoint from s and lfs(s) = |x − y| for somey ∈ s. For any suchf , x andy, x /∈ ∂f since
thenx would be contained in a segment of the PLC which is disjoint from s and thusx would
be a witness that lfs(s) = lfs1(s). This means thatx − y is orthogonal to the facef . Further,
eitherx − y is orthogonal tos or s is parallel to some vector in the facef . In the former case,
the proposition has been shown. In the latter, letP be the plane containingf . Then

min
x∈P

|x− y| = min
x∈P

|x− y1|

holds for anyy, y1 ∈ s. Since
arg min

x∈P
|x− y| /∈ ∂f

for anyy ∈ s, conclude thatarg minx∈P |x− y| ∈ f for all y ∈ s. Thusy can be selected as an
endpoint ofs which completes the proof.

The next proposition asserts a minimum circumradius on the Delaunay triangle containing a
pointx given thatx belongs to an empty disk in the face.

Proposition 4.15. Consider a set ofcoplanarverticesP. Suppose ballB(x0, R) contains no
vertices ofP. Considerx ∈ B(x0, R) andx in the convex hull ofP. Let t be a triangle in the
Delaunay triangulation ofP containingx. Then

Rt ≥
√

R2 − |x− x0|2.

Using the fact thatB(x,R−|x−x0|) ⊂ B(x0, R) only ensures thatRt ≥ R−|x−x0|. This
bound will hold wheneverx is in the circumdisk oft. The stronger bound comes from the fact
thatx is actually inside trianglet. This is depicted in Figure 4.17.

Proof. If B(x0, R) ⊂ B(t) orB(x0, R) = B(t), thenRt ≥ R and the result follows. Next, no
trianglet exists such thatB(t) ⊂ B(x0, R) since then∂B(t) \B(x0, R) contains at most one
point andB(x0, R) contains no vertices ofP. In the remaining case, bothB(x0, R) \ B(t) and
B(t) \ B(x0, R) are nonempty. Let{p1, p2} = ∂B(x,R′) ∩ ∂B(x0, R) and lets = p1p2. We
consider two cases depicted in Figure 4.18.

Case 1. s lies betweenx andx0. Then by the Pythagorean theorem,

R2 = dist(x0, s)
2 +

|s|2
4
.
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xx0

min circumradius

no vertices

(a) If point x is contained in the circumcir-
cle of (Delaunay) trianglet and lies in disk
which contains no vertices, then the circum-
radius oft is at least the distance fromx to
the boundary of the empty disk.

xx0

min circumradius

no vertices

(b) If point x is contained in(Delaunay) triangle
t and lies in an empty disk, then the lower bound
on the circumradius oft is larger than the distance
from x to the boundary of the empty disk.

Figure 4.17: Diagram for Proposition 4.15.

x

s

x0

B(t)

(a) Case 1.

x

s

x0

B(t)

(b) Case 2.

Figure 4.18: Two cases in the proof of Proposition 4.15.
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ct

x

qt

B(ct, Rt)

(a) Top view

ctx

q y

tqt

≤
√

3Rt

Rt

(b) Side view

Figure 4.19: Trianglet in Proposition 4.16

Applying the fact that dist(x0, s) ≤ |x− x0| leads to the inequality

Rt ≥
|s|
2

≥
√

R2 − |x− x0|2.

Case 2. s does not lie betweenx andx0. Let L be the line which is parallel tos and passes
throughx0. In this case, observe that

L ∩B(x0, R) ⊂ B(t).

ThusRt ≥ R ≥
√

R2 − |x− x0|2.

Suppose that a vertexq is near a facef in some sense. Lettingx be the projection ofq onto
the plane containingf , the next lemma ensures that if the trianglet (in the Delaunay triangulation
of f ) containingx is large enough, then one of the vertices oft has a nearby Delaunay neighbor
(in the 3D Delaunay tetrahedralization) which is not in the face. In the algorithm, this will ensure
thatt was placed on the queue.

Proposition 4.16. Let t be a Delaunay triangle in a facef . Let q be a vertex which is not
in the face such that the nearest point toq on the plane containingt, denotedx, lies in t. If
|q − x| <

√
3Rt, then there is a vertex oft, qt, which has a Delaunay neighbor,p, such thatp is

not in the face containingt and|qt − p| < 2Rt.

Proof. Let q, t, x be as in the statement of the proposition. Letct be the circumcenter oft. Since
x lies in t, by Proposition 4.13, there is a vertex oft, denotedqt, such that|x − qt| ≤ Rt. See
Figure 4.19. Lety = ct + q − x. Then observe the following properties.
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• ∂B(qty) ∩ f is the diametral circle betweenct andqt.
• q ∈ B(qty).

Finally, applying Proposition 2.1, it follows thatqt must have a Delaunay neighborp in B(qty),
and thus|qt − p| ≤ |qt − y| ≤ 2Rt. Moreover,p cannot be in the facef since the diametral circle
of ct andqt must be empty sincet is a Delaunay triangle in the face.

With these geometric facts in place, we seek the bounds in Theorem 4.2, which are given in
two lemmas.

Lemma 4.17.Upon termination of Step 2b, each segments satisfies

|s| ≤ 5

3
lfs(s).

Proof. This inequality is shown by induction. Specifically, we showthe following inductive
hypothesis.

Inductive HypothesisLet s be a segment such that|s| > 5
3

lfs(s). If s is not on the queue then
there is some trianglet which is on the queue.

First, if the inductive hypothesis holds, then the desired bound holds at termination since
whenever the desired bound fails, the queue is not empty. Next, suppose thats is some segment
such that|s| > 5

3
lfs(s) ands is not queued. We will show that this implies that some triangle

must be on the queue.
As edges have already been isolated from each other, the witness of the local feature size of

s must be a face. Following Step 2a,|s| ≤ lfs1(s)

2
√

2
. Since splitting a segment decreases its length

and cannot increase its local feature size, this bound will hold on all segments throughout the
step. This ensures that no segment or input point can be the witness to the local feature size ofs.
Thus, there must be some facef such that dist(s, f) = lfs(s). Using Proposition 4.14, conclude
that there is somex in a facef and an endpointq of s such that lfs(s) = |x− q|, and the vector
q − x is orthogonal to the plane containingf .

LetL denote the line containings, P denote the plane containingf andπ denote the projec-
tion function intoP . Suppose there is a segments′ ∈ Spind(s) with endpointq′ which is closer
toP thanq. First, estimate the distance fromx to the boundary off , ∂f :

dist(x, ∂f)2 = dist(q, ∂f)2 − |x− q|2

≥ 8|s|2 − 9

25
|s|2.

So dist(x, ∂f) ≥ 2|s|. Considering any pointp ∈ s′,

|π(q′) − x| ≤ |q′ − q| ≤ 2|s|.

Thusπ(q′) ∈ f . This means thats andq can be replaced withs′ andq′ and the local feature
size bound still fails. Thus without loss of generality, assume thats is the nearest segment in
Spind(s) toP .
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s

q

xf

B
≤ 3

5
|s|

(a) Case 1

s

q

x f

B′
≤ 3

5
|s|

(b) Case 2

Figure 4.20: Delaunay neighbors to pointq are considered in different balls in the the two differ-
ent cases.

s
q

px

f

t

<
√

2
3
|q − x|

Figure 4.21: Diagram for Case 1.

In two cases, we show that the trianglet in f which containsx has been placed on the queue.

Case 1. Suppose thatq is an input point. Now, letB be the ball of radius|s|
2

with q on the
boundary andx on its diameter containingq as in Figure 4.20(a). The segments is not on the
queue, soq cannot have any Delaunay neighbors inB which witness the feature size ofs. Since
q is an input point and the nearest point on any segment containing q to facef , this means that
B must be empty.

Proposition 4.15 implies thatx belongs to some triangle inf with circumradius of at least
√

2
3
|q − x| as in Figure 4.21. Then applying Proposition 4.16 ensures that a vertexp of t must

have a Delaunay neighbor which is not in the face at distance of at most
√

5
3
|q−x| < 2Rt. Thus

t has been queued at some step of the algorithm.

Case 2. Suppose thatq is not an input point. Letq0 be an input point on the segment con-
taining s. First, claim that|q0 − q| ≥ |s|. If s is an end segment, this is trivial. Ifs is the
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f

s

q

x

y

z

L

π(L)

q0

θ

(a) The angle between the input segment contain-
ing s andf cannot be large.

s

q

x f

c

B′

x0

θ

|s|
2

(b) Estimating|x − x0|.

Figure 4.22: Diagrams for Case 2.

subsegment of an end segment which existed at the end of Step 0, then this holds becauses must
be produced by a sequence of midpoint insertions. Ifs is a subsegment of a non-end segment
which existed following Step 0, thenq0 is a 1-feature size witness fors and Step 2a ensures that
|s| ≤ 1

2
√

2
fs1(s) < |q − q0|.

Next, consider the angleθ betweenL andπ(L) as in Figure 4.22(a). Using the fact thatq is
interior to an input segment, we will show thatsin θ ≤ 3

5
. Let y = L ∩ P . If sin θ > 3

5
then

|q − y| ≤ |s| which means thaty is contained in the input segment containings and thus cannot
be contained inf . This means that there is some pointz on the segmentxy contained in the
boundary off . Then the distance betweenz andq is less than|s|, meaning lfs1(s) < |s|. This
violates the bound given in Step 2a which is maintained by thealgorithm.

LetB′ be a ball of radius|s|
2

which has a diameter with one endpoint atq and intersectsπ(L)

as in Figure 4.20(b). We assert that ifB′ is not empty, then the neighbor ofq which lies inB′

must be a local feature size witness fors. If s is a non-end segment, this is clear asB′ only
touches the line containings at q. If s is an end segment, letq0 be the input point which is an
endpoint ofs. The ballB′ is below the cone formed by rotatingL around the line containing
q0 andπ(q0). Sinceq is the nearest point toP on the spindle ofs, this implies thatB′ does not
intersect any input segment containingq0.

Sinces is not queued and any point inB′ would serve as an appropriate witness to causes to
be queued,B′ must be empty.
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Next we seek to apply Proposition 4.15 based on the fact thatB′ ∩ P is empty inf . Let c be
the center ofB′ and letx0 = π(c). As seen in Figure 4.22(b),|x−x0| = |s| sin θ

2
and the radius of

B′ ∩ P is
√

|s|2
4

sin2 θ − |q − x|2 + |q − x||s| cos θ.

Using Proposition 4.15, conclude that the trianglet containingx has circumradius of at least

Rt ≥
√

|q − x||s| cos θ − |q − x|2.

Since|q − x| < 3
5
|s| andcos θ ≥ 4

5
,

Rt ≥
√

|q − x||s| cos θ − |q − x|2

≥ |q − x|
√

5

3
· 4

5
− 1

≥ |q − x|√
3

.

Now, by Proposition 4.16, there is a vertex of triangletwhich has a Delaunay neighbor which
is not in the face containingt and thust has been queued.

In both cases, it was shown thatt must have been put on the queue. Ift is on the queue, then
the inductive hypothesis holds. If the triangle queue is empty, deduce thatt was processed and
its circumcenter was rejected for being too close to a nearbyedge based on the safety rule.

The circumcenter oft is only rejected if there was some segmentŝ with endpointq̂, such
that |ct − q̂| < |ŝ| and ŝ lies in the face containingt. Since facef is disjoint from the input
feature containings, this means thats must be a 1-feature size witness forŝ and vice versa. The
following estimate on the distance betweenq andq̂ then holds:

|q − q̂|2 = |q − x|2 + |x− q̂|2

≤ 3R2
t + (|ct − q̂| + |x− ct|)2

≤ 3R2
t + (|ŝ| +Rt)

2

≤ 7|ŝ|2.

Above, the fact|ŝ| > |ct − q̂| ≥ Rt was used to estimateRt by |ŝ|. The second inequality
holds since the circumdisk oft must be empty by the Delaunay property.

By the Lemma 4.10 (which is maintained throughout algorithm), dist(s, ŝ) ≥ 2
√

2|ŝ|. This
inequality contradicts the previous bound as

√
7 < 2

√
2 =

√
8.

Conclude that the inductive hypothesis holds and thus upon termination of the algorithm the
upper bound on segment lengths holds.

Also, it is important that this step maintains the estimate on the 1-feature size derived in
Step 1b.
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Figure 4.23: Initial PLC input for the pyramid example.

Lemma 4.18.Upon termination of Step 2b, each segments satisfies

|s| ≤
√

2 fs1(s).

This lemma is immediate for most of the segments in the mesh. Any end segment must satisfy
this bound as|s| ≤ 1

2
√

2
fs1 following Step 2a and splitting an end segment can only increase its

1-feature size. Similarly, for any segment which is a subsegment of a non-end segment which
existed at the end of Step 1b, the same argument applies. Thisleaves only newly formed non-end
segments which are subsegments of end segments of the mesh produced by Step 1b.

This proof is nearly identical to the proof of Lemma 4.9. In the base case, any segment which
fails the bound must be queued since adjacent segments have the same length and thus no points
on the same input segment can prevent the segment in questionfrom being queued. In each step
of the proof, nearby Delaunay neighbors of the endpoints of asegment are considered. In the
Step 1b proof, either these neighbors are appropriate feature size witnesses to cause the segment
to be queued, or they lie on an input segment. In Step 2b, this is still the case, due to the safety
rule. This ensures that the endpoints of segments will not have any Delaunay neighbors in any
plane containings within a distance of|s|.

4.2 Examples

The next three examples demonstrate some simple applications of the algorithm.

Example4.2.1. The first example is a square pyramid shown in Figure 4.23. Themesh of the
square base produced following each step of the algorithm can be seen in Figure 4.24. Similar
output for one of the triangular sides is given in Figure 4.25.
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Figure 4.24: Base of the pyramid following steps 0, 1a, 1b, 2a, and 2b.
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Figure 4.25: Side of the pyramid following steps 0, 1a, 1b, 2a, and 2b.
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Figure 4.26: Wheel example: input PLC.

Example4.2.2. This example consists of a wheel of 20 faces which lies slightly above a disjoint
square as depicted in Figure 4.26. The mesh of the square baseproduced following each step of
the algorithm can be seen in Figure 4.27. Similar output for one of the rectangular “spokes” of
the wheel is given in Figure 4.28. Note that the algorithm still terminates even in the presence of
acute angles in the input. The number of vertices in the mesh after each step is listed in Table 1.

Table 4.1: Number of points in the mesh following each step ofthe algorithm in Example 4.2.2.

Step 0 1a 1b 2a 2b
Vertices 72 202 518 2,051 11,351

Example4.2.3. In the final example, we consider a PLC containing two non-convex faces shown
in Figure 4.29. The refinement of one of these faces is shown inFigure 4.30.

In these examples, nearby edges typically cause more refinement than nearby faces. This is
a result of Step 2a which causes segments to be split in fourths after they have been refined to
realize fs1. This can also be seen in Theorem 4.1 as each segment is guaranteed to have length
of at least1

4
lfs(s) or 1

16
fs1(s). A small fs1 does in practice lead to more refinement than simply

a small lfs as was suggested by the constants in the proof.
The proof of Lemma 4.17 (and thus Theorem 4.2) uses Step 2a to ensure a bound on each

segment’s length by lfs1. For some segments, this is an over-refinement since they were refined
based on mfs1 and not lfs1. We continue to study an adaptive variant of Step 2a which attempts
to only split segments in fourths when absolutely necessary.

In practice, the algorithm has been seen to terminate even after changing Step 2a to only split
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Figure 4.27: Base plane of the wheel example following steps0, 1a, 1b, 2a, and 2b.
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Figure 4.28: One “spoke” in the wheel example following steps 0, 1a, 1b, 2a, and 2b. The center
of the wheel is at the bottom while the disjoint square is to the left of this face.
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Figure 4.29: Example containing non-convex input faces.

segments in half (instead of fourths). This significantly reduces the output size (often by 50% or
more in cases containing small input angles between faces).In further studies, we will seek to
justify this modification of the algorithm in the proof or give a counterexample showing that the
algorithm can fail without performing Step 2a as specified.
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Figure 4.30: One of the faces in Example 4.2.3 following steps 0, 1a, 1b, 2a, and 2b.
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Chapter 5

Quality, Conforming Triangulation

Acute input angles have long posed significant challenges toDelaunay refinement. In his origi-
nal paper on Delaunay refinement, Ruppert immediately recognized this challenge and (inspired
by previous work [3, 33]) suggests two related concepts for dealing with these issues: concen-
tric shell splitting and corner lopping. Nearly all methodsfor performing Delaunay refinement
on input with acute angles are based on these basic ideas. In this chapter, we formalize two
closely related procedures for protecting acute input angles during Delaunay refinement and the
necessary techniques needed to extend the standard analysis in Section 2.2.

Shewchuk gave the first Delaunay refinement algorithm guaranteed to terminate for general
acute input [41]. Miller, Pav, and Walkington gave an alternative algorithm [30, 35] with a num-
ber of improved properties such as the elimination of any large angles in the mesh. However,
no natural extension of these ideas to three dimensions has been found. Methods for protecting
acute angles in three dimensions come in two flavors: “collars” and “intestines.” The former
generalizes a class of algorithms related to the Shewchuk’sterminator algorithm and a 3D algo-
rithm of Pav and Walkington [36] while the latter describes aclass including the “second” (2D)
Pav-Walkington algorithm (generalized in [37]) and the 3D refinement algorithm of Cheng and
Poon [11]. For completeness and clarity the simplest collarand intestine protection procedures
are described in 2D. This allows for a more natural extensionto 3D in the next chapter.

Both approaches require estimates on local feature size at the input points of the mesh which
can be determined via methods described in Chapter 3. Then protecting acute input angles in-
volves two steps. First, an input PLC is augmented to ensure conformality of the resulting mesh
near the acute angle. Second, Delaunay refinement is performed with an appropriate policy for
accepting poor quality triangles near the acute angle. As the natural successor to Algorithm 3.1,
these two steps will be labeled Step 1b and Step 2, respectively as in Algorithm 5.1.

Algorithm 5.1 Quality Refinement of Acute Input 2D
(Step 1b) Protect acute input angles.
(Step 2) Perform a protected version of Ruppert’s algorithm.
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5.1 Properties Of Local Feature Size

Before describing the algorithms and analysis, it is important to consider a few general facts
about the changes in local feature size caused by certain refinements and augmentations of PLCs.
In order to protect acute input features, we will augment theinput PLC to produce a PLC or PSC
for which conformality near acute input angles can easily bemaintained. The next few results
describe how the local feature size in the resulting PLC depends on the initial feature size and
the smallest angle in the input.

Proposition 5.1. LetC = (P,S) be a PLC or PSC and let̄C = (P̄, S̄) be a refinement ofC. Let
C̄s be some (possibly trivial) subcomplex ofC̄. If

lfs(y, C) ≤ K lfs(y, C̄s)

for all pointsy which belong to some feature ofC̄s of dimension at mostdim(C̄s) − 1, then

lfs(x, C) ≤ (2K + 1) lfs(x, C̄s)

holds for allx.

Proof. Let x be any point. Lety be the nearest point on a feature ofC̄s to x. Then

lfs(x, C) ≤ lfs(y, C) + |x− y|
≤ K lfs(y, C̄s) + |x− y|
≤ K lfs(x, C̄s) + (K + 1)|x− y|
≤ (2K + 1) lfs(x, C̄s)

Above, we have used the fact that|x− y| ≤ lfs(x, C̄s) sincey is the nearest point tox on any
feature ofC̄s.

Using a nearly identical proof, we show a similar result involving the augmentation of a PLC
or PSC with additional features.

Proposition 5.2. Let C = (P,S) and Ĉ = (P⋃ P̂,S ∪ Ŝ) be PLCs or PSCs. Suppose that for
all y ∈ P̂ or y ∈ s ∈ Ŝ, if

lfs(y, C) ≤ K lfs(y, Ĉ)

then for allx

lfs(x, C) ≤ (4K + 3) lfs(x, Ĉ).

Proof. Consider any pointy contained in a feature ofC. Suppose lfs(y, Ĉ) < lfs(y, C). This
implies the existence of a pointz either inP̂ or on a segment ofS which is disjoint from the
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feature containingy such that|y − z| ≤ lfs(y, Ĉ). Hence,

lfs(y, C) ≤ lfs(z, C) + |y − z|
≤ K lfs(z, Ĉ) + |y − z|
≤ K lfs(y, Ĉ) + (K + 1)|y − z|
≤ (2K + 1) lfs(y, Ĉ).

Finally, we can apply Proposition 5.1 to extend this bound from points on features of̂C to all
points and get the desired estimate.

In the next lemma, Proposition 5.1 will be applied to both theentire refined PLC̄C as well
as certain subcomplexes̄Cs which are the PLCs containing only features which are contained
in some segments. Recall thatα is defined to be the smallest angle between adjacent input
segments.

Lemma 5.3. LetC = (P,S) be a PLC with refinement̄C = (P ∪ P̄, S̄) such that

P̄ ⊂
⋃

s∈S
s◦ (5.1)

wheres◦ is the relative interior of segments. For a segments ∈ S, let C̄s be the PLC containing
all features ofC̄ which are contained ins. If for any segments ∈ S

lfs(q, C) ≤ K lfs(q, C̄s)

holds for any vertexq ∈ s ∩ P̄, then

lfs(x, C) ≤
(

4K + 4

sin(α)
+ 4K + 3

)

lfs(x, C̄)

holds for allx.

Proof. First, letq0 ∈ P and lets be a segment containingq0. Let q be the nearest vertex toq0 on
s. If q ∈ P, then

lfs(q0, C) ≤ lfs(q0, Cs) = lfs(q0, C̄s).

Otherwise,q ∈ P̄ and it follows that

lfs(q0, C) ≤ lfs(q, C) + |q − q0|
≤ K lfs(q, C̄s) + |q − q0|
≤ K lfs(q0, C̄s) + (K + 1)|q − q0|
≤ (2K + 1) lfs(q0, C̄s). (5.2)

Next, letu be a point (not necessarily a vertex in the mesh) contained insome segment ofS.
The local feature size can be realized several ways. Letw be the point on a disjoint feature of̄C
which realizes the local feature size atu with respect toC̄.
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su

sw

u

w

q0

α

Figure 5.1: In Case 3 of Lemma 5.1, dist(p, s2) ≥ |p−q0|
sin(α)

.

Case 1. u andw lie on disjoint features ofC.

Then lfs(u, C) = lfs(u, C̄).

Case 2. u andw are contained in the same segment ofs ∈ S.

In this case, apply Proposition 5.1 using (5.2) to get the desired inequality:

lfs(u, C) ≤ (4K + 3) lfs(u, C̄s) = (4K + 3) lfs(u, C̄).

Case 3. u andw belong to adjacent segments inC, denotedsu andsw.
Let q0 denote the input point which lies at the intersection ofsu andsw. Then,

lfs(u, C) ≤ lfs(q0, C) + |u− q0|
≤ (2K + 1) lfs(q0, C̄) + |u− q0|
≤ (2K + 1) lfs(u, C̄) + (2K + 2)|u− q0|

≤
(

2K + 1 +
2K + 2

sinα

)

lfs(u, C̄).

As seen in Figure 5.1, we have used the fact that

lfs(u, C̄) ≥ dist(u, sw) ≥ |u− q0|
sinα

.

Finally, applying Proposition 5.1 on the entire complexC̄ with constantK yields the desired
result.

Lemma 5.3 will surely not produce a sharp bound on the local feature size of the refined
complex. However, this is not our purpose: the goal of these lemmas is to prevent the case
explosion which occurs when attempting this direct analysis. In this direction, we note that to
apply this lemma, estimates on the local feature size only need to be verified at a few vertices
(the newly inserted ones) to assert estimates on the local feature size for any point. Lemma 5.3
does produce the correct scaling with respect to the smallest input angleα.
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Figure 5.2: Disks around protected input points do not intersect features of the mesh disjoint to
the input point.

5.2 Collar Protection Region

A collar protection region involves forming “collar” segments of equal length around each input
point which ensures the input segments conform near this input point. Our resulting Delaunay
refinement algorithm will then prevent the insertion of any vertices which encroach this collar
region.

5.2.1 Step 1b

Protect acute input angles.

For each input pointq0 which is the vertex of an acute input angle, the collar is formed by
splitting all segments containingq0 at an equal distancedq such that

b lfs(q0) ≤ dq0 ≤ min(c0 lfs0(q0), c1 lfs(q0))

for some constantsb > 0, c0 ∈ (0, .5) andc1 ∈ (0, 1). Algorithm 3.1 can be used to determine
an acceptable distance. Figure 5.2 depicts an example of thepoints inserted during this step.

Each end segment containing the vertex of an acute input angle will be called a collar simplex
and vertices inserted during this step are called collar vertices. See Figure 5.3.

First, we observe that the collar simplices are sufficientlyfar away from disjoint input features
of C.

Lemma 5.4. For any input pointq0 ∈ P,

B(q0, dq0)
⋂

B(q0, dq′0
) = ∅ for all P ∋ q′0 6= q0

and
B(q0, dq0)

⋂

s = ∅ for all segmentss disjoint fromq0.
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collar simplices

Figure 5.3: Definition of collar simplices

Proof. This follows directly from the restrictions onc0 andc1.

Let C̄ denote the refined PLC obtained after inserting all of the collar vertices. The next
lemma quantifies the relationship between the local featuresize ofC̄ andC.

Lemma 5.5. There existsK > 0 depending on onlyb andc0 such that

lfs(x, C̄) ≤ lfs(x, C) ≤ K

sin(α)
lfs(x, C̄)

for all x.

Proof. Let s be an input segment, and letq be a collar vertex ins. Observe the following
inequality:

lfs(q, C) ≤ max

{

1 − b

b
,

1 − b

1 − 2c0

}

lfs(q, C̄s).

The desired inequality then follows from Lemma 5.3.

5.2.2 Step 2

Perform a protected version of Ruppert’s algorithm.

This step is the Delaunay refinement algorithm described in Algorithm 5.2. Each new end
segment is “protected” during refinement: no vertices of themesh will be allowed to enter the
diametral ball of these segments. To ensure this, circumcenters which encroach these end seg-
ments will be rejected by the safety criteria of the algorithm. Lemma 5.4 ensures that no inserted
midpoints encroach upon a collar simplex and thus the diametral disk of each collar simplex will
be empty throughout the algorithm.

The termination of the algorithm and properties of the resulting mesh are described in Theo-
rems 5.6 and 5.7. The first theorem ensures that the algorithmterminates and the resulting mesh
is graded to the feature size while the second theorem asserts that the mesh conforms to the input
PLC and specifies which triangles may have poor quality.
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Algorithm 5.2 2D Delaunay Refinement With Collar

Action Insert the circumcenter of a simplex.
Priority Encroached segments are given higher priority than poor quality triangles.

Unacceptability Any segment with a non-empty diametral disk is unacceptable. Any trian-
gle with raduis-edge ratio less thanτ is also unacceptable.

Safety Collar simplices are not safe to split.

Theorem 5.6.There existsC > 0 depending only uponτ , α, b, andc0 such that for each vertex
q inserted in the mesh,

lfs(q) ≤ Crq.

Proof. The analysis of Ruppert’s algorithm (Theorem 2.2) applies with respect to the protected
complexC̄ since end segments are never split (which follows from Proposition 5.4) and thus no
segment is encroached by a vertex on an adjacent segment ofC̄. This asserts the existence ofC
depending only uponτ such that

lfs(q, C̄) ≤ Crq.

The proof is then completed by applying the estimate in Lemma5.5 to convert the estimate on
the local feature size with respect tōC into an estimate on the local feature size with respect to
C.

Remark.While the constant in the previous theorem does not depend onc1, the restiction that
c1 < 1 is important to ensure the proof is valid: otherwise, it would be possible for vertices to be
inserted on segments which encroach upon collar simplices and the proof would not hold.

Theorem 5.7. The resulting Delaunay triangulation conforms to the input. The circumcenter of
any remaining poor quality triangles lies in the diametral disk of a collar simplex.

Proof. No vertex is inserted which encroaches a collar simplex so all collar simplices conform in
the resulting mesh. All unacceptable (and thus non-collar)segments are queued for splitting and
none are rejected by the safety rule, thus in the final mesh allsegments conform to the input.

5.3 Intestine Protection Region

The intestine protecting region is more complex than the collar approach, but yields the added re-
sult that no triangles in the resulting mesh have angles larger thanπ−2κ, whereκ := sin−1

(

1
2τ

)

is the minimum angle corresponding to the radius-edge threshold τ . Again, we will insert addi-
tional points in Step 1b and perform the appropriate Delaunay refinement in Step 2.
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Figure 5.4: Vertices inserted for intestine protecting region.

Figure 5.5: Consider the new PSC formed by adding protectingcircles to the input PLC.

5.3.1 Step 1b

Protect acute input angles.

As with the collar, for each input pointq0 which is the vertex of an acute input angle, consider
distancedq0 such that

b lfs(q0) ≤ dq0 ≤ min(c0 lfs0(q0), c1 lfs(q0))

with b > 0, c0 ∈ (0, .5) andc1 ∈ (0, 1).
For each input vertexq0 at an acute input angle, we will split all input segments at a distance

dq0 from pointq0. Additionally, consider the circle centered atq0 of radiusdq0 and add points to
ensure that no arc of this circle is larger thanπ

2
. This ensures that the diametral ball of each arc

of the circle does not containq0 and requires at most3 additional vertices per input vertex. An
example of this construction is shown in Figure 5.4.

We will now consider a piecewise smooth complex (PSC)Ĉ defined by the input PLC, ver-
tices inserted during Step 1b, and the boundary arcs of each disk B(q, dq) as depicted in Fig-
ure 5.5.
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Lemma 5.8. Let Ĉ be the PSC derived from PLCC as described above. Then there existsK > 0

depending only onb, c0, andc1 such that for allx

lfs(x, Ĉ) ≤ lfs(x, C) ≤ K

sinα
lfs(x, Ĉ).

Proof. The first inequality is immediate from the definition of localfeature size: adding ad-
ditional features and refining existing ones only decreasesthe local feature size. The second
inequality will be shown by applying Proposition 5.2 tōC, the complex with just the initial collar
vertices inserted. Lety ∈ ∂B(q, dq). Then,

lfs(y, C̄) ≤ 2

1 − c1
lfs(y, C̄).

Combining the conclusion of Proposition 5.2 with Lemma 5.5 yields the result.

5.3.2 Step 2

Perform a protected version of Ruppert’s algorithm.

Now Ruppert’s algorithm is performed outside of
⋃

q0
B(q0, dq0) and each of the boundary

arcs of any diskB(q0, dq0) is protected by the diametral disk of its endpoints. This is described
completely in Algorithm 5.3.

Algorithm 5.3 2D Delaunay Refinement With Intestine

Action Insert the circumcenter of a triangle. Insert the midpoint of a segment or
arc.

Priority Encroached segments and arcs are given higher priority thanpoor quality
triangles.

Unacceptability Any segment or arc with a non-empty diametral disk is unacceptable. Any
triangle with radius-edge ratio larger thanτ is also unacceptable.

Safety All simplices and arcs are safe to split.

Ruppert’s algorithm can be generalized to piecewise smoothinput complexes [4, 7, 37]. The
analysis of Pav and Walkington applies to Algorithm 5.3, however that theory involves a trade-
off between the maximum total variation in orientation of the curves in the input and the smallest
allowable radius-edge threshold of the refinement. This application leads to two choices:

• Use the input as specified and select a sufficiently largeτ to ensure termination.

• Pick anyτ >
√

2. First split smooth input features to have a sufficiently small total
variation in orientation based on theτ value selected and then perform Algorithm 5.3.

However, we will show that this trade-off is unnecessary. Algorithm 5.3 will terminate and
produce a well-graded, conforming Delaunay triangulationfor any input complex previously
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Figure 5.6: Configuration in Proposition 5.9.

described (such that all input arcs have total variation in orientation of at mostπ
2
) and any radius-

edge thresholdτ >
√

2. This will require a more careful analysis, which is centered around the
following technical lemma.

Proposition 5.9. Let θ ∈ (0, π
2
] and letaθ be the arc of a circle∂B(q0, R) which subtends an

angleθ. Let x ∈ ∂B(aθ) \ B(q0, R), let p be the nearest endpoint ofaθ to x and letq be the
projection ofx onto∂B(aθ). For anyτ >

√
2 there existsβ∗

τ > 0, independent ofθ, such that if

|x− q|
R

≤ β∗
τ ,

then
|x− p|
|x− q| ≤ τ.

Remark.The most important feature of this lemma is thatβ∗
τ is independent ofθ. This is essential

in the proof of termination of the Delaunay refinement algorithm for anyτ >
√

2 without a
coupled restriction based on the total variation in orientation of the input curves.

Proof. Let c be the center ofB(aθ) and letφ denote the angle between segmentspc andxc as
shown in Figure 5.6. Letr denote the radius ofB(aθ).
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Applying the fact thatr = R sin
(

θ
2

)

gives

|x− p| = 2r sin

(

φ

2

)

= 2R sin

(

θ

2

)

sin

(

φ

2

)

. (5.3)

Using|c− q0| = R cos
(

θ
2

)

and the law of cosines gives the next sequence of equalities:

(|x− q| +R)2 = r2 +

(

R cos

(

θ

2

))2

− 2rR cos

(

θ

2

)

cos
(

φ+
π

2

)

=

(

R sin

(

θ

2

))2

+

(

R cos

(

θ

2

))2

− 2R2 sin

(

θ

2

)

cos

(

θ

2

)

cos
(

φ+
π

2

)

= R2 +R22 sin

(

θ

2

)

cos

(

θ

2

)

sinφ

= R2 (1 + sin θ sinφ) .

Rearranging leads to an expression for|x− q|:

|x− q| = R
(

√

1 + sin(θ) sin(φ) − 1
)

. (5.4)

Combining (5.3) and (5.4) gives

|x− p|
|x− q| =

2 sin
(

θ
2

)

sin
(

φ
2

)

√

1 + sin(θ) sin(φ) − 1
=

√

1 + sin(θ) sin(φ) + 1

2 cos
(

θ
2

)

cos
(

φ
2

) . (5.5)

Let β := |x−q|
R

andγ :=
√

2β + β2. Rearranging terms in (5.4) yields

γ2 = 2β + β2 = sin(θ) sin(φ). (5.6)

This implies thatγ ≥ sinφ or γ ≥ sin θ. These two possibilities are handled in two cases.
However, since (5.5) is symmetric in the variablesφ andθ, the argument is identical in each
case. Thus, we consider only the caseγ ≥ sin φ. Then,

√

1 + sin(θ) sin(φ) =
√

1 + γ2 ≤ 1 +
γ2

2
,

and

cos

(

θ

2

)

cos

(

φ

2

)

≥ cos
(π

4

)

cos

(

sin−1 γ

2

)

≥
(

1√
2

)

(

1 −
(

sin−1 γ
)2

8

)

≥
(

1√
2

)(

1 − π2γ2

32

)

.

The final inequality results fromsin−1 γ ≤ π
2
γ which requires thatγ ≤ 1. To ensure this, we will

seekβ∗
τ ≤ 1

3
. Substituting these estimates into (5.5) gives

|x− p|
|x− q| ≤

√
2

(

1 + γ2/4

1 − γ2π2/32

)

.
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Let

γ∗ = 4

√

2(τ −
√

2)

8
√

2 + π2τ
,

and select

β∗
τ =

1

3
min

(

1, (γ∗)2
)

.

Substitution yields that if|x−q|
R

≤ β∗
τ , then

|x− p|
|x− q| ≤ τ.

Now, we are prepared to prove that Algorithm 5.3 terminates and that the output mesh is well
graded.

Theorem 5.10.There existsC > 0 depending onτ , α, c0, c1, andb such that for each vertexq
inserted in the mesh,

lfs(q) ≤ Crq.

Proof. Recall thatĈ denotes the PSC which includes the original input with the protecting circles
around each input vertex which are split into arcs subtending at mostπ

2
. Lemma 5.8 ensures that

it is sufficient to prove the theorem considering local feature size with respect tôC rather thanC.
So, as in the proof of Theorem 2.2, we will show inductively that

lfs(q, Ĉ) ≤















rq if q is an input point,

C1rq if q is a segment or arc midpoint,

C2rq if q is a circumcenter.

Cases 1 through 3 in Theorem 2.2 also apply in the same fashionas before. However,
there are additional cases which must be considered. These cases involve showing the estimate
lfs(q) ≤ C1rq for a vertexq which is inserted as a midpoint of some circular arca in the refined
complex. These cases are distinguished by the type of pointx which is the nearest neighbor toq
whenq is inserted.

Case 4. Vertexq is the midpoint of some arc and the nearest neighbor toq lies on an input feature
(in Ĉ) which is disjoint froma.

Then lfs(q, Ĉ) ≤ |q − x| = rq since this vertex must be on a disjoint feature (with respectto
Ĉ becausêC is non-acute). This yields the (previously required) condition thatC1 ≥ 1.

Case 5. Vertexq is the midpoint of some arc and the nearest neighbor toq is an endpoint ofa.

Let p be an endpoint of the arca and lety be a point encroachinga which causeda to be
split. Letc be the circumcenter ofB(a).

If y lies on an input feature, then

lfs(q, Ĉ) ≤ |q − y| ≤ |q − c| + |c− y| ≤ 2|p− c| ≤ 2|p− q| ≤ 2rq. (5.7)
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Figure 5.7: Diametral balls nest properly when segments aresplit, while chordal balls do not.

Thus it is sufficient to require that
C1 ≥ 2. (5.8)

Otherwise,y is a (possibly rejected) circumcenter of a poor quality triangle.

lfs(q) ≤ lfs(y) + |q − y|
≤ C2ry + |q − y|
≤

√
2C2|p− c| + |q − y|

≤
√

2C2|p− q| + |q − y|
≤ (

√
2C2 + 2)rq

The fact that|q − y| ≤ 2|q − p| follows from the same reasoning as in (5.7). This gives a
restriction that

C1 ≥
√

2C2 + 2 (5.9)

which is strictly stronger than (5.8).

Case 6. Vertexq is the midpoint of some arc and the nearest neighbor toq is a circumcenterx in
the mesh.

Let arca lie on a circle centered at input pointq0. Unlike the case of straight line input, an
arc may be encroached by a circumcenter in the mesh which was inserted and did not yield to
the (larger) arc that was protected at the time. This can occur because the protected chordal balls
do not nest when splitting arcs as seen in Figure 5.7. Letaθ be the arc containinga in the mesh
whenx was insertedinto the mesh. So,x ∈ B(q, |q − p|) \B(aθ) wherep is an endpoint ofa.
Let aθ be the nearest endpoint ofaθ to x and letθ be the angle subtended byaθ.

Letβ = |x−q|
|q−q0| . Now consider two cases depending on the size ofβ. Letβ∗√

2+τ
2

be the constant

given in Proposition 5.9.
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First, suppose thatβ > β∗√
2+τ
2

. Now, we estimate the local feature size atq using the Lipschitz

property and the associated input pointq0:

lfs(q, Ĉ) ≤ |q − q0| + lfs(q0, Ĉ)

≤ 2|q − q0|

≤ 2

β∗√
2+τ
2

|x− q|

≤ 2

β∗√
2+τ
2

rq.

We must require that

C1 ≥
2

β∗√
2+τ
2

. (5.10)

Next, suppose thatβ ≤ β∗√
2+τ
2

. We seek to apply Proposition 5.9 and assert that

|x− p|
|x− q| ≤

√
2 + τ

2
.

However,x is not necessarily on the boundary ofB(a) andq is not necessarily the projection of
x ontoa. If |x−p|

|x−q| ≤ 1 the desired estimate holds. Otherwise, letq′ be the projection ofx ontoaθ,

and letx′ = q′x ∩ ∂B(aθ) as shown in Figure 5.8. Then,

|x− p|
|x− q| ≤

|x− p|
|x− q′| ≤

|x′ − p|
|x′ − q′| .

Moreover,
|x′ − q′|
|q′ − q0|

≤ |x− q|
|q − q0|

≤ β∗√
2+τ
2

and thus applying Proposition 5.9 (usingx′ andq′) implies that

|x− p|
|x− q| ≤

|x′ − p|
|x′ − q′| ≤

√
2 + τ

2
.

Now the local feature size can be estimated:

lfs(q, Ĉ) = |x− q| + lfs(x, Ĉ)

≤ |x− q| + C2rx

≤ |x− q| + C2|x− p|

≤ |x− q| + C2

√
2 + τ

2
|x− q|

=

(

1 + C2

√
2 + τ

2

)

rq.
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Figure 5.8: Diagram for Theorem 5.10.
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Then, we requireC1 ≥ 1 + C2

√
2+τ
2

. This restriction and several previous ones, (2.2), (5.8),and
(5.9), can all be satisfied if

C1 ≥ 2 + C2

√
2 + τ

2
. (5.11)

Thus, it remains to find constants satisfying the three remaining conditions: (2.1), (5.10), and
(5.11). A valid choice ofC1 andC2 is given below:

C2 := max





4 + 2τ

τ −
√

2
,

4 − 2β∗√
2+τ
2

β∗√
2+τ
2

(
√

2 + τ)





C1 := 1 + C2

√
2 + τ

2
.

This completes the proof.

Theorem 5.11. The resulting Delaunay triangulation conforms to the input. Any remaining
poor quality triangles are insideB(q0, dq0) for some input pointq0. The resulting triangulation
contains no angles larger thanπ − 2κ.

Proof. These properties are immediate from the definition of the Delaunay refinement algorithm.
Note that no triangles contain large angles since all Delaunay triangles inside the protected disks
are acute although they can be arbitrarily small if the inputcontains small angles.
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Chapter 6

Quality, Conforming Tetrahedralization

Generating conforming meshes of an arbitrary PLC in 3D is substantially more complex than the
2D analog. This stems from the fact that only segments near input points need to be protected in
2D while in 3D a consistent strategy must be employed along edges to ensure the conformity of
all adjacent faces.

The first algorithm for computing conforming Delaunay tetrahedralizations of a general 3D
PLC was described by Murphy, Mount and Gable [34]. In addition to protecting spheres around
input points, this algorithm selects a protection size for each input segment based on the min-
imum local feature size along the segment and determines a rectangular buffer region in each
adjacent face to be triangulated identically. Cohen-Steiner, Colin de Verdière, and Yvinec [17]
developed an alternative approach based on packing spheresaround segments with the improve-
ment that the size of the protected region is proportional tothe 1-feature size at nearby points on
a segment. This allows the size of the protection region to vary along segments with the local
feature size. These first two algorithms describe “collar” type protection schemes but were not
integrated with quality Delaunay refinement. The first algorithm for quality Delaunay refinement
of arbitrary input in 3D was given by Cheng and Poon [10, 11]. They proposed an “intestine”
based protection scheme based on a sphere packing over the 1-skeleton which is similar to one
used by Cohen-Steiner, Colin de Verdière, and Yvinec. Pav and Walkington [36] also designed a
collar based approach for quality mesh generation. This approach had the advantage that it was
not necessary to pre-compute local feature size before performing the refinement.

Of the algorithms discussed, only one has been implemented.The algorithm of Cohen-
Steiner, Colin de Verdière, and Yvinec was implemented andseveral examples of complex con-
forming Delaunay triangulations are given. The others havenot been implemented and imple-
mentation would be a substantial task for any of them. Other algorithms for implementing Delau-
nay refinement in 3D which allow acute angles rely on constrained Delaunay tetrahedralization
[43, 44] or weighted Delaunay refinement [9].

We will given an alternative protection procedure which is agraded to 1-feature size. In faces
near edges, rectangles (or trapezoids in certain cases) areprotected rather than spheres and the
resulting mesh can be viewed as a 1-feature size graded version of the original Murphy, Mount
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(a) Protection region in [34] (b) Protection region in [10, 17, 36] (c) New protection region

Figure 6.1: Different Collar Protection Strategies

and Gable protection procedure. Figure 6.1 depicts these different protection strategies. This
protection strategy can be used in both collar and intestinetype Delaunay refinement procedures.
In each case, there are two steps, Step 2c and Step 3. The first involves inserting points to
build the initial protection region, while the second is a Delaunay refinement algorithm which is
designed to preserve conformity of the protected region. The numbering of these steps (2c and
3) is due to the fact that they naturally follow Algorithm 4.1.

Algorithm 6.1 Quality Refinement of Acute Input 3D
(Step 2c) Protect acutely adjacent input features.
(Step 3) Perform a protected quality Delaunay refinement.

6.1 Properties of Local Feature Size

Several of the results in Section 5.1 are generalized to 3D. Proofs are only given when the 2D
proofs cannot be immediately extended to the 3D case. First are the extensions of Proposition 5.1
and Proposition 5.2.

Proposition 6.1. Let C = (P,S,F) be a PLC and let̄C = (P̄ , S̄, F̄) be a refinement ofC. Let
C̄s be some (possibly trivial) subcomplex ofC̄. If

lfs(y, C) ≤ K lfs(y, C̄s)

for all pointsy which belong to some feature ofC̄s of dimension at mostdim(C̄s) − 1, then

lfs(x, C) ≤ (2K + 1) lfs(x, C̄s)

holds for allx.
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Proposition 6.2. Let C = (P,S) and let Ĉ = (P ∪ P̂ ,S ∪ Ŝ,F ∪ F̂) be a piecewise smooth
complex. Suppose that for ally ∈ P̂ , y ∈ s ∈ Ŝ, or y ∈ f ∈ F̂ ,

lfs(y, C) ≤ K lfs(y, Ĉ)

then for allx
lfs(x, C) ≤ (4K + 3) lfs(x, Ĉ).

Lemma 5.3 will have two analogous 3D versions. The first corresponds to a refinement of
the segments of a PLC and follows an identical proof as the 2D version. The second involves the
refinement of faces of the PLC.

Lemma 6.3. LetC = (P,S,F) be a PLC with refinement̄C = (P ∪ P̄, S̄,F) such that

P̄ ⊂
⋃

s∈S
s◦ (6.1)

wheres◦ is the relative interior of segments. For a segments ∈ S, let C̄s be the PLC containing
all features ofC̄ which are contained ins. If for any segments ∈ S

lfs(q, C) ≤ K lfs(q, C̄s)

holds for any vertexq ∈ s ∩ P̄, then

lfs(x, C) ≤
(

4K + 4

sinα1
+ 4K + 3

)

lfs(x, C̄)

holds for allx.

Lemma 6.4. LetC = (P,S,F) be a PLC with refinement̄C = (P ∪ P̄,S ∪ S̄, F̄) such that

P̄ ⊂
⋃

f∈F
f ◦

and for all s̄ ∈ S̄,
s̄ ⊂

⋃

f∈F
f ◦

wheref ◦ is the relative interior of facef . For a facef ∈ F , let C̄f be the PLC containing all
features ofC̄ which are contained inf . If for any facef ∈ F

lfs(y, C) ≤ K lfs(y, C̄f)

holds for anyy ∈ f which belongs tōP or a segment of̄S, then

lfs(x, C) ≤
(

4K + 4

sinα2

+ 4K + 3

)

lfs(x, C̄)

holds for allx.
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The proof of Lemma 6.4 is also very similar to the proof of Lemma 5.3. Below, the key
differences are described.

Proof. The first step is to show that

lfs(y, C) ≤ (2K + 1) lfs(y, C̄f)

for anyy ∈ P andy ∈ s ∈ S. This is a result of the same argument seen previously. Following
the proof of Lemma 5.3, consider any pointu contained a face ofF and letw be the point on a
feature ofC̄ which is disjoint from the feature containingu which realizes the local feature size.
This gives three cases:

1. u andw lie on disjoint features ofC.

2. u andw are contained in a single face ofC.

3. u andw belong to adjacent faces ifC.

The first three cases have identical proofs to those of Lemma 5.3 with one exception: the mini-
mum angle between faceα2 is used in the third case.

6.2 Collar Protection Region

6.2.1 Step 2c

Protect acutely adjacent input features.

Fix b > 0 andc < 1. Given a PLCC = (P,S,F), we will assume that we have a refinement
C1 = (P1,S1,F) such that

(H1) (P ′ \ P) \ (∪s∈Ss) = ∅,

(H2) for all s′ ∈ S ′, b · min( fs1(s), lfs(s)) < |s| < c · min( fs1(s), lfs(s)), and

(H3) all adjacent end segments have equal length.

The purpose of these requirements is to ensure that all subsegments have lengths comparable to
the appropriate feature size. This is important since segment length will be used to determine the
size of the collar region produced. If this size is not sufficiently small, different sections of the
collar may be “tangled”.

A suitable refinement can be computed by performing Algorithm 4.1 in Chapter 4 and only
considering points which lie on the 1-skeleton of the input.This algorithm yields the desired
upper bound withc = 5

3
. Since we will requirec < 1, this requires an additional split of each

segment and potentially some simple local clean up of new non-end segments.
The collar is formed by inserting points in each face according to the following rules which

are depicted in Figure 6.2.
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(a) Collar Insertion Rule 1

p

s
q s′

(b) Collar Insertion Rule 2

q0

p

(c) Collar Insertion Rule 3

Figure 6.2: Collar insertion rules

1. If s ands′ are adjacent non-end segments which meet at pointq, then
a pointp is inserted at distancemax(|s|,|s′|)

2
from q, in any direction into

the face perpendicular tos.

2. If s is an end segment ands′ is an adjacent non-end segment, both
containingq, then insertp at the intersection of any line parallel tos
in the face at distance|s

′|
2

away froms and on the circle of radius|s|
around the input point ons.

3. Given any input pointq0 in the face, insert collar points in the face
such that the circle of radiusN(q0) aroundq0 has no arcs of angle
larger thanπ

2
.

Table 6.1 contains a list of objects defined to describe the collar based on the vertices inserted
during this step. These objects are depicted in Figure 6.3. Figure 6.4 gives an example of collar
simplices for a simple face. Following the insertion of the collar vertices, the resulting Delaunay
tetrahedralization satisfies a number of properties given in the following lemma.
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Collar Vertex

Collar Simplex

Collar Segment

Collar Region

Collar Arc

Input point Input Segment

Figure 6.3: Collar Definitions. Black vertices are input vertices, gray vertices are those inserted
before Step 2c and the white vertices are those which are inserted during Step 2c.

Figure 6.4: Collar simplices in a face.

76



Table 6.1: Defintions of collar terms.
Collar Vertex Any vertex inserted during Step 2c.

Collar Segment Segment between collar vertices which correspond to adjacent ver-
tices on an input segment.

Collar Arc Arc between adjacent collar vertices corresponding to the same in-
put vertex.

Collar Region Region between input segments and collar segments and arcs.
Collar Simplex Any simplex in the Delaunay triangulation of the face which lies

inside collar region.

Lemma 6.5. After Step 2c, the following properties hold.

I All adjacent collar segments meet at non-acute angles.

II In each face, the diametral disk of each collar segment contains no points ofP ′.

III The circumball of any collar simplex contains no points of P ′.

IV The circumball of any collar simplex does not intersect any disjoint faces or segments.

Proof. Property I follows immediately from the construction. Properties II and IV result from
the local feature size bound which we assume the input satisfies. Finally, Property III results from
the fact the collar in a face is formed based only upon lengthsof subsegments in the associated
input segment. Property IV follows from the assumption (H2)on the input complex.

Since the circumball of each collar simplex is empty, this ensures that the collar simplices
conform to the input. Collar segments meet non-acutely and thus the complement of the collar
region in each face is well-suited for Ruppert’s algorithm.The final property is needed to guar-
antee that subsequent points inserted in the mesh for conformity will not encroach disjoint collar
simplices.

The collar divides each face into two regions: the collar region and the non-collar region.
This defines a new piecewisesmoothcomplex (since the arcs around input points are curved).
The next lemma asserts that this augmented complex preserves the initial local feature size, up
to a factor depending on the smallest angles in the input. Recall thatα1 is the smallest angle
between an input segment and another adjacent input featurein the mesh andα2 is the smallest
angle between adjacent input faces.

Lemma 6.6. Let C̄ be the PSC consisting of each face divided into the collar region and the
non-collar region and requiring all collar segments and collar arcs. Then there exists a constant
k > 0 depending only uponb andc such that

lfs(x, C) ≥ lfs(x, C̄) ≥ k sinα1 sinα2 lfs(x, C).

Proof. The first inequality is immediate for any refinement. For the second inequality, consider
an additional intermediate PLC,C0. Let C0 = (P0,S0,F) whereP0 containsP and all vertices
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C

C0

C1

C̄

Figure 6.5: Intermediate PLCs described in Lemma 6.13 for a partial example face.

of P1 which are adjacent to some input vertex inP on a segment ofS1. Recall thatP1 is the
refined PLC which satisfies the assumptions H1-3. ThenS0 is the refined segments ofS based
on the vertices inP0. Figure 6.5 depicts the various intermediate PLCs which have been defined.
The result will follow by arguing the following list of inequalities.

lfs(x, C0) ≥ k0 sinα1 lfs(x, C) (6.2)

lfs(x, C1) ≥ k1 lfs(x, C0) (6.3)

lfs(x, C̄) ≥ k2 sinα2 lfs(x, C1) (6.4)

Lemma 6.3 implies (6.2) and Lemma 6.4 implies (6.4). Finally(6.3) follows from the fact that
no acutely adjacent features are refined betweenC0 andC1.
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6.2.2 Step 3

Perform a protected quality Delaunay refinement.

In the final step, the volume mesh is refined based on both quality and conformity criteria
using Ruppert’s algorithm. Similar to the non-acute case, any maximum radius-edge thresh-
old τ > 2 can be selected for determining poor quality tetrahedra. The Delaunay refinement
algorithm is specified in Algorithm 6.2.

Algorithm 6.2 3D Delaunay Refinement With Collar

Action When a simplex is processed, its circumcenter is inserted, unless it en-
croaches upon the diametral ball of a lower dimensional simplex, collar
segment, or collar arc. In this case, the encroached simplexis queued for
splitting. When an collar segment or collar arc is processed, insert the mid-
point.

Priority Collar segments and arcs are given the highest priority. Simplices are pri-
oritized by dimension with lower dimensional simplices processed first.

Unacceptability A simplex, collar segment or collar arc is unacceptable if ithas a nonempty
circumsphere. A tetrahedron is unacceptable if its radius-edge ratio is larger
thanτ .

Safety It is not safe to split any collar simplex (either triangles in input faces or
subsegments of input segemtns).

The key difference between Algorithm 6.2 and the 3D version of Ruppert’s algorithm is the
safety criteria. This prevents acutely adjacent faces frompreventing termination of the algorithm.

For collar arcs, note that the arc midpoint (rather than the midpoint between the two ends of
the arc) is inserted. See Figure 6.6. This procedure was alsoused in the 2D intestine protection
strategy and will lead to very similar analysis.

During the algorithm, it is important to ensure that the properties of the collar in Lemma 6.12
continue to hold while allowing refinement of the non-collarregion of each face to create a
conforming mesh. In the 2D collar protection procedure, theprotected collar simplices (the end
segments) never change during Algorithm 5.2. In 3D however,the set of collar simplices does
change. This occurs when the standard Delaunay refinement algorithm seeks to insert a vertex
in a face that encroaches upon a collar segment or collar arc.Instead of adding this encroaching
vertex, this collar segment or arc is split. This new vertex is considered a collar vertex and the
collar segment or arc is broken into two new collar segments or arcs. The collarregionhas not
changed but the set of collarsimpliceshas changed. Further, this new vertex may encroach upon
the circumball of another collar simplex in an adjacent face. In this face, the collar segment
associated with this encroached circumball is also split sothat the collar simplices on adjacent
faces again “line up.” So conformity of the mesh is maintained by only splitting the collar
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Figure 6.6: A collar segment associated with an input point is split. When a proposed point
(denoted by the empty dot) encroaches a collar segment, the segment is split by adding the
midpoint of the arc of a circle around the input point.

segments and thus the algorithm never attempts to insert thecircumcenter of an encroached collar
simplex. This is exactly the purpose of the collar construction: avoid the cascading encroachment
sequence between adjacent faces associated with insertingthe circumcenters of triangles near
adjacent input angles.

Now, we highlight two propositions which are necessary to ensure the correctness of the
algorithm. Both follow from the Delaunay property. The firstis given in [29] (which gave a
completedescription of the 3D Delaunay refinement algorithm for non-acute input) and provides
the natural analogy to the fact that when splitting a segment, the diametral balls of the new
subsegments are contained in the diametral ball of the old segment.

Proposition 6.7. [29, Lemma 4.5] LetT be the Delaunay triangulation of a planar faceF such
that the circumball of each bounding segment is empty. LetB1 be the union of the circumballs of
all bounding segments ofF andB2 be the union of the circumballs of all triangles inF .

Letp ∈ F \B1. If T ′ is the Delaunay triangulation of the face resulting from theaddition ofp,
defineB′

2 to be the union of the circumballs of triangles in the resulting Delaunay triangulation.
Then,

B′
2 ⊂ B1 ∪ B2.

This fact is important in ensuring that when additional collar vertices are inserted the result-
ing collar simplices are not encroached by other vertices added as circumcenters of poor quality
triangles. Collar simplices can be encroached by collar vertices in adjacent faces but these en-
croachments are removed once encroachment of collar segments in adjacent faces are identical
(and thus termination can be ensured).

The next proposition motivates the idea behind protecting the collar segments. This ensures
that whenever a triangle in a face is processed on the refinement queue, either the circumcenter
is valid to be inserted into the mesh or it encroaches a collarsegment, which will be queued
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Figure 6.7: Refinement of the non-collar region of a face.

for splitting. This is necessary for ensuring conformity ofthe mesh upon termination of the
algorithm.

Proposition 6.8. LetA be the set of vertices on the boundary of some faceF and letA′ be a set
of vertices insideF . Suppose that for each boundary segment ofF there is a circle through the
end points of the segment which does not contain any verticesofA ∪ A′ in its interior. Then the
Delaunay triangulation ofA ∪ A′ conforms toF . Moreover, for any Delaunay trianglet in the
interior of F , the circumcenter oft either lies insideF or inside the empty disk associated with
a boundary segment.

Now we can state the key properties which hold throughout thealgorithm whenever there are
no unacceptable collar segments on the queue to split.

Lemma 6.9.Whenever the queue of unacceptable simplices does not contain any collar segments
and collar arcs, the following properties hold.

I The circumball of any collar element contains no vertices in P ′.

II Adjacent collar segments meet at non-acute angles.

Proof. By applying Lemma 6.7 to the collar region of each face, conclude that no circumcenter
can encroach a collar simplex. Property I then follows because a collar simplex can only be
encroached by a vertex on an adjacent collar segment which also encroaches the corresponding
collar segment in the face with the original simplex.

Property II results from the fact that nearly formed collar arcs meet at an angle of at leastπ
2

since the original arcs were split to subtend angles of at most π
2
.

Theorem 6.10.For anyτ > 2, there existsC > 0 depending only uponτ , α, b, andc such that
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for each vertexq inserted in the mesh,

lfs(q) ≤ Crq.

Proof. Lemma 6.13 ensures that it is sufficient to prove the inequality

lfs(q, C̄) ≤ Crq.

This standard proof of termination of Ruppert’s algorithm (i.e. the 3D analog to the proof of
Theorem 2.2) is used in conjunction with the techniques in the proof of Theorem 5.10 to handle
the collar arcs around input points.

Acute angles usually cause the the standard proof to fail. This failure occurs when a simplex
(a Delaunay triangle in a face or a subsegment of an input segment) is encroached by a vertex on
an adjacent input feature. Lemma 6.9 ensures that this does not occur: collar simplices are never
split. If a collar segment is split due to a vertex on another collar segment, this vertex may lie
on an adjacent input feature but these collar segments are disjoint features in the PLC̄C ensuring
that the original proof of termination for Delaunay refinement holds.

Theorem 6.11.The resulting Delaunay tetrahedralization conforms to theinput. Any remaining
poor quality tetrahedra encroach collar simplices.

Proof. These properties are immediate from the description of the algorithm (which ensures
remaining poor quality tetrahedra failed the safety criteria) and Lemma 6.9 (which ensures that
collar simplices conform to the input).

6.3 Intestine Protection Region

The intestine approach for protecting acute input angles mirrors that in 2D described in Sec-
tion 5.3. Smooth features will be added to the input to isolate all input segments and vertices (or
at those contained in acutely adjacent features) from the region to be refined for quality.

6.3.1 Step 2c

The vertices and features which are added to the mesh in this step are a superset of those added
in Step 2c of the collar approach (the PSCC̄). In addition to the collar vertices, the following
features are added to the mesh forming a new complexĈ.

• For each input vertexq0 which belongs to some segment, letdq0 be the length of all seg-
ments containingq0. ThenĈ includes∂B(q0, dq0).

• For each collar segments, let c be the surface of revolution produced by revolving segment
s about its associated input segment. The featuress and∂s are included inĈ.
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Figure 6.8: Intestine Protection Region

The region inside each sphere and cylindrical surface addedto the mesh will be called the
intestine region and the remaining volume is called the non-intestine region. This construction is
designed to ensure the following fact.

Lemma 6.12.The non-intestine region of the PSĈC contains no acute angles between features.

This lemma is necessary to ensure that the usual proof of termination and grading will apply
to Delaunay refinement in the non-intestine region. However, some issues must be resolved
concerning the applicability of this proof to curved input features.

Lemma 6.13.There exists a constantk > 0 depending only uponb andc such that,

lfs(x, C) ≥ lfs(x, Ĉ) ≥ k lfs(x, C̄)

whereC̄ is the PSC containing the collar.

Proof. This follows from Proposition 6.2.

6.3.2 Step 3

We now consider two different approaches to performing a quality refinement of the non-intestine
region. The first is to perform the usual Delaunay refinement and split smooth surfaces by pro-
jecting the circumcenter of any Delaunay triangle in the face to the surface. This is described
in Algorithm 6.3. This approach suffers from one minor drawback: the Delaunay tetrahedral-
ization inside the cylindrical regions of the intestine maynot conform to the input. Eliminating
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this issue, the second approach is to impose more structure on the refinement of these cylindrical
regions. This algorithm is described in Algorithm 6.4.

Algorithm 6.3 3D Delaunay Refinement With Intestine - Unstructured

Action When a simplex is processed, the projection of its circumcenter onto the in-
put feature containing the simplex is inserted, unless it encroaches upon the
diametral ball of a lower dimensional feature. In this case,the encroached
item is queued for splitting.

Priority Items are prioritized by dimension, with lower dimensionalitems processed
first.

Unacceptability A simplex in the non-intestine region is unacceptable if it has a nonempty
circumsphere. A tetrahedron is unacceptable if its radius-edge ratio is larger
thanτ .

Safety All simplices are safe to split.

Algorithm 6.4 3D Delaunay Refinement With Intestine - Structured

Action If a protected triangle on the boundary of a cylindrical region is to be split,
add a required circle in the cylinder between the two circlesin the PSC
associated with the triangle to be split. Add vertices at theintersection of
this circle and every face of the original PLC that it intersects and then insert
additional vertices so that no arc of the circle is larger than π

2
. When any

other simplex is processed, the projection of its circumcenter onto the input
feature containing the simplex is inserted, unless it encroaches upon the
diametral ball of a lower dimensional feature. In this case,the encroached
item is queued for splitting.

Priority Items are prioritized by dimension, with lower dimensionalitems processed
first.

Unacceptability A simplex in the non-intestine region is unacceptable if it has a nonempty
circumsphere. A tetrahedron is unacceptable if its radius-edge ratio is larger
thanτ .

Safety All simplices are safe to split.

Figure 6.9 shows the difference between the refinement around required cylindrical surfaces
of the two algorithms.

Algorithm 6.14 produces a conforming Delaunay tetrahedralization of the input. This is
shown in the next theorem.

Theorem 6.14.Upon termination of Algorithm 6.4, the resulting Delaunay tetrahedralization
conforms to the input. All tetrahedra outside the intestineregion have radius-edge ratio less
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(a) Unstructured Approach of Algorithm 6.3 (b) Structured Approach of Algorithm 6.4

Figure 6.9: Refinement of cylindrical surfaces around the intestine.

thanτ .

Proof. The important task is to verify that the Delaunay tetrahedralization conforms to the input
inside the intestine region. Because each triangle on the boundary of the collar is protected,
no vertex outside of the intestine region can lie in the diametral ball of a required face. By
constructing all vertices on cylinders around concentric rings, no vertex on the boundary of the
cylinder can encroach upon the diametral ball of a required face either.

For Algorithm 6.3, the argument above does not hold: a vertexon the boundary of a required
cylindrical surface may encroach upon the diametral ball ofa required face and this face may not
conform to the Delaunay tetrahedralization in the resulting mesh. However, a simple conforming
(but not Delaunay) tetrahedralization of the intestine region does exist. The spheres around input
vertices are tetrahedralized using the Delaunay tetrahedra. For the cylindrical sections, letp1 and
p2 be the endpoints of the corresponding input segment. The tetrahedralization is produced with
two types of tetrahedra.

• For any Delaunay trianglet on the boundary of the cylinder, include the tetrahedron with
baset and vertex atp1.

• For any Delaunay segments on the circle aroundp2, include the tetrahedra with vertices
p1, p2 and the endpoints ofs.

These tetrahedra are depicted in Figure 6.10. For Algorithm6.3, a weaker theorem holds.

Theorem 6.15. Upon termination of Algorithm 6.3, in the non-intestine region the resulting
Delaunay tetrahedralization conforms to the input and all tetrahedra ratio less thanτ . There
exists a matching tetrahedralization of the intestine region which conforms to the input PLC.

We leave the analogous theorem to Theorem 5.10 as a topic of further research.

Conjecture 6.16.For either Algorithm 6.3 or Algoithm 6.4 and for anyτ > 2, there existsC > 0

depending only uponτ , α, b, andc such that for each vertexq inserted in the mesh,

lfs(q) ≤ Crq.

To prove this theorem, it is important to carefully generalize the analysis in Case 6 of the
proof of Theorem 5.10. In the process, this should yield a condition on input surfaces similar to
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t
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Figure 6.10: Two types of tetrahedra are used inside the intestine region when constructing
a conforming tetrahedralization following Algorithm 6.3.This tetrahedralization may not be
Delaunay.

the requirement that arcs initially subtend angles no larger thanπ
2
. A condition of this type which

matches the number of vertices used in practice has not been found.

6.4 Examples

Algorithm 6.3 (rather than Algorithm 6.4) has been implemented and will be referred to as the
intestine approach in the examples below.
Example6.4.1. Figure 6.11 demonstrates both protection strategies on thepyramid PLC input
(previously used in Example 4.2.1). Figure 6.12 shows the refinement of a single face of the
pyramid during this procedure using the collar. In the face,the intestine approach yields a very
similar mesh.
Example6.4.2. Figure 6.13 demonstrates this algorithm on the wheel PLC from Example 4.2.2.
In this example, the only segment that needs to be protected is the segment at the center of
the wheel: this is the only segment which is contained in multiple faces. These meshes were
produced using the valueτ = 2.3.
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(a) Initial pyramid PLC and augmented PSC with intestine protection region.

(b) Refinement of the PSC with collar following steps 2c and 3 using the collar
protection scheme.

(c) Refinement of the PSC with intestine following steps 2c and 3.

Figure 6.11: Refinement of a simple pyramid.
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Figure 6.12: Base of the pyramid: initial triangulation, triangulation following Step 2c and final
triangulation.
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(a) Input PLC

(b) Refinement using collar protection scheme.(c) Refinement using intestine protection scheme.

(d) Single face in the wheel example using
a collar protection scheme

(e) Closer view of the intestine region.

Figure 6.13: Quality refinement of the wheel example.
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Chapter 7

Delaunay Refinement and the Finite
Element Method

Ruppert’s algorithm was designed to produce meshes of bounded aspect ratio triangles. This
is a natural geometric criteria used in the traditional convergence analysis of the finite element
method. However, for input containing angles smaller than the output angle threshold, it is not
possible to to generate a conforming mesh of sufficiently high quality triangles (in the sense of
bounded aspect ratio or a minimum angle condition). However, producing a mesh of bounded
aspect ratio triangles is not essential for the convergenceof the finite element method and thus
it is possible to generate appropriate meshes for the finite element method. In this chapter, we
discuss the relationship between types of meshes which are produced by Delaunay refinement
algorithms and those are needed to produce convergence finite element methods.

In 1976, two similar papers were published describing proofs to replace the traditional mini-
mum angle condition (or bounded aspect ratio requirement) with the maximum angle condition.
The paper of Babuška and Aziz demonstrated the an interpolation inequality for linear triangular
finite elements with maximum angles bounded away fromπ [2] (showing that triangulations with
very small angles as in Figures 7.1(a) and 7.1(c) are acceptable). They also described a procedure
to extend this result to both Lagrange and Hermite finite elements of higher degree, but all anal-
ysis was restricted to two dimensions. Jamet provided a moregeneral approach to the maximum
angles condition [22]. His analysis gives some general conditions on interpolation operators
which ensure the desired interpolation inequalities. In the case of triangular finite elements, this
result yields the correct scaling of the error as the maximumangle of the triangle approachesπ
(i.e. it yields the correct error estimates for triangulations in the form of Figure 7.1(b) where the
analysis of Babuška and Aziz fails). However, Jamet’s analysis only applies to sufficiently high
order finite elements: we must have polynomials of degreek > n

2
wheren is the dimension of

the domain. In two and three dimensions, this eliminates linear elements. Guattery, Miller and
Walkington gave an alternative approach which yields the desired estimate for linear elements in
2D [19].

Extension of Delaunay refinement algorithms to accept acuteinput began first by understand-
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ing how to guarantee termination of the algorithm and only then considered interpolation conse-
quences of the results. The first technique for handling acute input angles during 2D Delaunay
refinement was the terminator algorithm of Shewchuk [41] anddid not provide any guarantee on
the maximum angle of the resulting triangulation. Later, the strategy for handling small angles
developed by Miller, Pav, and Walkington [30, 35] ensured that any triangle which does not sat-
isfy the desired minimum output angle threshold is acute andthus does not contain large angles.
This leads to a bound on the maximum angle in the resulting mesh (180 − 2κ)◦ whereκ◦ is the
minimum angle threshold for Delaunay refinement. 2D Delaunay refinement using the intestine
protection scheme (Algorithm 5.3) also shares this property.

Inspired by the maximum angle condition, Miller, Phillips and Sheehy consider the problem
of output size-competitive meshes in the class of all conforming triangulations which do not
contain any large angles [31] (as opposed to the class of “nearly bounded radius-edge” meshes
which is considered in the case of Delaunay refinement). In many cases, their algorithm generates
smaller meshes than Ruppert’s algorithm, but no algorithm has been shown to produce constant
factor competitive output in the no large angle setting.

After setting the standard notation, we describe the results of Babuška and Aziz and those of
Jamet. We extend the proof of Babuška and Aziz to yield an idential result as in [19]. Further, the
interpolation estimate is connected to a geometric quantity: the circumradius. We also discuss
the use of average interpolation to derive estimates when the function to be interpolated pos-
sesses less regularity than required in the traditional theory and show how estimates of this form
can be found independent of geometric restrictions. Next, we describe a very simple Delaunay
refinement algorithm which produces suitable finite elementmeshes given a user sizing function.

7.1 Sobolev Spaces

Throughout this chapterΩ ⊂ R
2 is an open, bounded, polygonal set. We will utilize the standard

multi-index notation and Sobolev spaces. A multi-indexα is ann-tuple of non-negative integers
α = (α1, ...αn). Let |a| :=

∑n
i=0 an and
(

∂

∂x

)α

:=
∂|α|

(∂x1)α1 · · · (∂xn)αn
.

TheHk(Ω)-seminorm of a functionu is defined by

|u|2Hk(Ω) :=
∑

|α|=k

∫

Ω

∣

∣

∣

∣

(

∂

∂x

)α

u(x)

∣

∣

∣

∣

2

dx.

Then theHk(Ω)-norm of a functionu is defined by

||u||2Hk(Ω) :=
∑

|α|≤k

∫

Ω

∣

∣

∣

∣

(

∂

∂x

)α

u(x)

∣

∣

∣

∣

2

dx.
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(a) A mesh refinement with narrow triangles but without largeangles.

(b) A mesh refinement with narrow triangles which contains large angles.

(c) A mesh refinement with narrow triangles and high degree vertices.

Figure 7.1: Several mesh refinements which do not preserve aspect ratio.
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In thek = 0 case, this becomes the standardL2 norm.

||u||pLp(Ω) :=

∫

Ω

|u(x)|p dx.

We will also need to consider the mollification of Sobolev functions. Letρ ∈ C∞(Rd) such
that

• supp(ρ) ⊂ B(0, 1),

• ∫ ρ(x) dx = 1, and

• ρ(x) ≥ 0 for all x.

Typically, ρ(x) = ce−1/(1−||x||2) is selected with some constantc such that the integral is1. Let
ρh(x) = 1

hN (x
h
). Then,

• supp(ρh) ⊂ B(0, h),

• ∫ ρh(x) dx = 1,

• ρh(x) ≥ 0 for all x, and

• ||∇ρh||L1(Rd) ≤ 1
h
||∇ρ||L1(Rd)

A function is mollified by convolving it withρh. This is a useful technique for regularizing a
non-smooth function. Givenu ∈ L1(Rn), define

Mhu(x) :=

∫

Rd

u(x− y)ρh(y) dy.

For a functionu ∈ H1(Ω), we will defineMhu according to the same formula by first extending
u to H1(Rd) according to a continuous extension operator (which existsfor the domainsΩ we
are considering).

Two standard properties of mollification are given in Proposition 7.1 and will be used in
Section 7.2.4.

Proposition 7.1. There existsC > 0 such that forh sufficiently small, following two inequalities
hold for all u ∈ H1(Ω):

||u−Mhu||L2(Rd) ≤ Ch |u|H1(Ω) , (7.1)

|Mhu|H2(Rd) ≤
C

h
|u|H1(Ω) . (7.2)
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Proof. Letw ∈ L2(Rd) be an arbitrary function. Letu ∈ C∞
c (Rd).

∫

RN

(u(x)−Mhu(x))w(x) dx

=

∫

RN

(

u(x) −
∫

RN

u(x− y)ρh(y) dy

)

w(x) dx

=

∫

RN

(
∫

RN

(u(x) − u(x− y))ρh(y) dy

)

w(x) dx

=

∫

RN

(
∫

RN

(
∫ 1

0

d

ds
u(x− sy)) ds

)

ρh(y) dy

)

w(x) dx

=

∫

RN

(
∫

RN

(
∫ 1

0

−y · ∇u(x− sy)) ds

)

ρh(y) dy

)

w(x) dx

=

∫ 1

0

∫

RN

∫

RN

−y · ∇u(x− sy)ρh(y)w(x) dx dy ds

≤
∫ 1

0

∫

RN

hρh(y)

(
∫

RN

|∇u(x− sy)|2 dx

)2(∫

RN

(w(x))2 dx

)2

dy ds

= h ||∇u||L2(Rd) ||w||L2(Rd) .

Now, selectingw = u−Mhu gives the desired estimate for smooth functionsu.

Next, we prove (7.2). Again, letw ∈ L2(Rd) be an arbitrary function.

∫

RN

∂2

∂xi∂xj
Mhu(x)w(x) dx

=

∫

RN

[
∫

RN

(

∂

∂xj
u(x− y)

∂

∂xi
ρh(y)

)

dy

]

w(x) dx

=

∫

RN

∫

RN

(

∂

∂xj
u(x− y)

∂

∂xi
ρh(y)w(x)

)

dx dy

≤
∫

RN





∂

∂xi

ρh(y)

(

∫

RN

(

∂

∂xj

u(x− y)

)2

dx

)
1
2 (∫

RN

(w(x))2 dx

)
1
2



 dy

=
1

h

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂xj

u

∣

∣

∣

∣

∣

∣

∣

∣

L2(Rd)

||w||L2(Rd)

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂xi

ρ

∣

∣

∣

∣

∣

∣

∣

∣

L1(Rd)

.

Selectingw = ∂2

∂xi∂xj
Mhu and then summing overi andj yields the result for smooth function

u.

Finally, notice thatΩ is an extension domain sou ∈ H1(Ω) can be extended to a compactly
supported Sobolev functionu′ ∈ H1(Rd). Then applying the density of smooth functions in
Sobolev spaces completes the result.
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7.2 Interpolation Estimates in 2D

7.2.1 Classical Estimates

The classical estimates of finite element interpolation areduplicated here for completeness. They
can be found in many references including [6, 15].

LetK be a simplex. LethK denote the length of the longest side ofK andρ be the radius of
the largest inscribed sphere ofK. LetIk denote the standard Lagrange interpolation operator by
degreek polynomials on simplexK. Using the Bramble-Hilbert lemma and scaling properties
of Sobolev semi-norms, the classical local error interpolation estimate is derived.

Proposition 7.2. Let k ≥ 2 be an integer andm be in integer in[0, k]. Then there existsC > 0

independent of simplexK such that

|u− Iku|Hm(K) ≤ C
hk+1

K

ρm
K

|u|Hk+1(K)

holds for allu ∈ Hk+1(K).

It is natural to require the triangulation to satisfy a uniform bound onhK

ρK
in order to deduce

anO(hk+1−m) error estimate. This is equivalent to imposing a minimum angle condition on all
triangles in the mesh.

However, the termhK

ρK
is non-optimal for some triangles. This was observed by Jamet [22]

and Babuška and Aziz [2].

7.2.2 Higher order elements,k ≥ 2

Jamet’s analysis yields a general interpolation estimate for by quadratic and higher order ele-
ments on arbitrary triangles. The only dependence of the shape of the triangle where the function
is defined is through the largest angle of the triangle.

Theorem 7.3.[22] Let k ≥ 2 be an integer andm be in integer in[0, k]. Then there existsC > 0

independent of simplexK such that

||u− Iku||Hm(K) ≤ C
hk+1−m

K

(cos(θK/2))m ||u||Hk+1(K)

holds foru ∈ Hk+1(K) whereθK is the largest angle ofK.

This estimate can be restated as

||u− Iku||Hm(K) ≤ Chk+1−2m
K Rm

K ||u||Hk+1(K)

whereRK is the circumradius ofK by observing that

hK

cos(θK/2)
≈ RK . (7.3)

This relationship gives a natural geometric interpretation with respect to Delaunay refinement
algorithms and will be shown carefully in the next section.
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h

αh

βh

Th(α, β)

Figure 7.2: Parametrization of a general triangle.

7.2.3 Linear Elements,k = 1

The maximum angle condition for linear triangular element is considered by Babuška and Aziz
[2].

Theorem 7.4. [2, Theorem 2.1] Letθmax < π. There exists constantC(θmax) > 0 such that

||u− I1u||H1(K) ≤ C(θmax)hK ||u||H2(K)

holds uniformly for allu ∈ H2(K) over the class of trianglesK with largest angleθK such that
θK < θmax.

Jamet’s work suggests thatC(θmax) should have the formC(θ) ≈ C
cos(θmax/2)

, the Jamet’s
theorem does not apply in the case of linear elements. This result has been shown in [19] using
a combinatorial approach. In what follows, we show that thisfact is not an immediate corollary
of the theorem of Babuška and Aziz, but by revisiting their arguments, the sharp result can be
recovered. But first, we formalize the relationship betweenthe largest angle and the circumradius
of a general triangle which was mentioned in (7.3).

First, we give a parametrization for any triangle by lettingthe longest side lie on thex axis.
For 0 < α ≤

√
3

2
and0 ≤ β ≤ .5, let Th(α, β) be the triangle with vertices(0, 0), (h, 0) and

(βh, αh), as depicted in Figure 7.2. Any triangle can be translated toone of the formTh(α, β)

by a sequence of rotation, tranlation and reflection about the y axis, and all of these operations
are invariant with respect to the Sobolev semi-norms. Givenu ∈ Hk(Th(α, β)), let Iku be the
standard Lagrange interpolant ofu by a polynomial of degree at mostk.

Consider extending Theorem 7.4 to general triangles by using the linear mapρ : Th(α, 0) →
Th(α, β) given byρ(ξ) = Jξ whereJ is given below. See Figure 7.3.

J =

[

1 β
α

0 1

]

J−1 =

[

1 −β
α

0 1

]

Using the theorem on the class of functionsTh(α, 0) and applying the standard techniques
gives the estimate below.

||u− I1u||H1(Th(α,β)) ≤ C|J−1||J |2h ||u||H2(Th(α,β))

≤ C̄(1 +
β

α
)3h ||u||H2(Th(α,β))
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PSfrag

Th(α, 0) Th(α, β)

x = Jξ

Figure 7.3: Shear operation taking a right triangle into a general triangle.

Th(α, β)

RTh(α,β)

βh

l

h
2

αh

Figure 7.4: Diagram for Proposition 7.5.l is positive in this configuration.

As the maximum angle grows, this estimate is not sharp: it overestimates by two factors of
|J |. The analysis below follows the arguments of Babuška and Aziz but allows for more general
triangles from the beginning of the argument. This will yield a stronger relationship between
the maximum angle and the error estimate (through the circumradius of the triangle). First, we
estimate the circumradius ofTh(α, β). This proposition justifies the relationship (7.3).

Proposition 7.5.R2
Th(α,β) ≥ β2h2

16α2 + h2

8
.

Proof. Definel as the (signed) distance from the circumcenter ofTh(α, β) to the midpoint of the
side of lengthh as shown in Figure 7.4. Using the Pythagorean theorem (twice) gives

(

h

2

)2

+ l2 = R2
Th(α,β) =

(

h

2
− βh

)2

+ (αh+ l)2 . (7.4)

Expanding yields
h2

4
+ l2 =

h2

4
+ β2h2 − βh2 + l2 + 2αlh+ α2h2.

Solving forl gives

l = (1 − β)
βh

2α
− αh

2

≥ βh

4α
− αh

2
. (7.5)

Now, consider two cases.
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Case 1: βh
4α

− αh
2
< 0.

This implies thatβ < 2α2. Then, using the fact thatβ < 1 gives the following.

β2h2

16α2
+
h2

8
≤ βh2

8
+
h2

8

≤ h2

4

≤ R2
Th(α,β)

The final inequality is a result of (7.4).
Case 2: βh

4α
− αh

2
≥ 0.

In this case, substitute the bound forl in (7.5) into (7.4).

R2
Th(α,β) ≥

h2

4
+

(

βh

4α
− αh

2

)2

≥ h2

4
+

(

βh

4α

)2

+
α2h2

4
− βh2

4

≥
(

βh

4α

)2

+
h2(1 − β)

4

Then,1 − β > 1
2

impliesR2
Th(α,β) ≥ β2h2

16α2 + h2

8
.

Next, consider the following sets of functions.

Th(α, β) :=
{

u ∈ H2(Th(α, β)) | u(0, 0) = 0, u(h, 0) = 0, u(βh, αh) = 0
}

Ξh(α, β) :=

{

u ∈ H1(Th(α, β)) |
∫ h

0

u(βs, αs) ds = 0

}

Ξ′
h(α, β) :=

{

u ∈ H1(Th(α, β)) |
∫ h

0

u(s, 0) ds = 0

}

These sets are motivated as follows. For anyu ∈ H2(Th(α, β)), (u− I1u) ∈ Th(α, β),
(

β ∂
∂x

(u− I1u) + ∂
∂y

(u− I1u)
)

∈ Ξh(α, β), and ∂
∂x

(u− I1u) ∈ Ξ′
h(α, β). When the subscript

h equals1 in any of these sets (and when denoting ofTh(α, β)), it will be omitted. Also, denote
the coordinates byx = (x, y). The proof begins with a uniform Poincaré inequality over the
class of triangles withα andh set to1 (i.e. only varyingβ).

Lemma 7.6. Let

A2 = inf
u ∈ Ξ(1, β) ∪ Ξ′(1, β)

β ∈ [0, 1
2
]

∫

T (1,β)

[

u2
x + u2

y

]

dx

∫

T (1,β)

u2 dx

.

ThenA2 > 0.
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Proof. Note that this inequality is shown forT (1, 0) in [2] using the Poincaré inequality. Since
there is a bound on the aspect ratio of all triangles in{T (1, β) | β ∈ [0, 1

2
]} and all these triangles

longest edge length of similar length, the usual change of variables yields the lemma.

The following lemma is the key to extending the proof of Babuˇska and Aziz to general trian-
gles. The corresponding original lemma lacks the dependence onβ.

Lemma 7.7. Let

B2(α, β) = inf
u∈T (α,β)

∫

T (α,β)

[

u2
xx + 2u2

xy + u2
yy

]

dx

∫

T (α,β)

[

u2
x + u2

y

]

dx

.

Then
(

β2

α2 + 1
)

B2(α, β) ≥ A2

6
.

Proof. LetU(x, y) = u(x, αy) for (x, y) ∈ T (1, β).

(

β2

α2
+ 1

)

B2(α, β) =

(

β2

α2
+ 1

)

inf
u∈T (1,β)

∫

T (1,β)

[

U2
xx + 2

α2U
2
xy + 1

α4U
2
yy

]

dx

∫

T (1,β)

[

U2
x + 1

α2U2
y

]

dx

The middle term is split and then using the fact thatα ≤ 1 gives

(

β2

α2
+ 1

)

B2(α, β) ≥
(

β2

α2
+ 1

)

inf
u∈T (1,β)

∫

T (1,β)

{

U2
xx + U2

xy + 1
α2

[

U2
xy + U2

yy

]}

dx

∫

T (1,β)

[

U2
x + 1

α2U2
y

]

dx

Rearranging and ignoring some unimportant terms yields

(

β2

α2
+ 1

)

B2(α, β) ≥ inf
u∈T (1,β)















∫

T (1,β)

U2
xx + U2

xy dx

∫

T (1,β)

[

U2
x + 1

α2U2
y

]

dx

+
β2

3α2

∫

T (1,β)

U2
xx + U2

xy dx

∫

T (1,β)

[

U2
x + 1

α2U2
y

]

dx

+
2

3α2









∫

T (1,β)

β2
(

U2
xx + U2

xy

)

+ U2
xy + U2

yy dx

∫

T (1,β)

U2
x + 1

α2U2
y dx
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Let w = βUx + Uy. By observingw ∈ Ξ(1, β), we can proceed to apply Lemma 7.6 on the
numerator of the third term.

∫

T (1,β)

β2U2
xx + U2

xy + β2U2
xy + U2

yy dx ≥ 1

2

∫

T (1,β)

(

w2
x + w2

y

)

dx

≥ A2

2

∫

T (1,β)

w2 dx

=
A2

2

∫

T (1,β)

(βUx + Uy)
2 dx

≥ A2

2

∫

T (1,β)

1

2
U2

y − β2U2
x dx.

Applying Lemma 7.6 toUx (sinceUx ∈ Ξ′(1, β)) gives
∫

T (1,β)

U2
xx + U2

xy dx ≥ A2

∫

T (1,β)

U2
x dx.

Combining yields

(

β2

α2
+ 1

)

B2(α, β) ≥ A2 inf
u∈T (1,β)

∫

T (1,β)

U2
x + β2

3α2U
2
x + 1

3α2

(

1
2
U2

y − β2U2
x

)

dx

∫

T (1,β)

U2
x + 1

α2U2
y dx

≥ A2

6
.

The next two lemmas involve very similar proofs to the previous two.

Lemma 7.8. Let

Ā2 = inf
u ∈ T (1, β)

β ∈ [0, 1
2
]

∫

T (1,β)

[

u2
xx + 2u2

xy + u2
yy

]

dx

∫

T (1,β)

u2 dx

.

ThenĀ2 > 0.

Lemma 7.9. Let

B̄2(α, β) = inf
u ∈ T (α, β)

β ∈ [0, 1
2
]

∫

T (α,β)

[

u2
xx + 2u2

xy + u2
yy

]

dx

∫

T (α,β)

u2 dx

.

ThenB̄(α, β) > Ā.
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Remark.Unlike Lemma 7.7, the inequality in Lemma 7.9 is independentof β. This is because
theβ dependence results from derivatives in the denominator which are not present in this case.

Now we can prove the desired theorem.

Theorem 7.10.There existsC, independent ofh, α andβ such that

|u− I1u|H1
Th(α,β)

≤ CRTh(α,β) |u|H2
Th(α,β)

hold for all u ∈ H2(Th(α, β)) and anyα, h ∈ (0, 1] andβ ∈ [0, 1
2
].

Proof. Observe that
|u− I1u|H2

Th(α,β)
= |u|H2

Th(α,β)
(7.6)

sinceI1u is a piecewise linear function inH1. Letting ū(x, y) = u(hx, hy), Lemma 7.7 can be
applied to the function̄u− I1ū.

|u− I1u|2H1
Th(α,β)

=
1

h2
|ū− I1ū|2H1

T (α,β)

≤ 6

A2h2

(

β2

α2
+ 1

)

|ū− I1ū|2H2
T (α,β)

≤ 6h2

A2

(

β2

α2
+ 1

)

|u− I1u|2H2
Th(α,β)

=
6

A2

(

β2

α2
+ 1

)

h2 |u|2H2
Th(α,β)

.

The inequality then follows by applying Proposition 7.5

A standard example shows that this bound scales in th optimalway with respect toβ (and
thusRTh(α,β)). Consider the functionu(x, y) = x2 on the triangleTh(α, β). The interpolant
in this case isI1u = hx + β

α
h(β − 1)y. Then excluding higher order terms, we compute the

following norms.

|u|2H2
Th(α,β)

≈ 2αh2

|u− I1u|2H1
Th(α,β)

≈ h2

(

1 +
β2

α2

)

αh2

2

It is clear that the ratio between these terms matches the bound in Theorem 7.10.

7.2.4 Interpolating Rough Functions

Interpolating functions inH1(Ω) leads to some complications. The usual Lagrange interpolant
is poorly defined sinceH1(Ω) functions need not be continuous. Techniques of averaging can
be used to avoid this problem and produce the optimal interpolants [16, 40]. These approaches
are suitable for meshes satisfying minimum angle conditions but estimates involve the maximum
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degree of the triangulation. This is a result of the fact thatprevious methods for average in-
terpolation involve averaging in the reference configuration (or over a patch of elements in the
reference configuration) and then ensuring some overlap conditions. For general triangulations,
this overlap condition can fail. Figure 7.1(c) demonstrates a possible refinement in which the
size of the triangulation is decreasing yet a uniform degreebound will fail.

We will demonstrate a general estimate which holds for any triangulation without any angle
conditions. We consider a simplified situation: letu ∈ H1

0 (Ω) (i.e. u is 0 on the boundary of
Ω) and leth be a uniform sizing parameter for the mesh (i.e. we will require all edges of the
triangulation to be no longer thanh). The interpolant constructed will give the expected error
estimate and satisfy the zero boundary conditions.

Denote
Ωh := {x ∈ Ω | dist(x, ∂Ω) > h}

and letψh be the following cutoff function.

ψh(x) =















1 if x ∈ Ω2h,
dist(x,∂Ω)−h

h
if x ∈ Ωh \ Ω2h,

0 if x ∈ R
2 \ Ωh.

The distance to the boundary function is Lipschitz andψh belongs toH1(R2).

Proposition 7.11.There exists a constantC > 0 such that for allu ∈ H1
0 (Ω),

|ψhu|H1(Ω) ≤ C |u|H1(Ω) .

Proof. Proof follows by applying the product rule and the Poincare inequality.

||∇(ψhu)||L2(Ω) ≤ ||∇(ψh)u||L2(Ωh\Ω2h) + ||ψh∇u||L2(Ω)

≤ ||∇ψh||L∞(Ωh\Ω2h) ||u||L2(Ωh\Ω2h) + ||∇u||L2(Ω)

≤ 1

h
||u||L2(Ω\Ω2h) + ||∇u||L2(Ω)

≤ 1

h
Ch |u|H1(Ω) + |u|H1(Ω) .

Since the Lagrange interpolation operator is poorly defined, we instead consider the interpo-
lation operator̂Ih,T : L2(Ω) → H1(Ω) defined by

Îh,T u = I1 (Mh (ψhu))

whereI1 is the linear Lagrange interpolant,Mh is the mollifier discussed in Section 7.1, and
ψh is the cuttoff function above. The cutoff function is used toensure that the interpolant has
the same boundary values as the the functionu. Then that the interpolant is in the typical finite
element space.
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Theorem 7.12.There existsC depending only uponΩ such that for allu ∈ H1
0 (Ω) and all

triangulationsT of Ω with no edges longer thanh,

∣

∣

∣

∣

∣

∣
u− Îh,T u

∣

∣

∣

∣

∣

∣

L2(Ω)
≤ Ch |u|H1(Ω) .

Remark.This is consistent with the classical interpolation theoryin Proposition 7.2 which gives

∣

∣

∣

∣

∣

∣
u− Îh,T u

∣

∣

∣

∣

∣

∣

L2(Ω)
≤ Ch2 |u|H2(Ω)

for functionsu in H2(Ω) without restrictionon the triangulation.

Proof. First, the estimate is divided into three terms:

∣

∣

∣

∣

∣

∣
u− Îh,T u

∣

∣

∣

∣

∣

∣

L2(Ω)
≤ ||u− ψhu||L2(Ω) + ||Mh(ψhu) − ψhu||L2(Ω)

+ ||I1(Mh(ψhu)) −Mh(ψhu)||L2(Ω) .

The first term can be estimated using the Poincare inequalitywhere|∂Ω| denotes the perimeter
of Ω. Throughout, this argument,C denotes the running constant and is not labeled after each
estimate.

||u− ψhu||L2(Ω) = ||(1 − ψh)u||L2(Ω\Ω2h)

≤ ||u||L2(Ω\Ω2h)

≤ C|∂Ω2h|h |u|H1(Ω\Ω2h)

≤ C|∂Ω|h |u|H1(Ω) .

The second term is estimated using (7.1) and Proposition 7.11:

||Mh(ψhu) − ψhu||L2(Ω) ≤ Ch |ψhu|H1(Ω)

≤ Ch |u|H1(Ω) .

Finally, analysis of the third term involves Proposition 7.2, (7.2), and Proposition 7.11.

||I1(Mh(ψhu)) −Mh(ψhu)||L2(Ω) ≤ Ch2 |Mh(ψhu)|H2(Ω)

≤ Ch |ψhu|H1(Ω)

≤ Ch |u|H1(Ω) .

Combining the three terms yields the result.
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7.3 2D Delaunay Refinement for the FEM

As noted earlier, the 2D Delaunay refinement algorithm described by Miller, Pav and Walkington
[30] and Algorithm 5.3 (the intestine protection scheme) produce meshes with no large angles
and thus by noting the theorem of Jamet and that of Babuška and Aziz, these meshing algorithms
are suitable for the finite element method. In light of Theorem 7.10, it follows that triangulations
produced by Shewchuk’s terminator algorithm [41] and Algorithm 5.2 (the collar protection
scheme) also produce suitable meshes for the finite element method: although large angles may
exist, the circumradius of any remaining triangle is proportional to the local feature size.

However, the interpolation estimate in Theorem 7.10 suggests a different Delaunay refine-
ment algorithm which focuses on producing a mesh with no large circumradii rather than ensure
triangle quality via angle bounds. Given a user specified sizing function,h : Ω → (0,∞) which
is bounded below by some positive constant, Algorithm 7.1 will produce a triangulation such
that the circumradius of each triangle is bounded by the minimum value ofh over the triangle.
The following algorithm will terminate as long as the input satisfies one condition: all acutely
adjacent input segments must have equal length (modulo powers of2).

Algorithm 7.1 Simple Delaunay Refinement for FEM

Action Insert the circumcenter of a simplex unless the simplex is a triangle and
the circumcenter encroaches upon a segment. In this case, queue the en-
croached segment for splitting.

Priority Segments are processed before triangles.
Unacceptability A segments is unacceptable if its diametral disk is non-empty. A triangle t

is unacceptable ifinf
x∈t

h(x) < Rt.

Safety It is safe to split any simplex.

This algorithm can be thought of as a graded version of Chew’sfirst Delaunay refinement
algorithm [13] (given in Algorithm 7.2), which introduced the idea of circumcenter insertion
and produce uniform meshes. Chew observed that in the case ofa constant sizing function and
appropriate restrictions on input segment lengths, refinement of triangles with large circumradii
leads to triangulation with minimum angle at leastπ

6
.
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Algorithm 7.2 Chew’s first Delaunay refinement algorithm [13]

Action Insert the circumcenter of a triangle.
Priority Triangles are prioritized by circumradius, larger circumradii are processed

first.
Unacceptability A triangle is unacceptable if it has a circumradius larger thanh.

Safety It is safe to split any simplex.

Theorem 7.13.Given a sizing functionh : Ω → R which is bounded away from0 and an input
PLC in which adjacent segments are split at equal lengths, Algorithm 7.1 terminates and for
each trianglet in the resulting triangulation,

1

2
min (h(t), lfs(t)) ≤ Rt ≤ inf

x∈t
h(x)

whereh(t) := infx∈B(q,(1+
√

2)rq) h(x) andq is the last vertex oft inserted into the mesh.

Two triangulations produced by this algorithm is shown in Figure 7.5. Despite the lack of any
guarantee on the minimum angle in the resulting triangulation, the vast majority of the triangles
do not contain small angles. This is consistent with the result of Chew’s algorithm which shows
that in the case of a constant sizing function, a minimum angle bound can be achieved. Triangles
with large angles typically only occur near discontinuities in the sizing function.
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(a) Two meshes generated using Algorithm 7.1 and sizing function which is quadratic in the horizontal
direction.

(b) Two meshes generated using Algorithm 7.1 and a discontinuous sizing function.

Figure 7.5: Algorithm 7.1 examples
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