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Abstract

Ruppert’s algorithm is an elegant solution to the mesh geiwer problem for
non-acute domains in two dimensions. This thesis develojses-dimensional
Delaunay refinement algorithm which produces a conformiatainay tetrahedral-
ization, ensures a bound on the radius-edge ratio of nedirtstrahedra, generates
tetrahedra of a size related to the local feature size andizleeof nearby small in-
put angles, and is simple enough to admit an implementafionlo this, Delaunay
refinement algorithms for estimating local feature size@mestructed. These es-
timates are then used to determine an appropriately sizagdgbion region around
acutely adjacent features of the input. Finally, a simpleave of Ruppert’s algo-
rithm can be applied to produce a quality mesh. Additionabme finite element
interpolation results pertaining to Delaunay refinemegwathms in two dimensions
are considered.
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Chapter 1

Overview

Consider computing a numerical approximation to the sotutif a partial differential equation
in a two dimensional polygonal domain via the finite elemeathod. The classical convergence
theory involves a conforming triangulation of the domainethsatisfies a lower bound over all
the angles in the triangulation and gives an error estimgpeding on the length of the longest
side of each triangle. In the simplest case, one requiresfarombound on the longest edge of
each triangle, but in other cases a graded/adaptive triatgu is desirable. A mesh generator
should be able to produce a triangulation based on the siestgction given by the user.

Ruppert proposed a simple mesh generation algorithm wHedmaetly solves this prob-
lem [39]. The algorithm is the prototypical Delaunay refir@malgorithm: these algorithms
are characterized by the use of a Delaunay triangulatioheastesh” and the incremental in-
sertion of circumcenters of unacceptable simplices to aw@this mesh. (Delaunay refinement
was first introduced by Chew [13] and the term is often closelyociated with the idea of cir-
cumcenter insertion for mesh refinement. We will use the terencompass a broader class of
algorithms which allow the insertion Steiner vertices ainggother than circumcenters.) For
non-acute input domains, Ruppert’s algorithm producesshm#ich is (up to a constant factor)
as coarse as any conforming triangulation which satisfieslésired minimum angle condition:
in other words, the size of the resulting mesh is necessaryalthe input geometry. Moreover,
it is simple to further refine the triangulation accordingatoser-given sizing function by con-
tinuing to insert circumcenters where necessary. One k&ufupert’s analysis is definition of
the local feature size (informally, the distance from a ptinthe second nearest feature in the
input) which is shown to be the correct size for the mesh predu The primary limitation of
Ruppert’s algorithm is the restrictive condition that @&afures of the input (i.e. segments in the
“boundary” of the domain) must meet at non-acute angles.

As Ruppert’s algorithm is extended to mesh more general damniais desirable to preserve
several properties of the mesh: triangles satisfy a minirangie condition and are as large as
the input complex allows. For acute input, this is not alwpgssible: a small angle in the input
mustmeans a triangle with a small angle must be present in anypowoirig triangulation. How-
ever, a compromise can be reached: a triangulation satgséysimilar relationship between the
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size of the triangles and the local feature size with resfmetite input can be produced which
contains no large angles and thus admits good interpolantké finite element method (by in-

terpolation results in [2, 22]). This estimate on the sizéhefresulting triangulation deteriorates
as the smallest angle of the input approaches zero. Debstatgorithms of this form are very

effective in practice and are widely used.

The analysis of Delauany refinement algorithms for genéralt dimensional domains fol-
lows the same guiding principle as those in two dimensioglsxrrequirements on the resulting
mesh when necessary to ensure termination of the algorifumpared to the elegant theory of
Ruppert’s algorithm for 2D non-acute domains, these allgors suffer from two major draw-
backs. The first is the issue of case explosion. Ruppertgsnai proof involves five cases (a few
of which are trivial) and is simple to verify. As the algomths extended, the number of cases can
often double with each modification of the algorithm. To reelgyet not completely eliminate)
this issue, we will focus on isolating the key properties apRert’s algorithm and proving anal-
ogous results for the simplest possible algorithms. Thiklwei seen to be an effective method
for developing a sound Delaunay refinement algorithm witlacingle monolithic analysis. The
result will be to form a sequence of Delaunay refinement @lyois which gradually build the
desired output properties and isolate different techrdetsils.

The second uniquely three dimensional issue pertainingetauhay refinement is the sliver
tetrahedra. A sliver tetrahedra has a poor aspect ratio lgaiod circumradius-shortest edge
ratio: thus it appears acceptable to Delaunay refinemeatitiighs but is poor for the finite ele-
ment method. To alleviate the problems associated witkrsj\three lines of research have been
followed: methods for removing slivers from bounded raekdge meshes have been shown
to produce sliver free meshes based on some theoreticaacd®$8, 2@ ], experimental ap-
proaches have been developed that often remove all slivetadk rigorous guarantees [18, 24],
and the convergence of a simple numerical method in the pces# slivers has been shown [32].
The algorithms we will develop are compatible with each @ programs but do not further
these lines of research.

The goal of this thesis is to develop a 3D Delaunay refinemgotithm which
e produces a conforming Delaunay tetrahedralization,

e ensures a bound on the radius-edge ratio of nearby all etrah

e generates tetrahedra of size related to the local featzeeasid size of nearby small input
angles, and

¢ is simple enough to admit an implementation.

In the process, we develop an alternative 2D Delaunay reénédgorithm for which our
algorithm (and other previous algorithms) is an extensimh@iscuss where the difficulty arises
when attempting to extend the best/most used 2D algoritiims.isolates the key obstacles (in
addition to the issue of slivers) that tetrahedral mesh igdiom faces which are not present in
triangular mesh generation.



While possibly the most studied feature of Delauany refimgnaggorithms is the property
that the simplices in the meshes generated are not too sihiadlarly equal importance is the fact
that these simplices are small enough. Ruppert’s analgsstine requirement of mesh quality to
ensure that the mesh generated (and any quality triangnlatithe input complex) is sufficiently
small. In Chapters 3 and 4, we show that the the fact that thdtieg mesh is small enough near
important parts of the input is a result of the definition oteachment in the algorithm and
does not rely on the quality criteria. This leads to simpléaiDeay refinement algorithms which
yield practical estimates on the local feature size oves#t®f(d — 2)-dimensional features of
the input.

In Chapters 5 and 6, Delauany refinement algorithms for geimgrquality conforming De-
launay triangulations of arbitrary input complexes areegivThe estimates in the previous chap-
ters are exactly what is necessary to determine an accepdadd for protected regions near
acute input angles which are needed to ensure terminatithre @igorithm. In 2D, it is possible
to avoid explicitly computing a protection size around aduput angles (see [30]), but it is not
known how to generalize this approach to 3D. We carefullycdlee and analyze the simplest
Delauanay refinement algorithms in 2D and then extend thgseaches to 3D. The result is
a practical algorithm which resembles the previously uémented algorithms of Cheng and
Poon [11] and Pav and Walkington [36]. In the process, we lllrequired to mesh certain
smooth complexes (not just straight segments and planes)and this involves a stronger ver-
sion of a result on curved meshing in 2D.

Finally in Chapter 7, we will consider the mesh generatioobpgm in two dimensions by
reconsidering the requirements of the finite element methndhe 1970s, it was shown that
the requirement that all simplices have bounded aspeotcati be relaxed: the minimum angle
condition can be replaced by a maximum angle condition (whis also inspired a mesh gen-
eration algorithm [31]). We reinterpret standard integbion estimates to see the relationship
between interpolation error (the important quantity in #malysis of finite element methods)
and the circumradius of a triangle (the important quantityhie analysis of Delaunay refine-
ment methods). We describe a simple mesh generation digouit the spirit of Chew’s original
Delaunay refinement method [13] which utilizes this relasioip.

This simple 2D mesh generation algorithm really highlightsdifference between Delaunay
refinement in two and three dimensions. In 2D, ensuring theltiag Delaunay triangulation
conforms to the input is as simple as initially splitting acgnt input segments at equal length
and then splitting segments with non empty diametral baitd termination. Then, interpolation
error estimates can be determined in terms of only the lsngftedges in the triangulation, even
in the presence of bad angles! In 3D, producing a conformiaghis quite involved, a bounded
radius-edge mesh does not imply the desired interpolastmates and open questions persist
in the characterization of interpolation error over gehtgmahedra. The purpose of this thesis
is to understand which properties of 2D Delaunay refinemigatriithms can be extended to 3D
and to investigate the simplest such algorithms which céuna#lg be implemented.






Chapter 2

Delaunay Refinement Preliminaries

2.1 Basic Definitions

Two important types of sets are simplices (triangles in gandimension) and balls (disks in
general dimension). Simplices always refer to closed shikewalls are always open sets. The
ball of radiusr centered at: will be denotedB(z, ). Without ambiguity, given a simplex,
the circumball ofs, denotedB(s), is the smallest ball containing all of the verticessofn its
boundary. Similarly, for a curvewith endpoints, andp,, thenB(c) := B(pipz).

We will focus on algorithms for generating simplicial meshéhich are Delaunay triangula-
tions of point sets ilR? whered is either2 or 3. For completeness, the definition of Delaunay
triangulation is now given.

Definition 2.1.1. Let P be a finite subset dk?.

e The Delaunay triangulation of P, denoted DTP) refers to the set of simplices with

vertices inP and with circumballs which are disjoint frof.

e Two verticeg, ¢ € P are calledelaunay neighborsif there is some simplekc DT(P)

with verticesp andg.

The term Delaunay tetrahedralization will be used when wgrkpecifically in 3D, but De-
launay triangulation will be used when discussing the garease (as well as in 2D situations).
From the definition of Delaunay triangulation, the exisen€Delaunay neighbors can be char-
acterized by the proposition below.

Proposition 2.1. [Delaunay Property] LetP be a finite subset d&“. Let B be a ball with point
q € P on the boundary oB3. If there is a point ofP inside B, thenq has a Delaunay neighbor
that is insideB.

There are many ways to assess the quality of a trianguld&mmnexample, [25] identifies five
gualitative properties of simplices (or other polyhedrajl #uggests an approach for forming
metrics which effectively differentiate simplices basedamy combination of these properties.
However, we will focus on the metrics described below.



Definition 2.1.2. Let ¢ be a simplex.

e Theaspect ratioof ¢, denoted4A R(t), is the ratio of the smallest sphere containing the
largest sphere containedin

e Thecircumradius-shortest edge ratiq or radius-edge ratig of ¢, denoted RE), is the
ratio of the circumradius afto the length of the shortest edgetof

The standard analysis of the finite element method reliesumfarm bound on the aspect
ratio over the triangulation. Analysis of Delaunay refinainggorithms naturally involves the
radius-edge ratio. In 2D, aspect ratio and radius-edge ea& equivalent, while in 3D sliver
tetrahedra have good radius-edge ratios but arbitrarity pepect ratios.

The mesh generation algorithms discussed will be given steseription of the area/volume
to be meshed and produce a conforming Delaunay trianguolatie will assume that the input is
described as a piecewise linear complex, defined below.r&epdefinitions are given in two and
three dimensions. This makes the simplicity in the 2D casarcnd avoids excessive notation
which is necessary for a definition in general dimension.

Definition 2.1.3. In two dimensions:

e A 2D piecewise linear compleXPLC),C = (P, S), is a pair of sets of input vertice
and input segments, such that the endpoints of each segmeid afe contained if® and
the intersection of any two segments®fs also contained ifP.

e APLC(C' = (P, &) is arefinement of the PLCC = (P, S) if P C P’ and each segment
in S is the union of segments i .

e APLCC* = (P*,S%) is asubcomplexof the PLCC = (P, S) if eitherC* = C or there is
a feature € P U S such that

P*={peP|pcCt}and
S'={seS|sCt}.

Definition 2.1.4. In three dimensions:

e A 3D piecewise linear compleXPLC),C = (P, S, F), is a triple of sets of input vertices
P, input segments, and polygonal input face® such that the boundary of any feature
or the intersection of any two features is the union of otberr-dimensional features in
the complex.

e APLCC = (P, 8", F) is arefinement of the PLCC = (P, S, F) if P C P’ and each
segment irS is the union of segmentsd and every face itF is the union of faces itF’.

e APLCC* = (P*,S*, F*) is asubcomplexof the PLCC = (P, S, F) if eitherC* = C or
there is a featurec€ P U S U F such that

Pr={peP|pCt},
S*={seS|scCt}, and
Fr={feF|fcCt}.

When refining a PLC, certain simplices near the boundariesmft features have special
importance in the analysis. These are defined below.

6



Definition 2.1.5. Consider a refinemeri®’, S’, 7') [or (P’,S’)] of an input PLC(P, S, F) [or
(P, S)]-

e An end segmenis a segment i’ for which at least one endpoint is an input vertein

e An end triangle is a triangle inF’ for which at least one vertex lies on an input segment
inS.

e Thespindle of a segment in §’, denoted Sping), is the set containing

» 5if sis notan end segment, or
» s and all end segments adjacenstih s is an end segment.

For a simplexs, R, denotes its circumradius. For any poininserted into the mesh by our
refinement algorithms;, denotes the insertion radius of poipti.e. the distance from to its
nearest neighbor i®" when it is inserted into the Delaunay triangulation.

An appropriate notion of feature size is essential in thdyasigof Delaunay refinement
algorithms. The standard definition of local feature sizgiven below as well as another useful
sizing function (called mesh feature size).

Definition 2.1.6. Let PLCC’ be a refinement of PLC.

e Thei-local feature sizeat pointx with respect ta, Ifs;(x, C) is the radius of the smallest
closed ball centered atwhich intersects twdisjointfeatures o of dimension no greater
thani.

e Thei-mesh feature sizet pointz with respectt@, mfs;(x,C) is the radius of the smallest
closed ball centered atwhich intersects two features 6fof dimension no greater than

e Thenearest neighbor function N(z, P’) := Ifsy(z,C’), returns the distance fromto its
second nearest neighbor/.

The above definitions do not require any distinction betwaemnput PLC and its refinement.
However, we state the definitions in this way as local feasire functions will usually be
evaluated with respect to some initial PLC while the neamegihbor function will be analyzed
on the intermediate or resulting triangulations. Figufedzpicts the feature size at the vertex of
a mesh during a possible refinement. Note that the featuedssiefined at all points iR9, not
just vertices of the mesh. Each of these functions is Liggdhiith constant). For a fixed PLC,
local feature size is strictly positive while mesh featuse £an equal zero.

If the argument supplied to any of the above feature sizetiome is a set of points, rather
than a point, then the result is defined to the be infimum ofdinetfon over the set,

Ifs;(s,C) = i%f Ifs;(z,C).

To simplify the notation in the most common cases, a few cotwas will be followed.

7



Figure 2.1: Example of sizing functions in Definition 2.1d@ fa 2D PLC. The black points
represent input points while the white points represertices inserted during the refinement.

Conventions
e |f the PLC argument is omitted in the mesh or local feature &imction, it is assumed

to be the input complex, e.g. [fs) := Ifs;(x,C).

e |f the vertex set argument is omitted in the nearest neighbration, it is assumed to be
the vertex set of the current refined complex, éVgz) := N(z, P’).

e |f the dimension argument is omitted in the mesh or localueasize function, it ig
assumed to bgl — 1), e.g. Ifgz,C) := Ifsy_1(z,C).

Often it will be important to show identical estimates onlibeal feature size of end segments
and the mesh feature size of non-end segments. It is usefefdoto these two cases with the
same notation.

Definition 2.1.7. Thei-feature sizeof segment is defined as follows.

fs,(s) Ifs;(s) if sis an end segment
i\S) =
mfs;(s) if sis anon-end segment

Given simplexs in C’, pointz is called ani-feature size witnesdor s if x is contained in a
feature ofC of dimension at most which is disjoint froms. Given simplexs in C’, pointz is
called alocal feature size witnesdor s if x is contained in a feature @gfwhich is disjoint from
another feature of containings. Simplexs’ is called ai-feature size witness for simplexif
every point ofs’ is ani-feature size witness fox.

The definition of feature size is closely related to the definiof local gap size used by
Cheng and Poon [11]. The notion ©feature size witness is used by recognizing thatig an
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i-feature size witness of segmenthen
fs;(s) < dist(z, s).

In Chapters 5 and 6, we will consider meshing particular ispehich include curved, rather
than straight, features. These complexes belong to the ofagiecewise smooth complexes
which are defined below.

Definition 2.1.8. A 2D piecewise smooth comple®SC),C = (P, S), is a pair of sets of input
verticesP and non-self-intersecting smooth input curnéssuch that the boundary points of
each curve of are contained ifP and the intersection of any two curves®fs also contained
inP.

Definition 2.1.9. A 3D piecewise smooth complef*SC),C = (P, S, F) , is a triple of sets of
input verticesP, non-self-intersecting smooth input curv@sand non-self-intersecting smooth
input facesF such that the boundary of any feature or the intersectiomptwao features is the
union of other lower-dimensional features in the complex.

The definitions of a refinement of a PSC, a subcomplex of a P8@aal/mesh feature size
are identical to those given for PLCs. This definition of lofesture size does not include any
dependence on the curvature or distance to the medial assofve or surface (as is done in
[20]). While in general local feature size should includis ihformation, the simpler definition
will be sufficient for the simple PSC that will be considered.

The termination and quality guarantees of Delaunay refimemdgorithms involve a number
of parameter relating to the input PLC and the triangulaposduced. The notation for these
parameters is given in Table 2.1.

Table 2.1: Important parameters for Delaunay refinemeimirgkgns.
« | The smallest angle between any two adjacent features ohfh |i
complex.
a1 | The smallest angle between an input segment and any otlaeesd)
input feature of the input complex.
as | (3D only) The smallest angle between any two adjacent irguéd.
The radius-edge threshold for the Delaunay refinement isthgor
(2D only) The minimum angle threshold for the Delaunay refine
ment algorithm.

2.2 Ruppert’'s Algorithm

Ruppert’s algorithm [39] serves as a prototype for the allyors we will consider. In the most
basic form, the algorithm accepts a non-acute 2D PLC as enpdiproduces a quality, conform-
ing Delaunay triangulation. Quality is achieved in the setimt all triangles satisfy a uniform
minimum angle condition via a bound on the radius-edge ratio

9



Ruppert’s algorithm is given in Algorithm 2.1. In this deigtion, a segment is called
“encroached” if there is any vertex in its diametral ball.rlangle is poor quality if has a radius-
edge ratio larger than.

Algorithm 2.1 Ruppert’s Algorithm
Compute the Delaunay triangulation of the input points.
Queue all encroached segments and poor quality Delaurzagtes.
while the queue of simplices is nonemputy
Pop the front simplex from the queue.
if sis a segmenten
Insert the midpoint of.
end if
if sis atrianglethen
Compute the circumcenterof s.
if ¢ encroaches upon a segmehthen
Queues'.
else
Insertc into the Delaunay triangulation.
end if
end if
Remove any queued triangles which no longer exist in thada&tion.
Queue any newly encroached simplices and poor qualitygiémsn
end while

An important advance in Ruppert’s work is the observatiat the insertion radius of every
vertex added to the mesh is bounded below by the local feateegwhich is a strictly positive
function). This fact is the key in proving that the size of @ulting triangles in the mesh are
proportional to the local feature size of the input.

Theorem 2.2.1f o > § andr > V2 [or sink < ﬁ], Ruppert’s algorithm terminates. The
resulting triangulation conforms to the input, is gradedhe local feature size and only contains
triangles with radius-edge ratio less thar{or all angles of resulting triangles are at leas.

Remark. This theorem can be extended to allaw> % [42]. The largest known input angle
which causes the algorithm to fail is= 27“ [35].

Proof. Termination and grading are implied by the following inelityavhich is shown induc-
tively at all vertices which are proposed for insertion itite mesh.

Tq if ¢ is an input point,
Ifs(q) < { Cyr, if ¢ is a segment midpoint,
Cyr, if ¢ is a circumcenter.

10



For each of the input points, the inequality above is immiedis
Ifs(q) < Ifsp(q) < r,.

This provides the base case for the remaining inductivefproo

We will find appropriate constants; > (5 such that this inequality holds. Further restric-
tions onCy and C, will be addressed throughout the argument. Consider thewwlg cases
corresponding to different types of vertices inserted leyatgorithm.

Case 1 Let g be a midpoint of some subsegment to be inserted and furthettha point en-
croaching the subsegment is also on a segment. By the rewgrnitehat the input be non-acute,
the encroaching point is on a disjoint segment. ThuggJfs. r,, soC; > 1 must be required.

Case 2 Let g be the circumcenter of poor quality trianglevhich is proposed for insertion. Let
p be the newer vertex on the shortest edge. dfhenr, is at most the length of this short edge
which is less thaﬁ”;—‘”, sincet is a poor quality triangle. Now, the Lipschitz property o¢tlocal
feature size can be applied.

Ifs(q) < Ifs(p) + |p — q]
< Ciry+p—q|

C

< <—1+1) p—q|
T

< <ﬁ+1)7’q.
.

@2%+L 2.1)

This gives the requirement

Case 3 Let ¢ be a midpoint of a subsegment which is inserted due to an acicing (but
rejected) circumcenter, Local feature size atis estimated through this point
Ifs(q) < Ifs(c) + |c — q|
S CZTC + |C - Q|
S (CQ\/§ + ].) Tq.
This gives the requirement
Cy > CyV/2+ 1. (2.2)

Combining the restrictions in the last two cases, it is g@edb choose ang’, large enough
to satisfy the below inequality and then chodseas follows.

147
Cy> ———,
2_7'—\/§
011:\/§Cg—|—1.
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Figure 2.2: Figure for the proof of Theorem 2.3. The shadgibremust containy, and is a
subset of the diametral disk ef

These values are only valid when> /2. This restriction cannot be lifted without modifying
the algorithm and a much more thorough analysis [30].

The algorithm only terminates if no triangles are skinny afidsubsegments are not en-
croached, so we concluded that the resulting mesh confarthetinput and contains no skinny
triangles. O

The previous theorem shows that the size of the mesh produycRdppert’s algorithm is no
smaller than (a constant times) the local feature size oinjat. It can also be shown that the
mesh produced is no larger than (a different constant) tilmesocal feature size of the mesh.
The simplest example of a theorem of this type is given beMihkile this is not the strongest
statement which can be shown in this case, it is similar t@opeg results in Chapters 3 and 4.
Theorem 2.3.1f & > § and7 > V2 (or sink < %), following the termination of Ruppert’s
algorithm, the following inequality holds for any input ¥&x ¢, of the mesh:

N(qo,P") < V21fs(qo).
Proof. Let ¢, be an input vertex such that(q, P’) > v/21fs(g). Since
N(qo,P') = Hso(qo,C") < Hso(qo),

the local feature size gt must be realized by an input segment disjoint frgmLetz € s € S’
be a point on a segment disjoint fragm such that If$qy) = dist(qo, ). Further, lety € P’ be
the endpoint ok nearest ta@, as depicted in Figure 2.2.
21fs(qo)* < N(qo, P')?
< g —qf
= Ifs(q)* + |z — ¢|?
Thus|z —qo| = Ifs(qo) < |z —¢| which implies thay lies in the diametral disk of. Since no

segments are encroached when Ruppert’s algorithm teresinadnclude that the desired bound
holds at termination. O

12



2.3 The Generic Delaunay Refinement Algorithm

There are several ways to modify and generalize Algorithin Zhis is essential to weaken the
restriction in Theorem 2.2 to allow acute input. All of the sheng algorithms which we will
consider (and effectively all algorithms which can be labéiDelaunay refinement”) match the
form of Algorithm 2.2.

Algorithm 2.2 Delaunay Refinement
Create an initial Delaunay triangulation.
Queue all unacceptable simplices.
while the queue of simplices is nonemputy
if it is safe to split the front simplethen
Take an action based on the front simplex.
Queue additional unacceptable simplices.
end if
Remove the front simplex from the queue.
Dequeue any queued simplices which no longer exist.
end while

To specify an algorithm from Algorithm 2.2, it necessary &sdribe the following state-
ments.

Action Where should a vertex (a Steiner point) be inserted to “salgimplex?
Should other (usually lower dimensional) features be qddaesplitting?
Priority In what order should be queue be processed?
Unacceptability] Which simplices are unacceptable?
Safety Which simplices are safe to split?

Additionally, we require that each of these operations Iwe@nly local computations in
the Delaunay triangulation of the current point set. In oewy any algorithm which matches
the form of Algorithm 2.2 and can be updated based on the Detdunay triangulation is a
Delaunay refinement algorithm and any algorithm that do¢$itrthese to requirements is not.

First, we consider how Ruppert’s algorithm (Algorithm 2specializes Algorithm 2.2. The
key four descriptions are given in Algorithm 2.3.

Some of these specifications for Ruppert’s algorithm areirsple that they can be easily
overlooked. However, it is important to generalize Delaurefinement algorithms in each of
the four ways considered above for different purposes. lteaebrief description of how this
has been done in the literature. This generic algorithmrsowvietually all algorithms which are
considered Delaunay refinement.

13



Algorithm 2.3 Ruppert’s Algorithm

Action If triangle’s circumcenter encroaches upon a segment rtbached upomn
segment is added to the queue. Otherwise, when a simpleadegsed, its
circumcenter is inserted.

Priority Segments are processed before triangles.
Unacceptability] A segment is unacceptable if it has a nonempty diametral diskiangle
is unacceptable if it has a radius-edge ratio greater than
Safety It is safe to split any simplex.

2.3.1 Action

There are many different actions that the mesh can take toverfnad simplices. Chew'’s first
Delaunay refinement algorithm [13] used the insertion afusincenters to remove poor quality
triangles from the mesh. Inserting the circumcenter is amaéthoice for Delaunay triangula-
tions since this gives the furthest guaranteed distanceeeet the point and any others in the
mesh based only on the simplex which is being split. Ruppafgorithm added the idea of
yielding to lower dimensional features. Off-center veeicand general selection regions have
also been studied [12, 23, 45] using the same yielding pureeds Ruppert’s algorithm. An
example of a very different action taken by the algorithm barseen with Chew’s second De-
launay refinement algorithm [14]. This method maintains@st@ined Delaunay triangulation,
involves a different yielding procedure and occasionalyoves vertices from the mesh follow-
ing certain midpointinsertions. The algorithm of Millerudlson, and Phillips includes a yielding
procedure in which circumcenters yield to input verticesolihhave not been inserted into the
mesh [21].

2.3.2 Periority

The priority queue for most Delaunay refinement algorithmvelives prioritizing lower dimen-

sional simplices before higher dimensional ones [28, 33]r tine efficient algorithms, this
priority queue must be modified [1, 21, 27], typically redug simplices queued for quality to
be processed before those queued based on encroachmeritiziPrg queued simplices of equal
dimension (often by circumradius) has also been used in stgoeithms [27, 38].

2.3.3 Unacceptability

There are typically two types of unacceptability criteeacroachment criteria which ensure that
the required input features exist in the refined mesh, anlitguequirements which are desirable
of the output mesh. For the encroachment criteria, the nmwston approach involves asking if
a simplex has a nonempty circumball. This is useful sincesamplex with a empty circumball
must appear in the Delaunay triangulation. Methods whitdizeconstrained Delaunay triangu-
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lations often relax this requirement and consider pratgcii smaller lens around each segment
or ignore an explicit encroachment criteria all togetherl{4.

The second type of unacceptability criteria, the qualitiecia, is usually based on the radius-
edge ratio (or the closely related Voronoi quality) of thesimeQuality also may be specified via
a user defined sizing parameter.

2.3.4 Safety

Meshing non-acute domains does not typically require amgklhat a simplex is safe to split.
When handling domains with small angles, typical approadheolve not splitting triangles
based on quality if they are near a skinny input angle in scanges[30, 41]. In 3D, the Tetgen
code [43, 44] relies on a similar principle for determiningem to stop refining near small input
angles.
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Chapter 3

Estimating Feature Size in 2D

We develop an algorithm for estimating the local feature siza mesh at input points of a 2D
PLC. This estimate is important in order to ensure the teation of quality Delaunay refinement
algorithms in the presence of acute angles between adjaqmritsegments. While there are a
number of effective algorithms for quality mesh generatior2D [30, 41], this algorithm is
developed as a natural predecessor to the 3D version givenapter 4.

Local feature size is estimated at each input vertex in terfntise distance to its nearest De-
launay neighbor in the resulting triangulation. This is@dlajuantity in the maintained Delaunay
triangulation. The algorithm is very similar to Ruppertig@ithm with two key differences: tri-
angles are not split based on radius-edge quality and oesegments are not split to prevent
infinite encroachment sequences near acute angles.

3.1 2D Algorithm

The algorithm for estimating feature size is divided intatateps. These steps are labeled
according to the highest dimensional features in the inpaotpiex which are considered in the
step. Thus Step 0 below only depends upon the input vertid¢ele \Btep la involves input
vertices and segments. This convention will be followechvaill of the algorithms in the next
few chapters.

Algorithm 3.1 Estimate Feature Size 2D
(Step 0) Compute the Delaunay triangulation of the set afinprtices.
(Step 1a) Estimate Ifs at all input points via Delaunay refiast.

3.1.1 StepO

‘ Compute the Delaunay triangulation of the set of input zed
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Step 0 involves computing the Delaunay triangulation ofgéeof input points. Following
this computation, there is a simple estimate op dfiseach of the input points.
Proposition 3.1. Following Step 0, for each vertey in the input PLC,N (¢0) = IfSo(qo)-

3.1.2 Step la

| Estimate Ifs at all input points via Delaunay refinement.

Step la of Algorithm 3.1 is a Delaunay refinement algorithecgped by the four rules given
in Algorithm 3.2. It is important to recognize that adjaceagments haveot been split to equal
lengths as a preprocess to this algorithm. To ensure tetimma segment is not allowed to
splitif the encroaching vertex is on a segment adjacentiad the resulting segments are shorter
than the shortest segment in Spind This criteria is reflected in the unacceptability rule.

Algorithm 3.2 Estimate Feature Size 2D - Step la

Action Insert the circumcenter of a segment.

Priority Simplices (only segments in this case) may be processediarder.
Unacceptability] A segment is unacceptable if it has an endpognivith a Delaunay neight
bor p inside the diametral disk of and eithep is a 1-feature size witness
for s or s is more than twice the length of the shortest segmentin $pjn
Safety It is safe to split any simplex.

L

First, it is shown that the algorithm terminates and thatdiséance to the nearest neighbor
provides an appropriate upper bound on local feature sitteeinesulting mesh. This estimate is
similar to those shown in Ruppert’s analysis.

Theorem 3.2. Algorithm 3.1 terminates. For any input vertey

1
B Ifs(q0) < N(qo, P")

holds throughout the algorithm.

Proof. Let ¢y € P be any input vertex. InitiallyN(qo) = Ifso(q0) > Ifs(qo) S0 the base case
holds. Suppose a vertexis inserted in the mesh as the midpoint of segmeandq is the
closest neighbor to an input vertex If s is disjoint fromgqg, then IfSqy) < |qo — ¢|. If sis
incident togy, then (by the unacceptability rule) the vertex encroachirdgnoted;’, must be on
a segment which is disjoint fromy. Thus, If$qy) < |q0 — ¢'| < 2|qo — ¢|. This bound ensures
the termination of the algorithm. ]

Next, it can be shown that the distance from an input pointdmearest neighbor in the
resulting mesh also provides a lower bound on the local featize.
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Figure 3.1: Diagram for proof of Theorem 3.3

Theorem 3.3.Upon the termination of Algorithm 3.1,
N(q,P") < V2Ifs(qo)

for any input vertex, € P.

Proof. If N(qo,P) = Ifs(qo) (i.e. the local feature size a§ is realized by an input point), then
the statement follows by
N(q0,P') < N(qo, P) = Ifs(qo)-

Otherwise, Iféq,) = dist(q, s) for some segment € S disjoint from ¢, (i.e. the local
feature size ofy, is realized by a segmen}. Letx be the nearest point on segmertb ¢,. Let
s’ € &' be a subsegment afcontainingxz and letq be the nearest endpoint gfto ¢,. This
situation is depicted in Figure 3.1.

Now, suppose tha¥ (qy, P’) > /2 Ifs(qo). Then the following inequalities hold.

2 |fs(q0)2 < N(QQ,P/)2
< lgo —qf?
= Ifs(qo)® + |z — q|*.

Conclude thatr — qo| = Ifs(qy) < |z — ¢|. This inequality implies thag, lies in the diametral
disk of s. So eithers is unacceptable af is an input vertex and there is a vertexe P’ in
B(qq) \ B(qo, |z — ¢|) which lies on a segment adjacentstsinceg, andg cannot be Delaunay
neighbors. The balB(qo, |x — ¢|) must be empty by the assumption on the local feature size of
go- Thus vertex € B(qq) \ B(qo, | — g|) and it follows thatp — ¢| < |z — ¢| < 2l as seen in
Figure 3.2. Thuss| is at least double the length of the segment betweandq which is in the
spindle ofs. Sos is unacceptable.

Since upon termination there are no unacceptable segntbatdesired bound must hold.

(]

The constants in Theorem 3.2 and Theorem 3.3 are both shaip@pendent of the small-
est input angle in the mesh. Note that the inequality in Téeo8.3 is identical to that in Theo-
rem 2.3 for Ruppert’s algorithm in the non-acute case: aicytigt angle slightly complicate the
algorithm but do not weaken the result.

19



—

\ /
S \)\/

N

7

\_’

Figure 3.2: Ifs is an end segment, the®(q, |x — q|) () (B(%9) \ B(qo, | — qol))

20



Chapter 4

Estimating Feature Size in 3D

The idea of the previous chapter can be extended to 3D Dela@fiaement. In this case, it
becomes important to estimate local feature size and ifeatze on all segments (theé — 2)-
dimensional features) of the input complex. While the distafrom an input vertex to its nearest
neighbor was used to estimate feature size in 2D, the 3D gyaiges the length of segments in
the resulting mesh. Following the algorithm, the length segment provides a suitable bound
of the feature size at any point on the the segment.

4.1 3D Algorithm

Algorithm 4.1 will yield the desired feature size estimateserms of segment lengths. Step 1b
and Step 2b are specific Delaunay refinement algorithms whiitbe described later. Each of
the other steps is a simple procedure which occurs in a spagse over the Delaunay triangula-
tion.

Algorithm 4.1 Estimate Feature Size 3D
(Step 0) Compute the Delaunay tetrahedralization of thefdaput vertices.
(Step 1a) Split adjacent segments at equal lengths basedboalGeature size.
(Step 1b) Estimate fson all segments via Delaunay refinement.
(Step 2a) Split segments to improve the 1-feature size atim
(Step 2b) Estimate Ifs on all segments via Delaunay refinemen

The following two theorems demonstrate that in the resglBhC the length of each segment
is a good estimate for the local feature size or 1-feature sfzthat segment. The first is a
lower bound on segment lengths. This theorem will be showtetlyniques used in the standard
analysis of Ruppert’s and other Delaunay refinement alyost The second theorem is an upper
bound on the lengths of the segments. Theorems of this tyedenerally not been shown in
previous analysis.
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Figure 4.1: This illustrative example consists of 3 face® arge square which is slightly below
two smaller squares which are side by side.

Theorem 4.1. At any point during Algorithm 4.1, all segments S’ satisfy
i ifs()llfs() < s
min 6 15,4 S < |s].
Theorem 4.2. Following the termination of Algorithm 4.1, all segments S’ satisfy
: 5
|s| < min <\/§f51(3), 3 Ifs(s)) .

In order to show these two theorems, output conditions ot are determined following
each step of the algorithm. Step 2b will yield a mesh satigfyirecisely these conditions in the
theorems.

We illustrate this algorithm by considering the results atle step on a simple PLC. The
example consists of three squares (contained inside aisafficlarge bounding box): one large
square which is slightly below two coplanar, disjoint sgsaas seen in Figure 4.1. Observe that
the small feature size between the sides of the two smallreguwaill be realized in Step 1b,
while the feature size between the small planes and the pdage will be realized in Step 2b.

4.1.1 StepO

‘ Compute the Delaunay tetrahedralization of the set of impttices

Computing the Delaunay tetrahedralization of the inputsois a natural first step in many
Delaunay refinement algorithms. Typically, this is donewite Bowyer-Watson algorithm [5,
46], since this uses the routines for incremental insedfarertices which are necessary through-
out the later steps of the algorithm. In our running examilis, simply leads to the Delaunay
triangulation of each of the squares as seen in Figure 4.2.

Proposition 4.3. Following Step 0, the following inequalities hold at all itpoints of the mesh:

IfS2(q0) < Ifs1(q0) < Ifso(qo) = N(qo, P").
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Figure 4.2: (Left) Example mesh following Step 0. (Right)&ged mesh of one of the smaller
squares.

While this gives a poor run-time in the worst cases, it is canrto many Delaunay refine-
ment algorithms, especially those which handle small aniglehe input in both two and three
dimensions [9, 28, 42, 43, 44].

4.1.2 Stepla

‘ Split adjacent segments at equal lengths based on O-Icmaréasize‘.

This step consists of a single pass of each of the input pokds each input poing, all
segments containing this point are split at a distanc%(i%fp—') away fromgy. The result of this
step on the running example can be seen in Figure 4.3. Nb@tesmall faces are split at a small
distance on one side due to the close proximity of their asrteeeach other.

After completing Step 1la, a number of properties hold whieh summarized in the next
proposition.
Proposition 4.4. Following Step 1a, the following hold.
(1) N(go,P") = 3 Ifso(qo) holds for all input pointsy, € P.
(I Adjacent segments do not encroach each other.
(1) If s, is a non-end segment ardis an adjacent end segmef, | > |s.|.
(IV) If s, ands, are end segments anfl ¢ Spinds.), thendist(s,, s,) > max(|s.|, |s.|).
Property IV is particularly important. As segments in thesimare refined further, this prop-
erty continues to hold and thus will hold throughout the remmg steps of the algorithm. This

ensures that spindles of end segments corresponding évatiffinput point are sufficiently far
apart.
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Figure 4.3: (Left) Example mesh following Step 1a. (Right)d&ged mesh of one of the smaller
squares.

4.1.3 Step1lb

‘ Estimate fs on all segments via Delaunay refinem¢nt.

The goal of this stage is to bound the length of each segmémeimesh by the 1-feature size
of that segment. This occurs via a Delaunay refinement dlgorspecified in Algorithm 4.2.

Algorithm 4.2 Estimate Feature Size 3D - Step 1b

Action Insert the midpoint of a segment.

Priority Longer segments are processed first.
Unacceptabilityy Segment is unacceptable if there is an endpajmif a segmentin Spind)
with Delaunay neighbop such that is a 1-feature size witness fgrand
g —pl <sl.
Safety It is safe to split any segment.

By the specification given, checking if a simplex is unacabf# requires that only Delaunay
neighbors of the endpoints of the segment in question nebd tpueried. This is an important
property of Ruppert’s algorithm that we carefully maintain

Consider the result of applying this step to the earlier gdaras seen in Figure 4.4. Notice
that the main effect is that the nearby edges of the two smalres refine to realize the feature
size. The other segments are only split a few times.

First, we show that the algorithm described terminates hatthe length of each segment is
bounded below by its feature size. This argument uses the aegnments as the “usual” proofs
of termination and grading of typical Delauany refinemegbathms.
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Figure 4.4: (Left) Example mesh following Step 1b. (Rightj&ged mesh of one of the smaller
squares.

Lemma 4.5. Throughout Step 1b, any segmetin the refinement satisfies
1
Zfsl(s) <|s|.
Proof. Inductively, we show that the lower bound holds at all segim#roughout this step.

Base CaseFollowing Step 1a, any end segmest,containing input poing, has length

1
o= =Ifs )
EX 3 0(q)

The definition of the 1-feature size implies that

IfSo(q0) > Ifs1(q0) > Ifs1(se) = fS1(se).

Thus|s.| > 3 fs; (s.).
For any initial non-end segment,, there is an adjacent end segmenguch thats,, | > |s.|.
Sinces, contains an input point (which is a 1-feature size witness [, it follows that

50| > [8e| > fS1(sn).

Thus, the lower bound on segment lengths holds initially.
The inductive step is shown in two cases corresponding tmmdetion of end segment mid-
points and the insertion of non-end segment midpoints. & bases are depicted in Figure 4.5.

Case 1 Consider an end segmenitfrom ¢, to ¢’ which is split at midpoint;, forming an new
end segmend, and a non-end segmesjt. This means that there is a popnbn a disjoint feature
to s, which is of distance at most.| from some adjacent end segmentto

fsi(s,) < dist(s., p) < dist(qo, p) < |se| + |se] = 4|s.].
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o,

(b) Case 2

Figure 4.5: Two Cases in Lemma 4.5.

For the non-end segmetit, o is a 1-feature size witness. Observe that
fsi(sy,) < dist(s),, qo) = |5y,
so the desired inequality holds.

Case 2 Consider non-end segme#)t which is split. This means that there is a feature size
witnessp such that dists,,, p) < |s,|. Then for either of the new end segments created, denoted

/
n?

S
fsi(s5,) < dist(s},, p) < [s),] + [sa] = 3]sy,
We conclude thaf fs; (s) < |s| for all segments in the mesh created during Step 1b. This
lower bound on feature size of all segments ensures terimimat the algorithm. O

Next we seek to bound the length of each segment &ibovein terms of the feature size. In
the previous lemma, the ordering of the queue of segmentstisatessary. In order to get the
upper bound, an arbitrary order does not work. To see thissider a mesh including a portion
similar to Figure 4.6(a). If segments to the left are refinest,fia situation similar to Figure
4.6(b) could arise. Then, there is a segment on the rightwideh is longer than its distance
to the input point which is not on the segment. This segment mad see this nearby point on
its Delaunay cavity. Note: this requires another point tucklthe long segment from seeing the
nearby disjoint point, but this point could be far away angisthot causing the long segment to
split.

By prioritizing the queue by segment length, this situati@amnot arise, and it is possible
to bound the resulting segments lengths by 1-feature siz@rder to prove this, a number of
geometric facts are necessary.
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(a) Possible partial initial mesh

Not Delaunay Neighbors
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(b) Possible refinement

Figure 4.6: Lemma 4.9 does not hold without specifying a ezfiant order.

Proposition 4.6. Let s and 5 be segments withs| > |s|. If dist(s,s) < % then there are
endpointg ons andp on s such thatp — p| < |s|.
Proof. Suppose that all pairs of endpoints are suchfthat p| > |s|. The Pythagorean theorem
and the fact thafts| > |s| imply that

distp.5) > s

for either endpoinp of s. Again applying the Pythagorean theorem yields that

Vo)

dist(s, 5) >

S

which completes the proof. O

The constant above is sharp. Consider two skew segmenfgstheith endpoints—1, 0, 0)
and(1,0,0) and the second betweéf, —1,+/2) and(0, 1,/2). Then the distance between the
two segments of/2 and the distance between any pair of endpoings is

The next proposition characterizes a special property mhotds when the spindle of an end
segment contains segments of equal length.

Proposition 4.7. Let s, be an end segment such that
|se[ =, min  [s]
s’e Spindse)
Let s,, be a non-end segment on an input segment which is adjacent tt |s.| > |s,| and
dist(s,,, s.) < 'S—\/%‘ then there are endpoints ef ands,, given byg, andgq,, respectively, such
that|g, — ge| < |snl.

Proof. Let ¢y be the input vertex contained . Pickx, € s, andz,, € s, such that

|ze — x,| = disSt(s,, s ).
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Sinces,, ands, are coplanar, at least one of the points (eithgror z.) is an endpoint of its
segment. Since, ands, are not parallel, the choice of, andz, is unique. First, we argue that
x, IS an endpoint of,,. This follows because if not, then the nearest poinggis the nearest
point on the line containing,, to x.. For either endpoint of., the nearest point on this line is
at most a distanck.| away fromg,. Sinces, is the shortest segment in its spindle, this point
cannot be contained is),.

So, z,, must be an endpoint of,. Sincexz,, is a vertex, it will be denoted,,. If x. is an
endpoint ofs,, the desired bound holds since by lettipgoe this endpoint, we observe,

. S
g — gu] = dists,, 5.) < % < Isul.

Otherwisey, liesin the interior ofs,. Leta,b,c andd denote the distances shown in Figure 4.7(a).
Note thatc = dist(s,,, s.) andb + d = |s.|. Also,a > |s.| and thus

240GeGn > Z£q0GnGe- (4.1)
Moreover, the following inequalities hold.

|Se‘2 S CL2
= b+ 2
|5n|2
2
|2

S
<b2 |8
hS —|——2

<V +

‘ 2

Thusb? > ‘ST > ¢*. This means thatq,qgog. > 5. Combining this with (4.1) implies that

3
2G0qeqn > ) >

e

This means that > d and thus

e — | = A+ d* < 2¢% < |5,]?
which completes the proof. O
Proposition 4.8. Let s be a segment with endpoipsuch that

|s|] = min |¢|.
s'e Spind(s)

Let p be a Delaunay neighbor af such thatp is not a feature size witness fer p is not an
endpoint of any segment in the spindlespéind|¢ — p| < |s|. Thenp belongs to a segmen,
such thats,| <|q¢ —p|.
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Figure 4.7: Diagrams for the proofs of two propositions.

Proof. If p lies on the same input segmentgshen there clearly exists, betweerp andg such
that|s,| < |p — ql.

Otherwise,s is an end segment andlies on an adjacent input segment, denoigdLet =
be the nearest point on this adjacent input segmeunt tbhe result holds due to the following
sequence of inequalities:

lg—p|l > [z —pl > ¢ —p| = [sy].
See Figure 4.7(b). O

With these facts, it is possible to show the desired boundegments following Step 1b.
Lemma 4.9. At the end of Step 1b, all segments satisfy

|s| < V2fs)(s).

Proof. The following statement is shown inductively.

Inductive Hypothesis If segments is not queued anth| > v/2fs;(s), then the following two
statements hold.
1. If g9 is an input pointg, ¢ s andg is an endpoint o, then|qg — go| > |s].
ls|

2. If sis a 1-feature size witness fersuch that digts, s) < 3 ¢ is an endpoint of, and
g is an endpoint of, then|q — g| > |s]|.

The split size property below follows from the inductive loyipesis. From this property, it
will be clear that the inductive hypothesis is sufficientrtgiy the inequality in the lemma. Also,
when proving the inductive hypothesis, it will be useful fiply the split size property at earlier
steps in the algorithm, rather than use the inductive hygsasidirectly.

Split Size Property. If the inductive hypothesis holds, any longest segmestich that
|s| > v/2fs,(s) is on the queue.
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Assuming the inductive hypothesis, we show that the sp# prroperty holds. Let be a
segment such that| > /2fs;(s) ands is not on the queue. Then by the first property of the
inductive hypothesis, the feature sizesak not realized by an input point. Thus, there exists a
segment which is a 1-feature size witness ferand dists, s) = fs;(s). By Proposition 4.6,

s is longer thars (otherwise the segments would have endpoints that are yyesnich violates
the inductive hypothesis). The inductive hypothesis arap®&sition 4.7 imply that must be

a 1-feature size witness far(since otherwisg& must be an end segment adjacent to the input
feature containing non-end segmeptCombining these facts yields

15| > [s| > V2fsi(s) > V2 s (5).

We conclude that is not the longest segment failing the feature size bound.

From the split size property, conclude that if the inductiygothesis holds, then the upper
bound on feature size of segments holds when the algorittmirtates. Thus the above inductive
hypothesis is sufficient to imply the lemma. Next, we show tha inductive hypothesis holds
in the base case.

Base CaseFirst consider initial end segments. lgtbe an input vertex contained in end seg-
ments.. Proposition 4.4 ensures that for all other vertigest the end of Step 1a which are
not on an end segment adjacentsto |¢o — g| > 2|s.|. Thus, the inductive hypothesis holds
for all end segments. Next, consider non-end segmentss,Lie¢ a non-end segment between
end segments, ands.. Any vertex in the mesh which is not an endpointsgfis a 1-feature
size witness foi,,. If there is another vertex in the mesh which is of distanes than/s,,| to
an endpoint ofk,,, thens,, must be queued by some 1-feature size witness which is a Dajau
neighbor to an endpoint af,.

Next, we proceed to the inductive step. The inductive hypsilimust be checked on all
segments. There are two types of segments for which thislmeustrified: segments that existed
before the most recent vertex insertion and segments thereibrmed by this insertion.

Case 1 Consider anynewly formed segment and suppose violates the inductive hypoth-
esis. If the first criterion of the inductive hypothesis $ailet § denote the input point such
that|g — ¢| < |s| for some endpoing of s. Otherwise, the second criterion fails meaning that
|s| > \/2fs,(s), s is not on the queue, and (by Proposition 4.6) there is a jgaanid endpoiny
of s such thatq — g| < |s| andgq is a feature size witness far In either caseg is a feature size
witness fors and the distance betweerandq is less thans|. Sinces is not queued, this means
thatq andg cannot be Delaunay neighbors.

Now by the Delaunay property there is some pgiim B(qq) which is a Delaunay neighbor
of ¢. Again,p cannot be a 1-feature size witness §pas this would causeto be queued.

If sis an end segment, notice that no spatan exist. Every non-end segment adjacent to a
segment in the spindle afhas length ofs| or 2|s|, and thus there is no poipton one of these
segments at a distance of less thgrwhich is not an endpoint of some segment in Spind
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If sisanon-end segment, consider the segraaritich was split formings. If g is a 1-feature
size witness fog, thens fails the desired feature size bound (see Figure 4.8). Hemaartexp,
which was inserted beforg was inserted as the midpoint of a segment of leRgth- ¢| < 2|s|.
This violates the split size property (and thus the indechiypothesis). Otherwisgeis an end
segment and lies on an adjacent input segment (see Figure 4.9)qJee the input vertex which
is an endpoint of. In this case, there is a vertex, denofean the input segment containiigg
such that

| — | =[P — ql-
The diametral ball betweanandp only intersects line containing segmerin the interior ofs.

Soq has a Delaunay neighbor in this ball and this Delaunay neighiust be a 1-feature size
for s. Thuss is unacceptable.

q ., .
[ X
1Y
l' 1
1
' P
—o—® °-
s .
hS P4 q S

=

Figure 4.8: Diagram for Case 1 in whighis a non-end segment apdorevents; andg from
being Delaunay neighbors.

)
=t

Va8

Figure 4.9: Diagram for Case 1 in whighs a non-end segment formed as the result of the split
of an end segment.

Case 2 Consider any segmentwhich is not newly formed. Again we assume this segment
fails the inductive hypothesis and seek a contradictior firkt criteria of the inductive hypothe-
sis cannot fail as the input vertices and endpointsdifi not change in the most recent insertion
to the mesh (and thus this statement holds by the inductigethegsis). So, to fail the inductive
hypothesiss cannot be queueds| > v/2fs;(s), and there is a segmentwvhich is a 1-feature
size witness fow, dist(s, s) < % ands has an endpoint is such thatg — ¢| < |s| for some
endpointy of s. This pointg must be the most recent point added to the mesh since thetiveluc
hypothesis held at the previous step and thus applies to
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Let s denote the super-segmentsairhich was split by the insertion gfand letg’ denote the
unlabeled endpoint of. Next, we possibly relabel andq if there is a better selection for our
purposes.

(Relabel 1) By possibly relabeling,can be selected to be the subsegmertwhich is closer
to s. This swap can be made because if the original selecticnvedis incorrect,
then the closer subsegment also satisfies the same set ebagcproperties. Then
the nearest point oé to s must be in the interior of since dists, §) < % while
dist(g, ) > 1 and distq, $) > 15| (by the inductive hypothesis).

(Relabel 2) Supposeg is the nearest point osnito s and|q¢’ — g| < |s|. Then replace by ¢'.

Sinces is not on the queue, thenandg cannot be Delaunay neighbors. As in Case rhust
have a Delaunay neighbor #\(qq), denoted, which cannot be a 1-feature size witnessgolf
p is the endpoint of some segment on the spindle oéplace; with p ands with the segment in
Spind s) which containg. This news must have the same length as the originak otherwise
s would be queued. The Delaunay property can be applied ameia the new; andg cannot be
neighbors. This can be repeated until a ppirg found which is not the endpoint of a segment in
Spind s), lies in B(qq) and is not a 1-feature size witness foiThis configuration is depicted in
Figure 4.10. Ag cannot be a 1-feature size witness fop cannot be an input point and thus
belongs to some segment

S
. p— T
5 e 7;\ —@
/ q
\
' F 1
}
\\ p 1 s —@
y
® — =
q ° q

Figure 4.10: Segmentfails the inductive hypothesig,is a nearby feature size withessstand
pis not a 1-feature size witness far

Next, we show that is a 1-feature size witness fer If not, s must be a non-end segment on
an input feature which is adjacentddsinces is a 1-feature size witness fey. In this situation,
p cannot exist since it would lie in the end segment adjacept(tehich is in Spinds)). See
Figure 4.11. Thus is a 1-feature size witness fer
Now, we will utilize the Delaunay property, the split sizeoperty and a couple geometric
facts to assert the following inequalities:
sl > lg—al > |q - 1> 2
¢=al>la—pl>lsp 2 151 = T
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Figure 4.11: Ifs is a non-end segment adds an end segmeng,cannot exists as it must lie in
the end segment adjacentgo

Each of these inequalities is now justified.

(i) |s| > |q — q| follows from the assumption thatfails the inductive hypothesis.
(i) |¢ — q| > |q — p| follows from the construction gf and the Delaunay property.
(iii) |¢ — p| > |s,| is a result of Proposition 4.8.
(iv) |s,| > |35| follows from the split size property at the time whewas inserted in the mesh.
v) |s| > % is a result of the split size property befarés inserted in the mesh.

Finally, a contradiction will be achieved by showifsg > |¢ — ¢| in three different subcases.

Subcase ASuppose thaf is the nearest point onto s. Lettingz be the nearest point anto s
as in Figure 4.12(a), observe that
2
s . _ . .
o —al >l 2P+ =g =g~ a2 |s
Thus,|z—4q| > % > |¢q—z|. See Figure 4.12(a). Thés| can be estimated using the Pythagorean
theorem:

57 > |-z +|z—q
> |g— 2>+ g -z
= lg—dq*
Thus|s| > |q — q.
Subcase BLet the nearest point onto s, denotedr, be in the relative interior of. In this case,
note that the nearest points between the lines containargls occur in the segmentsands.
This means thgt: — z| is orthogonal tos ands.
Let P be the plane containisgvhich is orthogonal taz —z| and letr denote the projection of

points into planeP, depicted in Figure 4.12(c). Letbe the radius of the disk = PN B(q, |s|)
sor? + |r — z|? = |s|*. Theng € D (by the failure of the inductive hypothesis) afd¢ D

33



o
<|s| > |s]
O— @ =
T q S
(a) Subcase A (b) Subcase C
p,” BN
/ \
/ b \
7(q) \
® I
a
/
r /
Ve
\ /

(c) Subcase B

Figure 4.12: Diagram for Case 2 of Lemma 4.9
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(sincels| > |s|). For an appropriate pointto exist,(x — q) - (7 — 7(q)) < 0. If sis a non-end
segment, this is a result of the fact thatannot lie in the interior of and this does not lie in
7(s). In the case of an end segmeitjs an input point and the distance frafhto p must be
at least?|s|, since|s,| > % The law of cosines gives thabs(/pm(¢q)7(¢')) < —; and thus
(x —q)-(g—7(g)) <0holds.

Let a be the length of the component @f- ¢ in the direction ofs and letb be the length of
the component of — ¢ which is orthogonal to botk andx — = as seen in Figure 4.12(c). This

gives the following sequence of inequalities:

52 =lg—dq*> > (r+a)?+b
> 24 a4+ b
> §+a2+b2
> |z -z +a*+ b
= lg—aql*

Thus we have achieved the desired inequality> |¢ — g|.

Subcase C Suppose that’ is the nearest point onto s as depicted in Figure 4.12(b). By
(Relabel 2), we can conclude that the distance from eacredtidpoints of to ¢’ is at leasts|.
The minimum distance frong to 5 is less than%, and sgs| > |s|. Combining with inequality
(i), this implies thats| > |¢ — q.

The inequality|s| > |¢ — ¢| holds in each of the three cases, and thus a contradiction has
been reached in each case. Conclude that the inductive iegistdoes hold and the lemma
follows. O

The estimates in the Lemma 4.17 will prove essential in ttex lsteps. The current refine-
ment ensures that the length of each segment is a good esfjupato a factor ofty/2) of the
1-feature size on the segment.

The proof of the theorem in this step relies on an inductivedtlyesis which implies that
the longest segmentsuch that|s| > +/2fs,(s) is always on the queue. So dfis such that
|s| > v/2fs,(s) ands is not on the queue, then at all previous steps, any segmigritaglength
of at leasts|.

Naturally, the proofs would be much simpler if it could be windhat the length of segments
being split formed a nonincreasing sequence. Unfortupatteis is not the case. Consider a
mesh as outlined in Figure 4.13(a). Notice that the lengthdagment is not queued initially, as
all points are sufficiently far from its endpoints. When te#rhost of the length one segments is
split, this midpoint causes the longer length two segmebetqueued. See Figure 4.13(b).

While the length of segments which are split increases, é¢k@mnple does not break the
inductive hypothesis! It is important to notice in this céisat the initial long segment (of length
two which will be denoted by) has a feature size 4f99 meaning that initially|s| < v/2fs, (s).

35



o ) 1
1.99
2
o0
(a) Initial Mesh
1st Split ¢
® —O— @ Q
\an Split
o0

(b) Refined Mesh

Figure 4.13: Sequence of split segment lengths is not moeoto

4.1.4 Step2a

‘Split segments to improve the 1-feature size estinhate.

This step is a simple operation: split all segments intotfaaurThis is needed as the feature
size bound on the segment lengths found in the previousosestinot quite strong enough for
the algorithm in the next step. Figure 4.14 shows the re$diti® step on our initial example.

This additional refinement strengthens to the bound detethin Step 1b which will be
needed in the analysis of Step 2b. The stronger estimatevihbe used is given in the following
lemma.

Lemma 4.10. Following Step 2a, for any segmenin the mesh satisfies

1
< ——1fsy(s).
5] < 55 si(s)
Proof. Following Step 1b|3| < v2fs,(8) < v2Ifs,(5), for all segments. If s is a subsegment

of 3, then Ifs($) < Ifs;(s). Now lets be one of the four segments created during this step from
segmenst. Then,



A

Figure 4.14: Example mesh following Step 2a.

O

Note that the estimate| < ﬁ fs;(s) maynothold for some segments in the mesh produced
during Step 2a. This is due to the fact that when end segmentgpét, newly formed non-end
segments may have 1-feature size which is much smaller Heah-feature size of the original
end segment .

The next lemma is the natural successor to Lemma 4.5.

Lemma 4.11. Following Step 2a, for any segmenin the mesh,

1
Efsl(s) <s|.

Proof. Let s be a subsegment of some segmewhich existed at the end of Step 1b. It follows
that
fsi(s) < fs1(38) < 4]8| = 16]s]

and the lemma holds. OJ

4.1.5 Step2b

‘ Estimate Ifs on all segments via Delaunay refinerﬂent.

In this step, segments and triangles (in the current Dejatmengulation of the faces) are
split to estimate the local feature size on the segments i$hgerformed via a Delaunay refine-
ment algorithm which is given in Algorithm 4.3.

The priority rule in this algorithm is backwards from thersdard approach in Delaunay
refinement: higher dimensional simplices are processedd Tirss fact will be used in the proof
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Algorithm 4.3 Estimate Feature Size 2D - Step 2b

Action Insert the circumcenter of a proposed segment or triangle.
Priority Triangles are given highest priority, in any order. Segmané then priori-
tized by length.
Unacceptability] A segments is unacceptable if it has an endpognvith a Delaunay neight
borp such thatq — p| < |s| and eithep is a local feature size witness fer|
or p is a 1-feature size witness fer A trianglet is unacceptable if it has a
vertexq with Delaunay neighbop such thatp — ¢| < 2R, andp does not
lie in the face containing.

Safety It is not safe to split a triangle in facg if its circumcenterc will have a
Delaunay neighbog which is the endpoint of a segmenin face f and
e —aql <ls]-

but it is mainly used to simplify the arguments. It is likehat the same (or very similar) results
hold using a more traditional priority queue.

The mesh resulting from Step 2b in our running example isrgimd-igure 4.15. Notice that
this is the first step in which points are added in faces ratraar just on segments.

First, the lower bound on segment length is shown.
Lemma 4.12. Throughout Step 2b, the following estimate holds for anynesgs:

) 1 1
min <1_6 fsi(s), 1 |fs(s)) < |s].

Proof. This lemma is shown by induction. Lemma 4.11 implies that- .- fs; (s) holds for all
initial segments, so the base case holds. It must be showartganew segment which is the
result of a split also satisfies the bound. A segment is onlyisfi is queued and segments are
only queued if there is a nearby 1-feature size witness @l li@ature size witness. In the first
case, an identical argument to that in Lemma 4.5 impliesff@t(s) < |s|. In the second case,
a very similar argument yieldslfs(s) < |s|. ]

The proof that segment lengths will bound local feature &iam below requires a number
of geometric facts. These are stated first.

Proposition 4.13. Let t be a triangle, and let: € t. Then there is a vertey, of ¢ such that
|z —q| < Ry.

Proof. Let ¢; be the circumcenter of triangte Observe that is covered by the three diametral
balls between each vertex and the circumcenter. See Figlée 4 O

The next proposition ensures that if the nearest point ocatfaa segment is in the interior
of a face, then the nearest point on the segment to that faceas an endpoint of the segment.
Proposition 4.14. Let s be a segment in a PLC. Then one of the following holds.
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Figure 4.15: (Left) Example mesh following Step 2b. (Right)larged mesh of one of the
smaller squares.

Figure 4.16: Given any triangle, the three diametral badsveen vertices and the circumcenter
cover the triangle.
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e Ifs(s) = Ifsy(s).
e There is some endpointof s andx in the interior of a disjoint face such that

dist(q, x) = Ifs(s),
andqz is orthogonal to the face containing

Proof. Suppose Ifss) # Ifs;(s). Then there exists a facé and pointz € f such thatf is
disjoint from s and Ifs) = |z — y| for somey € s. For any suchf, x andy, x ¢ 0f since
thenx would be contained in a segment of the PLC which is disjoiotrfs and thusr would
be a witness that Ifs) = Ifs;(s). This means that — y is orthogonal to the fac¢. Further,
eitherz — y is orthogonal tos or s is parallel to some vector in the fage In the former case,
the proposition has been shown. In the latterAdde the plane containing. Then

mi [z —y| = min |z — ;|

holds for anyy, y; € s. Since
argmin |z —y| ¢ f

for anyy € s, conclude thatrg min,.p |z — y| € f for all y € s. Thusy can be selected as an
endpoint ofs which completes the proof. O

The next proposition asserts a minimum circumradius on tadMay triangle containing a
pointz given thatr belongs to an empty disk in the face.
Proposition 4.15. Consider a set otoplanarverticesP. Suppose balB(z,, R) contains no
vertices ofP. Considerr € B(zy, R) andz in the convex hull of°. Lett be a triangle in the
Delaunay triangulation of? containingz. Then

R, > \/R? — |z — x|2.

Using the fact thaB(z, R — |z — x|) C B(xo, R) only ensures thak; > R — |z — x,|. This
bound will hold whenevet: is in the circumdisk ot. The stronger bound comes from the fact
thatx is actually inside triangle. This is depicted in Figure 4.17.

Proof. If B(xg, R) C B(t) or B(xo, R) = B(t), thenR, > R and the result follows. Next, no
trianglet exists such thaB(t) C B(xo, R) since therdB(t) \ B(xq, R) contains at most one
point andB(z, R) contains no vertices d?. In the remaining case, bot(x,, R) \ B(t) and
B(t) \ B(xg, R) are nonempty. Lefpi,p.} = 0B(z, R') N 0B(xo, R) and lets = pips. We
consider two cases depicted in Figure 4.18.

Case 15 lies betweenr: andzy. Then by the Pythagorean theorem,

2 _ g >, P
R* = dist(z, s)” + T
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min circumradius

no vertices

min circumradius

(a) If pointz is contained in the circumcir-(b) If point = is contained in(Delaunay) triangle
cle of (Delaunay) triangle and lies in disk ¢ and lies in an empty disk, then the lower bound
which contains no vertices, then the circuron the circumradius of is larger than the distance
radius oft is at least the distance fromto from z to the boundary of the empty disk.

the boundary of the empty disk.

Figure 4.17: Diagram for Proposition 4.15.
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(a) Case 1. (b) Case 2.

Figure 4.18: Two cases in the proof of Proposition 4.15.
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(a) Top view (b) Side view

Figure 4.19: Triangle in Proposition 4.16

Applying the fact that digtr, s) < |x — x| leads to the inequality

Rt2§2\/R2—|JJ—JIQ|2.

Case 2 s does not lie betweem andz,. Let L be the line which is parallel te and passes
throughz,. In this case, observe that

ThusR, > R > \/R? — |z — x%. O

Suppose that a vertexis near a facg in some sense. Lettingbe the projection of onto
the plane containing, the next lemma ensures that if the triang{e the Delaunay triangulation
of f) containingz is large enough, then one of the vertices bhs a nearby Delaunay neighbor
(in the 3D Delaunay tetrahedralization) which is not in thed. In the algorithm, this will ensure
thatt was placed on the queue.

Proposition 4.16. Let ¢t be a Delaunay triangle in a fac¢. Letq be a vertex which is not
in the face such that the nearest point¢@n the plane containing, denotedr, lies int. If
l¢ — x| < V3R, then there is a vertex of ¢,, which has a Delaunay neighbagr, such thap is
not in the face containingand|q; — p| < 2R;.

Proof. Letq, t, z be as in the statement of the proposition. &.die the circumcenter af Since
x lies int, by Proposition 4.13, there is a vertextpfdenotedy,, such thatx — ¢;| < R;. See
Figure 4.19. Ley = ¢, + ¢ — x. Then observe the following properties.
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* 0B(qy) N fis the diametral circle betweenandg;.
* q € B(@y).
Finally, applying Proposition 2.1, it follows that must have a Delaunay neighbom B(g7),

and thugq; — p| < |¢ —y| < 2R;. Moreover,p cannot be in the facg since the diametral circle
of ¢, andg; must be empty sinceis a Delaunay triangle in the face. O

With these geometric facts in place, we seek the bounds inréne4.2, which are given in
two lemmas.

Lemma 4.17.Upon termination of Step 2b, each segmesétisfies
)
|s] < 3 Ifs(s).

Proof. This inequality is shown by induction. Specifically, we shtive following inductive
hypothesis.

Inductive HypothesisLet s be a segment such thiat > 2 Ifs(s). If sis not on the queue then
there is some trianglewhich is on the queue.

First, if the inductive hypothesis holds, then the desiredra holds at termination since
whenever the desired bound fails, the queue is not emptyt, Segpose that is some segment
such thats| > 2 Ifs(s) ands is not queued. We will show that this implies that some triang
must be on the queue.

As edges have already been isolated from each other, thessitf the local feature size of
s must be a face. Following Step Za| < 'fzsljg). Since splitting a segment decreases its length
and cannot increase its local feature size, this bound will lon all segments throughout the
step. This ensures that no segment or input point can be thesgito the local feature size of
Thus, there must be some fagsuch that dists, f) = Ifs(s). Using Proposition 4.14, conclude
that there is some in a facef and an endpoinj of s such that If¢s) = |= — ¢|, and the vector
g — x is orthogonal to the plane containirfg

Let L denote the line containing P denote the plane containirfgand=~ denote the projec-
tion function intoP. Suppose there is a segmeht Spinds) with endpointy” which is closer
to P thang. First, estimate the distance franto the boundary of, 0f:

dist(z,0f)> = distiq,0f)> — |z — q|?

9
> 8jsf - lsl?

So distz, df) > 2|s|. Considering any point € ¢/,
m(q) — x| < g —ql <2]s].

Thusn(q') € f. This means that andq can be replaced witk' andq’ and the local feature
size bound still fails. Thus without loss of generality, @se thats is the nearest segment in
Spinds) to P.
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Figure 4.20: Delaunay neighbors to pojrdre considered in different balls in the the two differ-
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Figure 4.21: Diagram for Case 1.

In two cases, we show that the triangl@ f which contains: has been placed on the queue.

Case 1 Suppose thag is an input point. Now, letB be the ball of radiuég—‘ with ¢ on the
boundary and: on its diameter containing as in Figure 4.20(a). The segmenis not on the
gueue, s@ cannot have any Delaunay neighborgdmwhich witness the feature size af Since
g is an input point and the nearest point on any segment canggjrto face f, this means that
B must be empty.

Proposition 4.15 implies that belongs to some triangle ifi with circumradius of at least

\/g|q — x| as in Figure 4.21. Then applying Proposition 4.16 ensurasalvertexp of ¢ must

have a Delaunay neighbor which is not in the face at distaﬁatamost\/%q — x| < 2R,. Thus
t has been queued at some step of the algorithm.

Case 2 Suppose thag is not an input point. Let, be an input point on the segment con-
taining s. First, claim thatjgo — q| > |s|. If s is an end segment, this is trivial. ifis the
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(a) The angle between the input segment contain- (b) Estimatingz — zo|.
ing s and f cannot be large.

Figure 4.22: Diagrams for Case 2.

subsegment of an end segment which existed at the end of Stegnthis holds becausanust
be produced by a sequence of midpoint insertions: if a subsegment of a non-end segment
which existed following Step 0, thep is a 1-feature size witness ferand Step 2a ensures that
|s| < 55 Ts1(5) < lg — qol.

Next, consider the anglebetweenl andx(L) as in Figure 4.22(a). Using the fact thais
interior to an input segment, we will show thah 0 < % Lety = LN P. If sinf > % then
lg — y| < |s| which means thaj is contained in the input segment containingnd thus cannot
be contained inf. This means that there is some poinbn the segmenty contained in the
boundary off. Then the distance betweerandq is less thars|, meaning If$(s) < |s|. This
violates the bound given in Step 2a which is maintained byatgerithm.

Let B’ be a ball of radiuég—‘ which has a diameter with one endpointatnd intersects (L)
as in Figure 4.20(b). We assert thatdf is not empty, then the neighbor gfwhich lies in B’
must be a local feature size witness forIf s is a non-end segment, this is clear Alsonly
touches the line containingat ¢q. If s is an end segment, lgg be the input point which is an
endpoint ofs. The ball B’ is below the cone formed by rotating around the line containing
qo andr(qp). Sinceq is the nearest point t& on the spindle of, this implies thatB’ does not
intersect any input segment containipg

Sinces is not queued and any point I8 would serve as an appropriate witness to cause
be queuedB’ must be empty.
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Next we seek to apply Proposition 4.15 based on the factBhatP is empty inf. Letc be
the center o3’ and letzy = w(c). As seen in Figure 4.22(b)y — z¢| = ‘5'5%9 and the radius of
B'NPis

2
\/% sin?@ — |q — x|2 + |q — x||s| cos 6.

Using Proposition 4.15, conclude that the triangé®ntainingr has circumradius of at least

R, > \/|q—st\cosﬁ — g — x|

Since|q — z| < %|s| andcosf > %,

Ry > \/|g—zl|s|cost — |q — x|
5 4
> lg—zlh /2 221
> |q— | 3 E
lg — x|
> .
T3

Now, by Proposition 4.16, there is a vertex of trianglehich has a Delaunay neighbor which
is not in the face containingand thus has been queued.

In both cases, it was shown thainust have been put on the queuet i on the queue, then
the inductive hypothesis holds. If the triangle queue istgngeduce that was processed and
its circumcenter was rejected for being too close to a neadgg based on the safety rule.

The circumcenter of is only rejected if there was some segmemntith endpointg, such
that|c, — ¢| < |$| ands lies in the face containing Since facef is disjoint from the input
feature containing, this means that must be a 1-feature size witness foand vice versa. The
following estimate on the distance betwegandg then holds:

lg—ql* = lg—a*+ ]z —qf

3R? 4 (|ey — @] + |z — c])?
3RZ + (|5| + Ry)?

7152,

ININ A

Above, the facis| > |¢; — ¢| > R; was used to estimat®; by |5|. The second inequality
holds since the circumdisk efmust be empty by the Delaunay property.

By the Lemma 4.10 (which is maintained throughout algorithdist(s, 3) > 21/2|3|. This
inequality contradicts the previous boundyd® < 2v/2 = /8.

Conclude that the inductive hypothesis holds and thus ugonination of the algorithm the
upper bound on segment lengths holds. O

Also, it is important that this step maintains the estimatetite 1-feature size derived in
Step 1b.
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Figure 4.23: Initial PLC input for the pyramid example.

Lemma 4.18. Upon termination of Step 2b, each segmesatisfies
|s| < V2fsy(s).

This lemma is immediate for most of the segments in the mesk.eAd segment must satisfy
this bound ass| < ﬁ fs; following Step 2a and splitting an end segment can only esedts
1-feature size. Similarly, for any segment which is a subsag of a non-end segment which
existed at the end of Step 1b, the same argument appliesledliss only newly formed non-end
segments which are subsegments of end segments of the noelsitgd by Step 1b.

This proof is nearly identical to the proof of Lemma 4.9. Ie thase case, any segment which
fails the bound must be queued since adjacent segmentshesarhe length and thus no points
on the same input segment can prevent the segment in quésiiomeing queued. In each step
of the proof, nearby Delaunay neighbors of the endpoints ségment are considered. In the
Step 1b proof, either these neighbors are appropriaterteaize witnesses to cause the segment
to be queued, or they lie on an input segment. In Step 2b,dls8li the case, due to the safety
rule. This ensures that the endpoints of segmenill not have any Delaunay neighbors in any
plane containing within a distance ofs|.

4.2 Examples

The next three examples demonstrate some simple apphesaifdhe algorithm.

Example4.2.1 The first example is a square pyramid shown in Figure 4.23. niégh of the
square base produced following each step of the algorithmbeaseen in Figure 4.24. Similar
output for one of the triangular sides is given in Figure 4.25
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Figure 4.24: Base of the pyramid following steps 0, 1a, 1badd 2b.
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Figure 4.25: Side of the pyramid following steps 0, 1a, 1ha2al 2b.
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Figure 4.26: Wheel example: input PLC.

Example4.2.2 This example consists of a wheel of 20 faces which lies diigifiove a disjoint
square as depicted in Figure 4.26. The mesh of the squargtiatheced following each step of
the algorithm can be seen in Figure 4.27. Similar output far of the rectangular “spokes” of
the wheel is given in Figure 4.28. Note that the algorithdhtgiminates even in the presence of
acute angles in the input. The number of vertices in the migeheach step is listed in Table 1.

Table 4.1: Number of points in the mesh following each stefmhefalgorithm in Example 4.2.2.

Step| 0 1la 1b 2a 2b
\ertices| 72 202 518 2,051 11,351

Example4.2.3 In the final example, we consider a PLC containing two nonverifiaces shown
in Figure 4.29. The refinement of one of these faces is showigimre 4.30.

In these examples, nearby edges typically cause more redimeiran nearby faces. This is
a result of Step 2a which causes segments to be split in foaftér they have been refined to
realize fs. This can also be seen in Theorem 4.1 as each segment is tpgatam have length
of at least; Ifs(s) or ;- fs(s). A small fs does in practice lead to more refinement than simply
a small Ifs as was suggested by the constants in the proof.

The proof of Lemma 4.17 (and thus Theorem 4.2) uses Step 2astoea bound on each
segment’s length by Ifs For some segments, this is an over-refinement since theynetned
based on mfsand not Ifs. We continue to study an adaptive variant of Step 2a whiangits
to only split segments in fourths when absolutely necessary

In practice, the algorithm has been seen to terminate evendifanging Step 2a to only split
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Figure 4.27: Base plane of the wheel example following steds, 1b, 2a, and 2b.
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Figure 4.29: Example containing non-convex input faces.

segments in half (instead of fourths). This significantiguees the output size (often by 50% or
more in cases containing small input angles between fatesiurther studies, we will seek to
justify this modification of the algorithm in the proof or gwa counterexample showing that the
algorithm can fail without performing Step 2a as specified.
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Figure 4.30: One of the faces in Example 4.2.3 following st@pla, 1b, 2a, and 2b.
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Chapter 5

Quality, Conforming Triangulation

Acute input angles have long posed significant challeng&etaunay refinement. In his origi-
nal paper on Delaunay refinement, Ruppert immediately r@zed this challenge and (inspired
by previous work [3, 33]) suggests two related concepts éalidg with these issues: concen-
tric shell splitting and corner lopping. Nearly all methdds performing Delaunay refinement
on input with acute angles are based on these basic ideaislohapter, we formalize two
closely related procedures for protecting acute inputemduring Delaunay refinement and the
necessary techniques needed to extend the standard analggiction 2.2.

Shewchuk gave the first Delaunay refinement algorithm gteedrto terminate for general
acute input [41]. Miller, Pav, and Walkington gave an al&ive algorithm [30, 35] with a num-
ber of improved properties such as the elimination of angdangles in the mesh. However,
no natural extension of these ideas to three dimensionsdesfound. Methods for protecting
acute angles in three dimensions come in two flavors: “c®lland “intestines.” The former
generalizes a class of algorithms related to the Shewchetkisinator algorithm and a 3D algo-
rithm of Pav and Walkington [36] while the latter describedass including the “second” (2D)
Pav-Walkington algorithm (generalized in [37]) and the &fnement algorithm of Cheng and
Poon [11]. For completeness and clarity the simplest caltal intestine protection procedures
are described in 2D. This allows for a more natural exteng@D in the next chapter.

Both approaches require estimates on local feature sibe atput points of the mesh which
can be determined via methods described in Chapter 3. Tl#egting acute input angles in-
volves two steps. First, an input PLC is augmented to ensam®omality of the resulting mesh
near the acute angle. Second, Delaunay refinement is pexdowith an appropriate policy for
accepting poor quality triangles near the acute angle. Asi#ttural successor to Algorithm 3.1,
these two steps will be labeled Step 1b and Step 2, resplyciiven Algorithm 5.1.

Algorithm 5.1 Quality Refinement of Acute Input 2D
(Step 1b) Protect acute input angles.
(Step 2) Perform a protected version of Ruppert’s algorithm
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5.1 Properties Of Local Feature Size

Before describing the algorithms and analysis, it is imgatrto consider a few general facts
about the changes in local feature size caused by certanenedints and augmentations of PLCs.
In order to protect acute input features, we will augmeninpet PLC to produce a PLC or PSC

for which conformality near acute input angles can easilynaéntained. The next few results

describe how the local feature size in the resulting PLC dépen the initial feature size and

the smallest angle in the input.

Proposition 5.1. LetC = (P, S) be a PLC or PSC and lgt = (P, S) be a refinement af. Let
C, be some (possibly trivial) subcomplex®fif

Ifs(y,C) < K Ifs(y, Cs)
for all pointsy which belong to some feature @f of dimension at mostim(C,) — 1, then
Ifs(z,C) < (2K + 1) Ifs(x, Cy)
holds for allz.

Proof. Let z be any point. Ley be the nearest point on a featuredofto . Then

Ifs(z,C) < Ifs(y,C) + |= — y|
< Klts(y,Cy) + |z — y|
< Klfs(z,Cy) + (K + 1)|z — |

< (2K + 1) Ifs(z, C,)

Above, we have used the fact that— y| < Ifs(z, C,) sincey is the nearest point to on any
feature ofC;. O

Using a nearly identical proof, we show a similar result inutg the augmentation of a PLC
or PSC with additional features.
Proposition 5.2. LetC = (P,S) andC = (P|JP,S U S) be PLCs or PSCs. Suppose that for
alyePoryeseS,if
Ifs(y,C) < K Ifs(y, C)
then for allx

Ifs(z,C) < (4K + 3) Ifs(x, C).

Proof. Consider any point contained in a feature @f. Suppose If@/,(f) < Ifs(y,C). This
implies the existence of a pointeither in? or on a segment af which is disjoint from the
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feature containing such thaty — z| < Ifs(y,C). Hence,

Ifs(y,C) < Ifs(z,C) + |y — 2|
< KIfs(z,C) + |y — 2|

< KIfs(y,C) + (K + 1)|y — 2|

~

< (2K + 1) Ifs(y, C).

Finally, we can apply Proposition 5.1 to extend this boundnfipoints on features @f to all
points and get the desired estimate. O

In the next lemma, Proposition 5.1 will be applied to both énire refined PLT as well
as certain subcomplex&s which are the PLCs containing only features which are coethi
in some segmend. Recall thato is defined to be the smallest angle between adjacent input
segments.
Lemma 5.3. LetC = (P, S) be a PLC with refinemertt = (P U P, S) such that

Pcls (5.1)

wheres® is the relative interior of segment For a segment € S, letC, be the PLC containing
all features ofC which are contained in. If for any segment € S

Ifs(q,C) < K Ifs(q, C,)

holds for any vertey € s N P, then

4K +4
sin(a)

Ifs(z,C) < < +4K + 3) Ifs(z,C)

holds for all z.

Proof. First, letq, € P and lets be a segment containing. Let ¢ be the nearest vertex tg on
s. If ¢ € P, then

|fS(QQ,C) < |fS(qO,Cs) = |fS(QQ,CS).

Otherwiseg € P and it follows that

Ifs(q0,C) < Ifs(q,C) + lq — o

< Kfs(q,Cs) + |q — qof

< KIfs(qo,Cs) + (K +1)|q — qo

< (2K + 1) Ifs(qo, Cy). (5.2)

Next, letu be a point (not necessarily a vertex in the mesh) containedrime segment &.
The local feature size can be realized several waysulie the point on a disjoint feature 6f
which realizes the local feature sizeiatvith respect ta.
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qo0

Figure 5.1 In Case 3 of Lemma 5.1, djsts,) > =%,

sin(a)

Case 1u andw lie on disjoint features of.
Then Ifgu,C) = Ifs(u,C).

Case 2u andw are contained in the same segment &f S.
In this case, apply Proposition 5.1 using (5.2) to get théeésnequality:

Ifs(u,C) < (4K + 3) Ifs(u, C,) = (4K + 3) Ifs(u, C).

Case 3u andw belong to adjacent segmentgindenoteds, ands,,.
Let ¢o denote the input point which lies at the intersection pénds,,. Then,

< Ifs(qo, C) + [u — qo

< (2K +1)1fs(q0,C) + |u — o

< (2K + 1) Ifs(u,C) + (2K + 2)|u — qo
< (2K+ 1+ QKJ“ 2) Ifs(u, C).

S11 v

As seen in Figure 5.1, we have used the fact that

5 - [u — qo
> > .
Ifs(u,C) > dist(u, s,,) > no

Finally, applying Proposition 5.1 on the entire complewith constantk’ yields the desired
result. O

Lemma 5.3 will surely not produce a sharp bound on the locaiufe size of the refined
complex. However, this is not our purpose: the goal of thesentas is to prevent the case
explosion which occurs when attempting this direct analy#m this direction, we note that to
apply this lemma, estimates on the local feature size ondyl e be verified at a few vertices
(the newly inserted ones) to assert estimates on the loatlrgesize for any point. Lemma 5.3
does produce the correct scaling with respect to the snmaliast anglex.
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Figure 5.2: Disks around protected input points do not geetr features of the mesh disjoint to
the input point.

5.2 Collar Protection Region

A collar protection region involves forming “collar” segmis of equal length around each input
point which ensures the input segments conform near thig ippint. Our resulting Delaunay

refinement algorithm will then prevent the insertion of amytices which encroach this collar
region.

5.2.1 Step 1b

‘ Protect acute input angl#s.

For each input poingy which is the vertex of an acute input angle, the collar is fednby
splitting all segments containing at an equal distancé, such that

blfs(qo) < dg, < min(cofSe(qo), c11fs(qo))

for some constants > 0, ¢, € (0,.5) ande; € (0,1). Algorithm 3.1 can be used to determine
an acceptable distance. Figure 5.2 depicts an example pbthes inserted during this step.
Each end segment containing the vertex of an acute inpue avitjbe called a collar simplex
and vertices inserted during this step are called collaioes. See Figure 5.3.
First, we observe that the collar simplices are sufficiefathaway from disjoint input features
of C.
Lemma 5.4. For any input pointy, € P,

B(qo. dgy) [ | Blgo. dgy) = 0 forall P 5 g # qo

and
B(qo, dy,) ﬂ s = () for all segments disjoint from go.
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Figure 5.3: Definition of collar simplices

Proof. This follows directly from the restrictions afy andc;. ]

Let C denote the refined PLC obtained after inserting all of théacalertices. The next
lemma quantifies the relationship between the local featizesofC andC.
Lemma 5.5. There existd{ > 0 depending on only and¢, such that

K itsie,0)

Ifs(z,C) < Ifs(z,C) < sin(c)

for all x.
Proof. Let s be an input segment, and letbe a collar vertex ins. Observe the following

inequality:

1-b 1-b -
< _ .
Ifs(¢,C) < max{ T 200} Ifs(q, Cs)

The desired inequality then follows from Lemma 5.3. O

5.2.2 Step?2

‘ Perform a protected version of Ruppert's algoritlhm.

This step is the Delaunay refinement algorithm describedlgothm 5.2. Each new end
segment is “protected” during refinement: no vertices ofrttesh will be allowed to enter the
diametral ball of these segments. To ensure this, circutacewhich encroach these end seg-
ments will be rejected by the safety criteria of the alganth.emma 5.4 ensures that no inserted
midpoints encroach upon a collar simplex and thus the diaigitk of each collar simplex will
be empty throughout the algorithm.

The termination of the algorithm and properties of the r@sgimesh are described in Theo-
rems 5.6 and 5.7. The first theorem ensures that the algor@hmnates and the resulting mesh
is graded to the feature size while the second theorem askatthe mesh conforms to the input
PLC and specifies which triangles may have poor quality.
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Algorithm 5.2 2D Delaunay Refinement With Collar

Action Insert the circumcenter of a simplex.

Priority Encroached segments are given higher priority than poditgtéangles.
Unacceptability] Any segment with a non-empty diametral disk is unacceptalohgy trian-
gle with raduis-edge ratio less thans also unacceptable.

Safety Collar simplices are not safe to split.

Theorem 5.6. There existg' > 0 depending only upon, «, b, andc, such that for each vertex
g inserted in the mesh,

Ifs(q) < Crr,.

Proof. The analysis of Ruppert’s algorithm (Theorem 2.2) appliéh vespect to the protected
complexC since end segments are never split (which follows from Psitjom 5.4) and thus no
segment is encroached by a vertex on an adjacent segménibifs asserts the existence©f
depending only upon such that

Ifs(¢,C) < Crr,.

The proof is then completed by applying the estimate in Lerbrbao convert the estimate on
the local feature size with respectd@anto an estimate on the local feature size with respect to
C. O

Remark.While the constant in the previous theorem does not depengd, dhe restiction that
c1 < lisimportant to ensure the proof is valid: otherwise, it vebloé possible for vertices to be
inserted on segments which encroach upon collar simplicéstee proof would not hold.

Theorem 5.7. The resulting Delaunay triangulation conforms to the inptite circumcenter of
any remaining poor quality triangles lies in the diametradklof a collar simplex.

Proof. No vertex is inserted which encroaches a collar simplexIsm#ar simplices conform in
the resulting mesh. All unacceptable (and thus non-callegments are queued for splitting and
none are rejected by the safety rule, thus in the final mesegthents conform to the inputd]

5.3 Intestine Protection Region

The intestine protecting region is more complex than thiacapproach, but yields the added re-

sult that no triangles in the resulting mesh have anglestatgnr — 2k, wherer :=sin™"' (5-)

is the minimum angle corresponding to the radius-edge ltlotds. Again, we will insert addi-
tional points in Step 1b and perform the appropriate Delgueinement in Step 2.
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Figure 5.4: Vertices inserted for intestine protectingaag

Figure 5.5: Consider the new PSC formed by adding protecinatges to the input PLC.

5.3.1 Step 1lb

‘ Protect acute input angl#s.

As with the collar, for each input poigg which is the vertex of an acute input angle, consider
distancei,, such that

blfs(qo) < dg, < min(cofSo(qo), c11fs(qo))

with b > 0, ¢y € (0,.5) andc; € (0,1).

For each input vertey, at an acute input angle, we will split all input segments astadce
d,, from pointg,. Additionally, consider the circle centeredgtof radiusd,, and add points to
ensure that no arc of this circle is larger thanThis ensures that the diametral ball of each arc
of the circle does not contaifp and requires at mostadditional vertices per input vertex. An
example of this construction is shown in Figure 5.4.

We will now consider a piecewise smooth complex (PE@efined by the input PLC, ver-
tices inserted during Step 1b, and the boundary arcs of eiakhBdq. d,) as depicted in Fig-
ure 5.5.
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Lemma 5.8. LetC be the PSC derived from PLCas described above. Then there exits- 0
depending only oh, ¢y, and¢; such that for allx

Ifs(z,C) < Ifs(x,C) <

Proof. The first inequality is immediate from the definition of lodehture size: adding ad-
ditional features and refining existing ones only decredisedocal feature size. The second
inequality will be shown by applying Proposition 5.2@pthe complex with just the initial collar
vertices inserted. Let € 0B(q, d,). Then,

Ifs(y, C).

fs(y,C) <

Combining the conclusion of Proposition 5.2 with Lemma Sdids the result. O

5.3.2 Step?2

‘ Perform a protected version of Ruppert's algoritlhm.

Now Ruppert's algorithm is performed outsideldf, B(q, d,,) and each of the boundary
arcs of any diskB(qo, d,, ) is protected by the diametral disk of its endpoints. Thisasalibed
completely in Algorithm 5.3.

Algorithm 5.3 2D Delaunay Refinement With Intestine

Action Insert the circumcenter of a triangle. Insert the midpoind gegment ol
arc.

Priority Encroached segments and arcs are given higher prioritygbanquality
triangles.

Unacceptability] Any segment or arc with a non-empty diametral disk is unatatde. Any
triangle with radius-edge ratio larger tharms also unacceptable.
Safety All simplices and arcs are safe to split.

Ruppert’s algorithm can be generalized to piecewise smiaptht complexes [4, 7, 37]. The
analysis of Pav and Walkington applies to Algorithm 5.3, beer that theory involves a trade-
off between the maximum total variation in orientation c# tturves in the input and the smallest
allowable radius-edge threshold of the refinement. Thisiegtpon leads to two choices:

e Use the input as specified and select a sufficiently largeensure termination.

e Pick anyr > /2. First split smooth input features to have a sufficiently briwal

variation in orientation based on thevalue selected and then perform Algorithm 5.3.

However, we will show that this trade-off is unnecessarygokithm 5.3 will terminate and

produce a well-graded, conforming Delaunay triangulaf@many input complex previously

63



Figure 5.6: Configuration in Proposition 5.9.

described (such that all input arcs have total variatiorri@ntation of at mosf) and any radius-
edge threshold > /2. This will require a more careful analysis, which is centieaeound the
following technical lemma.

Proposition 5.9. Let# < (0, 7] and letay be the arc of a circle)B(qo, i) which subtends an
anglef. Letx € 9B(ag) \ B(qo, R), let p be the nearest endpoint af to = and letq be the

projection ofz ontodB(a,). For anyT > /2 there exists3* > 0, independent of, such that if

<
R —/67'7
then
|z — pl <r
[z —q

Remark.The most important feature of this lemma is thais independent of. This is essential
in the proof of termination of the Delaunay refinement altponi for any~ > /2 without a
coupled restriction based on the total variation in origateof the input curves.

Proof. Let ¢ be the center oB(ay) and lety denote the angle between segmértandzc as
shown in Figure 5.6. Let denote the radius @B (ay).
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Applying the fact that = Rsin (£) gives

o (P (0N . (¢
|x — p| = 2rsin (2) = 2Rsin (2 sin { 5 ) - (5.3)
Using|c — ¢o| = Rcos (g) and the law of cosines gives the next sequence of equalities:
(|lx —q| + R)* =%+ ( Rcos 0 2—27“Rcos 0 cos (¢+z)
1 - 2 2 2
AN 0\ \> , . (0 0 ™
= <Rsm <§>) + <Rcos <§)> — 2R*sin (5) cos <§) cos (gb + 5)
2 o ([0 oY
= R"+ R"2sin 5)cos |5 sin ¢

= R*(1 +sinfsing).

Rearranging leads to an expression|for- ¢|:

lz—q| =R (\/1 + sin(0) sin(g) — 1) . (5.4)
Combining (5.3) and (5.4) gives
e —p| _ 2sin(§)sin(§)  /1+sin(@)sin(g) +1 (5.5)
[z —ql  \/T+sin(d)sin(d) —1 2 cos (£) cos (2)
Let 3 := =4 and~y := /28 + 2. Rearranging terms in (5.4) yields
V2 =28 + 3% = sin(0) sin(g). (5.6)

This implies thaty > sin¢ or v > sinf. These two possibilities are handled in two cases.
However, since (5.5) is symmetric in the variablesndf, the argument is identical in each
case. Thus, we consider only the case sin ¢. Then,

2

VIt sm@)sin(d) = 1+ 12 <1+ %

o) () (3) 222)
> (33) (-5 )

The final inequality results fromin ! ~ < 57 which requires thay < 1. To ensure this, we will
seekg* < % Substituting these estimates into (5.5) gives

Ix—pl<\/§< 1+4%/4 )

[z —ql ~ 1 —n?m?/32

and
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Let

. 2(7‘ — \/5)
4| 2T NVE)

8v/2 4 w27

and select .

Bz = gmin (1,(+)?)

Substitution yields that if%q' < %, then

= = | <. ]
|z — q|
Now, we are prepared to prove that Algorithm 5.3 terminatesthat the output mesh is well
graded.
Theorem 5.10.There exist€’ > 0 depending omr, «, ¢, ¢, andb such that for each vertex
inserted in the mesh,

Ifs(q) < Crr,.

Proof. Recall that denotes the PSC which includes the original input with thueeating circles
around each input vertex which are split into arcs subtepairmost;. Lemma 5.8 ensures that
it is sufficient to prove the theorem considering local featsize with respect t6 rather tharC.
So, as in the proof of Theorem 2.2, we will show inductivelgtth

Ty if ¢ is an input point,

Ifs(¢,C) < < Cyr, if ¢ is a segment or arc midpoint,
Cyr, if ¢ is a circumcenter.

Cases 1 through 3 in Theorem 2.2 also apply in the same fasisidmefore. However,
there are additional cases which must be considered. Tlasss mvolve showing the estimate
Ifs(¢) < Cyr, for a vertexq which is inserted as a midpoint of some circular @ia the refined
complex. These cases are distinguished by the type of paufitich is the nearest neighbor 4o
wheng is inserted.

Case 4 Vertexq is the midpoint of some arc and the nearest neighbgtits on an input feature
(in C) which is disjoint froma.

Then Iffq,C) < |¢ — z| = r, since this vertex must be on a disjoint feature (with respect
C becausé€ is non-acute). This yields the (previously required) ctindithatC; > 1.

Case 5 Vertexgq is the midpoint of some arc and the nearest neighbgiisan endpoint of..

Let p be an endpoint of the arc and lety be a point encroaching which caused: to be
split. Letc be the circumcenter dB(a).
If y lies on an input feature, then

Its(q,C) < lg—yl <|g—c|+]c—y| <2lp—c| <2[p—q| <2r, (5.7)
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Figure 5.7: Diametral balls nest properly when segmentsgalie while chordal balls do not.

Thus it is sufficient to require that
Cy > 2. (5.8)

Otherwisey is a (possibly rejected) circumcenter of a poor qualitynigia.

Ifs(q) < Ifs(y) + |q — |
< Cory + g —y|
<V2C|p — | + |q -y
<V2Cslp—ql + g -yl
< (V2Cy + 2)r,

The fact thatlq — y| < 2|¢ — p| follows from the same reasoning as in (5.7). This gives a
restriction that
Cy > V20, +2 (5.9)

which is strictly stronger than (5.8).

Case 6 Vertexq is the midpoint of some arc and the nearest neighbgrisa circumcenter in
the mesh.

Let arca lie on a circle centered at input poigt. Unlike the case of straight line input, an
arc may be encroached by a circumcenter in the mesh whichnsagtéd and did not yield to
the (larger) arc that was protected at the time. This canrdeetause the protected chordal balls
do not nest when splitting arcs as seen in Figure 5.7 ah. & the arc containing in the mesh
when z was insertedinto the mesh. So; € B(q, |¢ — p|) \ B(as) Wherep is an endpoint of.

Let ay be the nearest endpoint @f to x and letd be the angle subtended by.

Lets = ";_‘q‘f)“ . Now consider two cases depending on the size dfet 57, . be the constant

given in Proposition 5.9. :
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First, suppose that > 375, . Now, we estimate the local feature sizg asing the Lipschitz
property and the associated2input pajgit
Ifs(q,C) < |g — qo| + Ifs(qo,C)
< 2|qg — qo|

9
< ——Jz —¢q|
Yarr

2
<

’f’q.
/Gf/ﬁ+‘r
2

We must require that
2
2

cy >

(5.10)

Next, suppose that < 57, . We seek to apply Proposition 5.9 and assert that
2

\x—p|<\/§—0—r
lz—q — 2

However,x is not necessarily on the boundary®fa) andq is not necessarily the projection of

z ontoa. If E:’q’; < 1 the desired estimate holds. Otherwiseldte the projection of ontoay,

and let2’ = ¢/x N B(ay) as shown in Figure 5.8. Then,

[z —pl _ [z =pl _ 2" =1l
lz—q] ~ Jz—¢| " |2/ —¢|
Moreover,

2" —q'| _ |v—(q
< < B,
| — a0l ~ g — qo i

and thus applying Proposition 5.9 (usisgandq’) implies that

lw—pl _ o' —pl _ V247
lz—q| T |2 —q] T 2

Now the local feature size can be estimated:
Its(q,C) = |z — q| + Ifs(x,C)
S |£E' - Q| + CQTx
<z —q| + Cs|z — p|

\/§+7'
< |z —q|+Cy 5 [z — q
2
fr— <1+CQ\/72+T> Tq.
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Figure 5.8: Diagram for Theorem 5.10.

69



Then, we requir€’; > 1+ C,Y2T. This restriction and several previous ones, (2.2), (580,
(5.9), can all be satisfied if
V2+T
2

Cy>24+0Cy

(5.11)
Thus, it remains to find constants satisfying the three reimgiconditions: (2.1), (5.10), and
(5.11). A valid choice of’; and(C; is given below:

4t2r A7 Wan
T—V2 By, (V2+7)
2

f+7
2

Cy = max

CL=14+Cy

This completes the proof. O

Theorem 5.11. The resulting Delaunay triangulation conforms to the inpény remaining
poor quality triangles are insidé(qy, d,,) for some input poing,. The resulting triangulation
contains no angles larger than— 2k.

Proof. These properties are immediate from the definition of theDehy refinement algorithm.
Note that no triangles contain large angles since all Delgtinangles inside the protected disks
are acute although they can be arbitrarily small if the irgmuritains small angles. O
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Chapter 6

Quality, Conforming Tetrahedralization

Generating conforming meshes of an arbitrary PLC in 3D istutiially more complex than the
2D analog. This stems from the fact that only segments neait points need to be protected in
2D while in 3D a consistent strategy must be employed aloggetb ensure the conformity of
all adjacent faces.

The first algorithm for computing conforming Delaunay tbgdralizations of a general 3D
PLC was described by Murphy, Mount and Gable [34]. In additmprotecting spheres around
input points, this algorithm selects a protection size facteinput segment based on the min-
imum local feature size along the segment and determinestangular buffer region in each
adjacent face to be triangulated identically. Cohen-$tei@olin de Verdiere, and Yvinec [17]
developed an alternative approach based on packing sprenasd segments with the improve-
ment that the size of the protected region is proportionti¢al -feature size at nearby points on
a segment. This allows the size of the protection region tg &bng segments with the local
feature size. These first two algorithms describe “collgpget protection schemes but were not
integrated with quality Delaunay refinement. The first aldpon for quality Delaunay refinement
of arbitrary input in 3D was given by Cheng and Poon [10, 11jey proposed an “intestine”
based protection scheme based on a sphere packing ovesieelon which is similar to one
used by Cohen-Steiner, Colin de Verdiere, and Yvinec. Rawsalkington [36] also designed a
collar based approach for quality mesh generation. Thiscggh had the advantage that it was
not necessary to pre-compute local feature size beforenpeirig the refinement.

Of the algorithms discussed, only one has been implemeniée algorithm of Cohen-
Steiner, Colin de Verdiere, and Yvinec was implementedsawtral examples of complex con-
forming Delaunay triangulations are given. The others hasebeen implemented and imple-
mentation would be a substantial task for any of them. Otlgarghms for implementing Delau-
nay refinement in 3D which allow acute angles rely on cons¢édiDelaunay tetrahedralization
[43, 44] or weighted Delaunay refinement [9].

We will given an alternative protection procedure which ggaded to 1-feature size. In faces
near edges, rectangles (or trapezoids in certain casepy@eeted rather than spheres and the
resulting mesh can be viewed as a 1-feature size grade@nekthe original Murphy, Mount
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(a) Protection region in [34] (b) Protection regionin[10, 17,36] (c) New protection region

Figure 6.1: Different Collar Protection Strategies

and Gable protection procedure. Figure 6.1 depicts thdBratit protection strategies. This
protection strategy can be used in both collar and intestpeDelaunay refinement procedures.
In each case, there are two steps, Step 2c and Step 3. Thenvipdtes inserting points to
build the initial protection region, while the second is dddmay refinement algorithm which is
designed to preserve conformity of the protected regiore fAimbering of these steps (2c and
3) is due to the fact that they naturally follow Algorithm 4.1

Algorithm 6.1 Quality Refinement of Acute Input 3D
(Step 2c¢) Protect acutely adjacent input features.
(Step 3) Perform a protected quality Delaunay refinement.

6.1 Properties of Local Feature Size

Several of the results in Section 5.1 are generalized to 8anf® are only given when the 2D
proofs cannot be immediately extended to the 3D case. Fatha extensions of Proposition 5.1
and Proposition 5.2.

Proposition 6.1. LetC = (P, S, F) be a PLC and le€ = (P, S, F) be a refinement af. Let
C, be some (possibly trivial) subcomplexofif

Ifs(y,C) < K Ifs(y,C.)
for all pointsy which belong to some feature @f of dimension at mostim(C,) — 1, then

Ifs(z,C) < (2K + 1) Ifs(z, C.)

holds for all x.
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Proposition 6.2. LetC = (P,S) and letC = (PUP,SUS, F U F) be a piecewise smooth
complex. Suppose that for alle P,y € s€ S,ory € f € F,

A

Ifs(y,C) < Klfs(y,C)

then for all
Ifs(z,C) < (4K + 3) Ifs(x,C).

Lemma 5.3 will have two analogous 3D versions. The first gpoads to a refinement of
the segments of a PLC and follows an identical proof as theé&Bion. The second involves the
refinement of faces of the PLC.

Lemma 6.3. LetC = (P, S, F) be a PLC with refinement = (P U P, S, F) such that
Pcls (6.1)
seS

wheres® is the relative interior of segment For a segment € S, letC, be the PLC containing
all features ofC which are contained in. If for any segment € S

Ifs(q,C) < K Ifs(q,C,)

holds for any vertey € s NP, then

Ifs(z,C) < <4f,{ Ak 3) ifs(z, C)
S11 (v
holds for allz.
Lemma 6.4. LetC = (P, S, F) be a PLC with refinement = (P U P,S U S, F) such that
PclJr
feF
and foralls € S,
sclyr
feF

where f° is the relative interior of facef. For a facef € F, letC; be the PLC containing all
features of” which are contained irf. If for any facef ¢ F

lfs(y,C) < K Ifs(y,Cy)

holds for anyy € f which belongs t&® or a segment of, then

Ifs(z,C) < <4[,( K+ 3) its(z, C)

S111 (g

holds for all z.
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The proof of Lemma 6.4 is also very similar to the proof of Leenth3. Below, the key
differences are described.

Proof. The first step is to show that
Ifs(y.C) < (2K +1)Ifs(y,Cy)

foranyy € P andy € s € S. This is a result of the same argument seen previously. \Foltp
the proof of Lemma 5.3, consider any pointontained a face aof and letw be the point on a
feature ofC which is disjoint from the feature containingwhich realizes the local feature size.
This gives three cases:

1. v andw lie on disjoint features of.
2. v andw are contained in a single face ©f
3. v andw belong to adjacent facesGt

The first three cases have identical proofs to those of LemBwaih one exception: the mini-
mum angle between faee is used in the third case. O

6.2 Collar Protection Region

6.2.1 Step 2c

| Protect acutely adjacent input features.

Fix b > 0 andc < 1. Givena PLCC = (P, S, F), we will assume that we have a refinement
C, = (731, 81, f) such that
(H1) (P'\P)\ (Usess) =0,

(H2) foralls' € &, b- min(fs(s), Ifs(s)) < |s| < ¢-min(fs(s), Ifs(s)), and

(H3) all adjacent end segments have equal length.

The purpose of these requirements is to ensure that all goteses have lengths comparable to
the appropriate feature size. This is important since sagjfargth will be used to determine the
size of the collar region produced. If this size is not sudfintly small, different sections of the
collar may be “tangled”.

A suitable refinement can be computed by performing Algarithl in Chapter 4 and only
considering points which lie on the 1-skeleton of the inplihis algorithm yields the desired
upper bound with: = g Since we will require: < 1, this requires an additional split of each
segment and potentially some simple local clean up of newamahsegments.

The collar is formed by inserting points in each face aceaydo the following rules which
are depicted in Figure 6.2.
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(a) Collar Insertion Rule 1 (b) Collar Insertion Rule 2
Phe -" - ".~

do
(c) Collar Insertion Rule 3

Figure 6.2: Collar insertion rules

1. If sands’ are adjacent non-end segments which meet at gothen
a pointp is inserted at distancléa"(‘;w from ¢, in any direction into
the face perpendicular to

2. If s is an end segment and is an adjacent non-end segment, hoth
containingg, then inserp at the intersection of any line parallel to
in the face at distande;'LI away froms and on the circle of radiug|
around the input point oa.

3. Given any input poiniy, in the face, insert collar points in the face

such that the circle of radiud (¢,) aroundg, has no arcs of angle
larger thang.

Table 6.1 contains a list of objects defined to describe thardmased on the vertices inserted
during this step. These objects are depicted in Figure 6gair€ 6.4 gives an example of collar
simplices for a simple face. Following the insertion of tlilar vertices, the resulting Delaunay
tetrahedralization satisfies a number of properties ginghe following lemma.

75



Collar Segment

Collar Simplex

Collar Arc

Collar Vertex

O
g
|
|

Input point Input Segment

Figure 6.3: Collar Definitions. Black vertices are inputtiags, gray vertices are those inserted

before Step 2c and the white vertices are those which argéasauring Step 2c.

Figure 6.4: Collar simplices in a face.
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Table 6.1: Defintions of collar terms.
Collar Vertex | Any vertex inserted during Step 2c.

Collar Segment| Segment between collar vertices which correspond to aoljaee-
tices on an input segment.

Collar Arc Arc between adjacent collar vertices corresponding to dimeesin-
put vertex.

Collar Region | Region between input segments and collar segments and arcs|
Collar Simplex | Any simplex in the Delaunay triangulation of the face whigsl
inside collar region.

Lemma 6.5. After Step 2c, the following properties hold.
| All adjacent collar segments meet at non-acute angles.
Il In each face, the diametral disk of each collar segmentaimis no points of’.
[l The circumball of any collar simplex contains no pointsiy.
IV The circumball of any collar simplex does not intersedt disjoint faces or segments.

Proof. Property | follows immediately from the construction. Peaies Il and IV result from
the local feature size bound which we assume the input sstigfinally, Property Il results from
the fact the collar in a face is formed based only upon lengtlssibsegments in the associated
input segment. Property IV follows from the assumption (H2)Xhe input complex. O

Since the circumball of each collar simplex is empty, thisweas that the collar simplices
conform to the input. Collar segments meet non-acutely hod the complement of the collar
region in each face is well-suited for Ruppert’s algorithbhe final property is needed to guar-
antee that subsequent points inserted in the mesh for coitjowill not encroach disjoint collar
simplices.

The collar divides each face into two regions: the collaiaeg@nd the non-collar region.
This defines a new piecewisenoothcomplex (since the arcs around input points are curved).
The next lemma asserts that this augmented complex prastrwenitial local feature size, up
to a factor depending on the smallest angles in the inputalRé@t «; is the smallest angle
between an input segment and another adjacent input faatthre mesh and., is the smallest
angle between adjacent input faces.

Lemma 6.6. Let C' be the PSC consisting of each face divided into the collaioregnd the
non-collar region and requiring all collar segments andleolarcs. Then there exists a constant
k > 0 depending only upohandc such that

Ifs(z,C) > Ifs(z,C) > ksin a; sin ay Ifs(x, C).

Proof. The first inequality is immediate for any refinement. For teeahd inequality, consider
an additional intermediate PLCy. LetCy = (Py, So, F) WhereP, containsP and all vertices
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Figure 6.5: Intermediate PLCs described in Lemma 6.13 fartg) example face.

®

of P; which are adjacent to some input vertexfinon a segment of;. Recall thatP; is the
refined PLC which satisfies the assumptions H1-3. THeis the refined segments 6fbased
on the vertices irPy. Figure 6.5 depicts the various intermediate PLCs whicleleeen defined.
The result will follow by arguing the following list of ineglities.

Ifs(z,Co) > kosin oy Ifs(z,C) (6.2)
|fS(J’J, Cl) >k |fS(I, C(]) (63)
Ifs(z,C) > kysin ay Ifs(z, Cy) (6.4)

Lemma 6.3 implies (6.2) and Lemma 6.4 implies (6.4). Finétly8) follows from the fact that
no acutely adjacent features are refined betwieand(;. O
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6.2.2 Step3

‘ Perform a protected quality Delaunay refinempnt.

In the final step, the volume mesh is refined based on bothtguwadd conformity criteria
using Ruppert’s algorithm. Similar to the non-acute casy, maximum radius-edge thresh-
old 7 > 2 can be selected for determining poor quality tetrahedrae Dilaunay refinement
algorithm is specified in Algorithm 6.2.

Algorithm 6.2 3D Delaunay Refinement With Collar

Action When a simplex is processed, its circumcenter is insertel&ss it en-
croaches upon the diametral ball of a lower dimensional Erollar
segment, or collar arc. In this case, the encroached sinplgeeued for,
splitting. When an collar segment or collar arc is processeert the mid-
point.

Priority Collar segments and arcs are given the highest prioritypkces are pri-
oritized by dimension with lower dimensional simplicesgessed first.
Unacceptability] A simplex, collar segment or collar arc is unacceptablehitis a nonempt)
circumsphere. Atetrahedron is unacceptable if its radulge ratio is larger
thanr.
Safety It is not safe to split any collar simplex (either trianglesimput faces of
subsegments of input segemtns).

~

The key difference between Algorithm 6.2 and the 3D versibRuppert’s algorithm is the
safety criteria. This prevents acutely adjacent faces fsgwenting termination of the algorithm.

For collar arcs, note that the arc midpoint (rather than tidpoint between the two ends of
the arc) is inserted. See Figure 6.6. This procedure wasiaksdin the 2D intestine protection
strategy and will lead to very similar analysis.

During the algorithm, it is important to ensure that the gnies of the collar in Lemma 6.12
continue to hold while allowing refinement of the non-colitagion of each face to create a
conforming mesh. In the 2D collar protection procedure pfatected collar simplices (the end
segments) never change during Algorithm 5.2. In 3D howeherset of collar simplices does
change. This occurs when the standard Delaunay refinengarithin seeks to insert a vertex
in a face that encroaches upon a collar segment or collatrestead of adding this encroaching
vertex, this collar segment or arc is split. This new vertegansidered a collar vertex and the
collar segment or arc is broken into two new collar segmentscs. The collaregionhas not
changed but the set of collaimpliceshas changed. Further, this new vertex may encroach upon
the circumball of another collar simplex in an adjacent fatre this face, the collar segment
associated with this encroached circumball is also splthadthe collar simplices on adjacent
faces again “line up.” So conformity of the mesh is maintdifgy only splitting the collar
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Figure 6.6: A collar segment associated with an input pargglit. When a proposed point
(denoted by the empty dot) encroaches a collar segment,etiraent is split by adding the
midpoint of the arc of a circle around the input point.

segments and thus the algorithm never attempts to insesirthencenter of an encroached collar
simplex. This is exactly the purpose of the collar constaictavoid the cascading encroachment
sequence between adjacent faces associated with insdréngrcumcenters of triangles near
adjacent input angles.

Now, we highlight two propositions which are necessary teuea the correctness of the
algorithm. Both follow from the Delaunay property. The firstgiven in [29] (which gave a
completedescription of the 3D Delaunay refinement algorithm for maxte input) and provides
the natural analogy to the fact that when splitting a segmtéet diametral balls of the new
subsegments are contained in the diametral ball of the gichspt.

Proposition 6.7.[29, Lemma 4.5] Le7 be the Delaunay triangulation of a planar faéésuch
that the circumball of each bounding segment is emptyBl.éte the union of the circumballs of
all bounding segments @f and 3, be the union of the circumballs of all triangles in

Letp € F\B;. If 7" is the Delaunay triangulation of the face resulting from églition ofp,
defineB, to be the union of the circumballs of triangles in the resigtDelaunay triangulation.
Then,

Bé C Bl UBQ.

This fact is important in ensuring that when additional aoilertices are inserted the result-
ing collar simplices are not encroached by other verticeleds circumcenters of poor quality
triangles. Collar simplices can be encroached by collatioes in adjacent faces but these en-
croachments are removed once encroachment of collar ségimeadjacent faces are identical
(and thus termination can be ensured).

The next proposition motivates the idea behind protectegcbllar segments. This ensures
that whenever a triangle in a face is processed on the refimenueue, either the circumcenter
is valid to be inserted into the mesh or it encroaches a cettigment, which will be queued
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Figure 6.7: Refinement of the non-collar region of a face.

for splitting. This is necessary for ensuring conformitytbé mesh upon termination of the
algorithm.
Proposition 6.8. Let A be the set of vertices on the boundary of some faead letA’ be a set
of vertices insideg’. Suppose that for each boundary segment dlfiere is a circle through the
end points of the segment which does not contain any vedicés) A’ in its interior. Then the
Delaunay triangulation ofA U A’ conforms toF’. Moreover, for any Delaunay trianglein the
interior of F', the circumcenter of either lies insidef” or inside the empty disk associated with
a boundary segment.
Now we can state the key properties which hold throughouakperithm whenever there are

no unacceptable collar segments on the queue to split.
Lemma 6.9. Whenever the queue of unacceptable simplices does notrtantacollar segments
and collar arcs, the following properties hold.

| The circumball of any collar element contains no vertige®I1.

Il Adjacent collar segments meet at non-acute angles.

Proof. By applying Lemma 6.7 to the collar region of each face, cetkelthat no circumcenter
can encroach a collar simplex. Property | then follows beeaa collar simplex can only be
encroached by a vertex on an adjacent collar segment wisohealcroaches the corresponding
collar segment in the face with the original simplex.

Property Il results from the fact that nearly formed collezsameet at an angle of at ledst
since the original arcs were split to subtend angles of at fos O

Theorem 6.10.For any T > 2, there exists”' > 0 depending only upon, «, b, andc such that
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for each vertex inserted in the mesh,
Ifs(q) < Crr,.

Proof. Lemma 6.13 ensures that it is sufficient to prove the inetuali

Ifs(q,C) < Crr,,.

This standard proof of termination of Ruppert’s algorithra.(the 3D analog to the proof of
Theorem 2.2) is used in conjunction with the techniques énfoof of Theorem 5.10 to handle
the collar arcs around input points.

Acute angles usually cause the the standard proof to fait féllure occurs when a simplex
(a Delaunay triangle in a face or a subsegment of an inputeegns encroached by a vertex on
an adjacent input feature. Lemma 6.9 ensures that this aaexaur: collar simplices are never
split. If a collar segment is split due to a vertex on anoth@lac segment, this vertex may lie
on an adjacent input feature but these collar segmentssjmerdifeatures in the PLC ensuring
that the original proof of termination for Delaunay refinerhiolds. O

Theorem 6.11.The resulting Delaunay tetrahedralization conforms toitiput. Any remaining
poor quality tetrahedra encroach collar simplices.

Proof. These properties are immediate from the description of therithm (which ensures
remaining poor quality tetrahedra failed the safety adafjeand Lemma 6.9 (which ensures that
collar simplices conform to the input). O

6.3 Intestine Protection Region

The intestine approach for protecting acute input anglesonsi that in 2D described in Sec-
tion 5.3. Smooth features will be added to the input to isoédtinput segments and vertices (or
at those contained in acutely adjacent features) from tfiemeo be refined for quality.

6.3.1 Step 2c

The vertices and features which are added to the mesh intdisase a superset of those added
in Step 2c of the collar approach (the PSL In addition to the collar vertices, the following
features are added to the mesh forming a new comflex

e For each input vertey, which belongs to some segment, dgt be the length of all seg-
ments containing,. ThenC includesoB(qy, dy, ).

e For each collar segmeastletc be the surface of revolution produced by revolving segment
s about its associated input segment. The featsiasdds are included irC.
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Figure 6.8: Intestine Protection Region

The region inside each sphere and cylindrical surface atlwédte mesh will be called the
intestine region and the remaining volume is called the inbestine region. This construction is
designed to ensure the following fact.

Lemma 6.12. The non-intestine region of the P&&ontains no acute angles between features.

This lemma is necessary to ensure that the usual proof ofrtatibn and grading will apply
to Delaunay refinement in the non-intestine region. Howeseme issues must be resolved
concerning the applicability of this proof to curved inpeafures.

Lemma 6.13. There exists a constaht> 0 depending only upohandc such that,

lfs(z,C) > Ifs(x,C) > klfs(z,C)
whereC is the PSC containing the collar.

Proof. This follows from Proposition 6.2. O

6.3.2 Step3

We now consider two different approaches to performing dityuafinement of the non-intestine
region. The first is to perform the usual Delaunay refinemadtsplit smooth surfaces by pro-
jecting the circumcenter of any Delaunay triangle in theefe the surface. This is described
in Algorithm 6.3. This approach suffers from one minor drask: the Delaunay tetrahedral-
ization inside the cylindrical regions of the intestine nmeg conform to the input. Eliminating
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this issue, the second approach is to impose more struatuteaefinement of these cylindrical
regions. This algorithm is described in Algorithm 6.4.

Algorithm 6.3 3D Delaunay Refinement With Intestine - Unstructured

Action When a simplex is processed, the projection of its circuntezeanto the in-
put feature containing the simplex is inserted, unlessat@aches upon th
diametral ball of a lower dimensional feature. In this cdke,encroached
item is queued for splitting.

Priority Items are prioritized by dimension, with lower dimensiaitens processe
first.

Unacceptability] A simplex in the non-intestine region is unacceptable ifas la nonempty
circumsphere. Atetrahedron is unacceptable if its radue ratio is larger
thanr.

Safety All simplices are safe to split.

[1%)

L

Algorithm 6.4 3D Delaunay Refinement With Intestine - Structured

Action If a protected triangle on the boundary of a cylindrical cegis to be split,
add a required circle in the cylinder between the two cirahethe PSC
associated with the triangle to be split. Add vertices atitiversection of|
this circle and every face of the original PLC that it intetseand then insert
additional vertices so that no arc of the circle is largent§a When any
other simplex is processed, the projection of its circuneeonto the input
feature containing the simplex is inserted, unless it eamies upon the
diametral ball of a lower dimensional feature. In this cake,encroached
item is queued for splitting.

Priority Items are prioritized by dimension, with lower dimensiaitens processe
first.

Unacceptability] A simplex in the non-intestine region is unacceptable ifas la nonempty
circumsphere. Atetrahedron is unacceptable if its radulge ratio is larger
thanr.

Safety All simplices are safe to split.

D

L

Figure 6.9 shows the difference between the refinement draquired cylindrical surfaces
of the two algorithms.

Algorithm 6.14 produces a conforming Delaunay tetrahézhibn of the input. This is
shown in the next theorem.
Theorem 6.14.Upon termination of Algorithm 6.4, the resulting Delaunayrahedralization
conforms to the input. All tetrahedra outside the intestiegion have radius-edge ratio less
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\9) \9)
(a) Unstructured Approach of Algorithm 6.3 (b) Structured Approach of Algorithm 6.4

Figure 6.9: Refinement of cylindrical surfaces around thestine.

thanr.

Proof. The important task is to verify that the Delaunay tetrahhtion conforms to the input

inside the intestine region. Because each triangle on thedsry of the collar is protected,
no vertex outside of the intestine region can lie in the dimahdall of a required face. By

constructing all vertices on cylinders around concentrigs, no vertex on the boundary of the
cylinder can encroach upon the diametral ball of a requiaed £ither. O

For Algorithm 6.3, the argument above does not hold: a vestethe boundary of a required
cylindrical surface may encroach upon the diametral badl igfquired face and this face may not
conform to the Delaunay tetrahedralization in the resgltimesh. However, a simple conforming
(but not Delaunay) tetrahedralization of the intestineaegloes exist. The spheres around input
vertices are tetrahedralized using the Delaunay tetrah&ar the cylindrical sections, lgt and
p2 be the endpoints of the corresponding input segment. Thehedralization is produced with
two types of tetrahedra.

e For any Delaunay triangleon the boundary of the cylinder, include the tetrahedroi wit

baset and vertex ap;.

e For any Delaunay segmenton the circle aroung,, include the tetrahedra with vertices
p1, p2 and the endpoints of.
These tetrahedra are depicted in Figure 6.10. For Algor@t8na weaker theorem holds.
Theorem 6.15. Upon termination of Algorithm 6.3, in the non-intestineicgthe resulting
Delaunay tetrahedralization conforms to the input and aetfdhedra ratio less tham. There
exists a matching tetrahedralization of the intestine@egivhich conforms to the input PLC.
We leave the analogous theorem to Theorem 5.10 as a topictbéfuesearch.
Conjecture 6.16.For either Algorithm 6.3 or Algoithm 6.4 and for amy> 2, there existg' > 0
depending only upon, «, b, andc such that for each vertexinserted in the mesh,

Ifs(q) < Crr,.

To prove this theorem, it is important to carefully genemlthe analysis in Case 6 of the
proof of Theorem 5.10. In the process, this should yield alit@n on input surfaces similar to
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Figure 6.10: Two types of tetrahedra are used inside thestineeregion when constructing
a conforming tetrahedralization following Algorithm 6.3 his tetrahedralization may not be
Delaunay.

the requirement that arcs initially subtend angles no tafgen 7. A condition of this type which
matches the number of vertices used in practice has not beed f

6.4 Examples

Algorithm 6.3 (rather than Algorithm 6.4) has been impleteenand will be referred to as the
intestine approach in the examples below.

Example6.4.1 Figure 6.11 demonstrates both protection strategies opytreenid PLC input
(previously used in Example 4.2.1). Figure 6.12 shows tlfieement of a single face of the
pyramid during this procedure using the collar. In the fdbe,intestine approach yields a very
similar mesh.

Example6.4.2 Figure 6.13 demonstrates this algorithm on the wheel PL@ fExample 4.2.2.
In this example, the only segment that needs to be protestéitei segment at the center of
the wheel: this is the only segment which is contained in ipleltfaces. These meshes were
produced using the value= 2.3.
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(a) Initial pyramid PLC and augmented PSC with intestingqution region.

b B

(b) Refinement of the PSC with collar following steps 2c ang®g the collar
protection scheme.

(c) Refinement of the PSC with intestine following steps 2@ an

Figure 6.11: Refinement of a simple pyramid.
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Figure 6.12: Base of the pyramid: initial triangulationatrgulation following Step 2c and final
triangulation.
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(a) Input PLC

(d) Single face in the wheel example usinge) Closer view of the intestine region.
a collar protection scheme

Figure 6.13: Quality refinement of the wheel example.
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Chapter 7

Delaunay Refinement and the Finite
Element Method

Ruppert’s algorithm was designed to produce meshes of lmbiadpect ratio triangles. This
is a natural geometric criteria used in the traditional @gence analysis of the finite element
method. However, for input containing angles smaller thendutput angle threshold, it is not
possible to to generate a conforming mesh of sufficiently lojgality triangles (in the sense of
bounded aspect ratio or a minimum angle condition). Howgw&ducing a mesh of bounded
aspect ratio triangles is not essential for the convergehtiee finite element method and thus
it is possible to generate appropriate meshes for the fiteteent method. In this chapter, we
discuss the relationship between types of meshes whichradeiged by Delaunay refinement
algorithms and those are needed to produce convergeneediaiment methods.

In 1976, two similar papers were published describing oofeplace the traditional mini-
mum angle condition (or bounded aspect ratio requiremeitit) tive maximum angle condition.
The paper of BabuSka and Aziz demonstrated the an inté¢ipoiaequality for linear triangular
finite elements with maximum angles bounded away froj@] (showing that triangulations with
very small angles as in Figures 7.1(a) and 7.1(c) are adaleptd hey also described a procedure
to extend this result to both Lagrange and Hermite finite eleinof higher degree, but all anal-
ysis was restricted to two dimensions. Jamet provided a igemeral approach to the maximum
angles condition [22]. His analysis gives some general itimnd on interpolation operators
which ensure the desired interpolation inequalities. &xdase of triangular finite elements, this
result yields the correct scaling of the error as the maxinangle of the triangle approaches
(i.e. it yields the correct error estimates for trianguas in the form of Figure 7.1(b) where the
analysis of BabuSka and Aziz fails). However, Jamet’sysialonly applies to sufficiently high
order finite elements: we must have polynomials of degree 5 wheren is the dimension of
the domain. In two and three dimensions, this eliminatesalirelements. Guattery, Miller and
Walkington gave an alternative approach which yields ttsérdd estimate for linear elements in
2D [19].

Extension of Delaunay refinement algorithms to accept dopté began first by understand-
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ing how to guarantee termination of the algorithm and ongntbonsidered interpolation conse-
guences of the results. The first technique for handlingesicytut angles during 2D Delaunay
refinement was the terminator algorithm of Shewchuk [41]@idcdhot provide any guarantee on
the maximum angle of the resulting triangulation. Lateg $trategy for handling small angles
developed by Miller, Pav, and Walkington [30, 35] ensureat #imy triangle which does not sat-
isfy the desired minimum output angle threshold is acutethond does not contain large angles.
This leads to a bound on the maximum angle in the resultindnrfies® — 2x)° wherex® is the
minimum angle threshold for Delaunay refinement. 2D Delguséinement using the intestine
protection scheme (Algorithm 5.3) also shares this prgpert

Inspired by the maximum angle condition, Miller, PhillipscaSheehy consider the problem
of output size-competitive meshes in the class of all canfog triangulations which do not
contain any large angles [31] (as opposed to the class ofl{nkaunded radius-edge” meshes
which is considered in the case of Delaunay refinement). imyases, their algorithm generates
smaller meshes than Ruppert’s algorithm, but no algoritambdeen shown to produce constant
factor competitive output in the no large angle setting.

After setting the standard notation, we describe the resdilBabuSka and Aziz and those of
Jamet. We extend the proof of BabuSka and Aziz to yield antideresult as in [19]. Further, the
interpolation estimate is connected to a geometric quarttie circumradius. We also discuss
the use of average interpolation to derive estimates wheruthction to be interpolated pos-
sesses less regularity than required in the traditionalrth@nd show how estimates of this form
can be found independent of geometric restrictions. Negtdescribe a very simple Delaunay
refinement algorithm which produces suitable finite elemsedghes given a user sizing function.

7.1 Sobolev Spaces

Throughout this chapté2 c R? is an open, bounded, polygonal set. We will utilize the stadd
multi-index notation and Sobolev spaces. A multi-indeis ann-tuple of non-negative integers
a=(o,..qp). Letla| :== " a, and

(&%)a = Oz ?.a.| @r o

The H*(2)-seminorm of a functiom is defined by

« 2
=3 [ |(55) )] ae
la|=k </ 2
Then theH*(€2)-norm of a function is defined by
2
e = 3 [ |() ut] o

|a|<Kk Q
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(a) A mesh refinement with narrow tri

angles but without laaggles.

(b) A mesh refinement with narrow triangles which contaimgéaangles.

(c) A mesh refinement with narrow triangles and high degregoes.

Figure 7.1: Several mesh refinements which do not presepextstio.
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In thek = 0 case, this becomes the standafchorm.

[l o) = / ju(z)[" dz.
Q

We will also need to consider the mollification of Sobolevdtions. Letp € C>°(R?) such
that

* supfp) C B(0,1),
e [p(z)dz =1, and
® p(z) > 0forall x.

Typically, p(z) = ce~/0-1l2I") is selected with some constansuch that the integral is. Let
pulr) = ke (5). Then,

* supfps) C B(0,h),

o [pu(x)dz =1,
® pn(x) > 0forall z, and

* [IVonllpigay < A Vol| 1 (ray

A function is mollified by convolving it withp,,. This is a useful technique for regularizing a
non-smooth function. Given € L!(R"), define

Mypu(z) == /Rd u(z —y)pn(y) dy.

For a functionu € H'(Q), we will define M, u according to the same formula by first extending
u to H'(R?) according to a continuous extension operator (which efistthe domaing? we
are considering).

Two standard properties of mollification are given in Propos 7.1 and will be used in
Section 7.2.4.

Proposition 7.1. There exist€’ > 0 such that forh sufficiently small, following two inequalities
hold for allu € H'():

lu = Myul| p2gay < Ch|ulgqy (7.1)
C
|Mhu|H2(]Rd) S E |u|H1(Q) . (72)
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Proof. Letw € L?(R?) be an arbitrary function. Let € C>°(R%).

JRECEETEITE
u(r) = /RNU y)ph(y)dy)w(w)dx

N

/RN ( ] _u ) dS) Pr(y) dy) w(z) dz

N /]RN ( —y - Vu(z - sy)) ds) Pr(Y) dy) w(r)dr
| /RN /RN —y - Vu(r — sy)pn(y)w(r) dz dyds

0 /Rthh (/ Vu(z — sy)[* d$)2<AN(w($))zd$>2dyds

||vu||L2(Rd) ||w||L2(]Rd) .

N

L
N </RN ) —u(z —y))pn(y) dy) w(z) dz
(
(

I
o\%\%\%\%\

IN

I
=

Now, selectingy = u — M,u gives the desired estimate for smooth functians
Next, we prove (7.2). Again, let € L%(R9) be an arbitrary function.

82

RN al’lal’]

Mpu(z)w(z) dz

= /RN URN (%U(ﬂf —y)aii/)h(y)) dy} w(zr)dz
= [ ] Gste = ngemiot) sy

/RN lﬁilﬁh(y) (/ (a%“(x‘y)f d:v)% (/RN(w(:)s))de)%] dy

‘ 0

IN

[[w] |L2(Rd)
L2(R9)

0z;”

—H—“ |
* L1(RY)

Selectingw = /\/lhu and then summing ovérand; yields the result for smooth function
U.

Finally, notice thaf? is an extension domain soc H'(Q2) can be extended to a compactly
supported Sobolev functiod € H'(R?). Then applying the density of smooth functions in
Sobolev spaces completes the result. O
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7.2 Interpolation Estimates in 2D

7.2.1 Classical Estimates

The classical estimates of finite element interpolatiordaggicated here for completeness. They
can be found in many references including [6, 15].

Let K be a simplex. Letx denote the length of the longest sidefofandp be the radius of
the largest inscribed sphere &t LetZ, denote the standard Lagrange interpolation operator by
degreek polynomials on simplex<. Using the Bramble-Hilbert lemma and scaling properties
of Sobolev semi-norms, the classical local error interfioteestimate is derived.

Proposition 7.2. Letk > 2 be an integer andn be in integer in0, k]. Then there exist§' > 0
independent of simpleX such that
k+1
lu — Ik“‘Hm(K) < CLm ‘U‘H’VH(K)
PK

holds for allu € H*"(K).

It is natural to require the triangulation to satisfy a unmobound onZ—Ifj in order to deduce
anO(h**t1=m) error estimate. This is equivalent to imposing a minimuml@iegndition on all
triangles in the mesh.

However, the terr‘rﬁf is non-optimal for some triangles. This was observed by J§22¢
and Babuska and Aziz [2].

7.2.2 Higher order elementsf > 2

Jamet’s analysis yields a general interpolation estimatdy quadratic and higher order ele-
ments on arbitrary triangles. The only dependence of theesbithe triangle where the function
is defined is through the largest angle of the triangle.
Theorem 7.3.[22] Let £ > 2 be an integer andh be in integer in0, k]. Then there exists' > 0
independent of simpleX such that

k+1—m
(co:([;w ||U||Hk+1(1<)

K

holds foru € H**1(K) wherefy is the largest angle oK.
This estimate can be restated as

|Ju — IkUHHm(K) <C

[l = Ll g ey < CRE2 M RE [l s i

whereRy is the circumradius ok by observing that
hk
cos(fk /2)
This relationship gives a natural geometric interpretatioth respect to Delaunay refinement
algorithms and will be shown carefully in the next section.

~ Ry. (7.3)
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Figure 7.2: Parametrization of a general triangle.

7.2.3 Linear Elementsk =1

The maximum angle condition for linear triangular elemantonsidered by BabusSka and Aziz

[2].

Theorem 7.4.[2, Theorem 2.1] Leb,,.. < 7. There exists constant(f,,,.) > 0 such that
[ = Liull g ) < COmaz) e [0]] o ey

holds uniformly for allu € H?(K) over the class of triangle&” with largest anglé/ such that
QK < Qmax.

Jamet's work suggests that(d,,..) should have the fornt’(0) ~ m the Jamet’s
theorem does not apply in the case of linear elements. Thidtrleas been shown in [19] using
a combinatorial approach. In what follows, we show that thit is not an immediate corollary
of the theorem of BabuSka and Aziz, but by revisiting theguanents, the sharp result can be
recovered. But first, we formalize the relationship betwtberiargest angle and the circumradius
of a general triangle which was mentioned in (7.3).

First, we give a parametrization for any triangle by lettihg longest side lie on the axis.
For0 < a < @ and0 < g < .5, let T, (o, 3) be the triangle with vertice®), 0), (h,0) and
(Bh,ah), as depicted in Figure 7.2. Any triangle can be translatezsh®of the form7}, («, 3)
by a sequence of rotation, tranlation and reflection abay thxis, and all of these operations
are invariant with respect to the Sobolev semi-norms. Given H*(T},(«, 3)), let Iu be the
standard Lagrange interpolant@by a polynomial of degree at mokt

Consider extending Theorem 7.4 to general triangles bygubia linear map : 7),(«, 0) —

Ty («, B) given byp(§) = J€ whereJ is given below. See Figure 7.3.

8 _B8
J = 1 a J = 1 a
0 1 0 1

Using the theorem on the class of functidfiga, 0) and applying the standard techniques
gives the estimate below.

lu = Ll @y < CUTHIITPR Nl gz, o)

- 5
< CO+ )P lull e, o)
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x=JE
/N

Th(a,0) Ti(a, 3)
| !

\4

Figure 7.3: Shear operation taking a right triangle into rmegal triangle.

Figure 7.4: Diagram for Proposition 7.5is positive in this configuration.

As the maximum angle grows, this estimate is not sharp: itestanates by two factors of
|.J]. The analysis below follows the arguments of BabuSka arid Bat allows for more general
triangles from the beginning of the argument. This will di@ stronger relationship between
the maximum angle and the error estimate (through the ciradius of the triangle). First, we
estimate the circumradius @f,(«, 3). This proposition justifies the relationship (7.3).
Proposition 7.5. k2, , , > 22 + 12,

Proof. Definel as the (signed) distance from the circumcentér,gty, 3) to the midpoint of the
side of lengthh as shown in Figure 7.4. Using the Pythagorean theorem (fwiees

h\? h ?
Expanding yields
h? h?
" +12 = + B2h? — Bh% + 12 + 2alh + o*h?.
Solving for/ gives
h «ah
=a-pt-
h «ah
_%—7 (7.5)

Now, consider two cases.
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Case l Bh_oh ),
This |mpI|es that? < 2. Then, using the fact that < 1 gives the following.

52h2 ﬁhz h2
16a2 + 8~ 8 i 8
h2
< —
!
2
S RT}L(avﬁ)
The final inequality is a result of (7.4).
Case 2 Ph_ah > ),
In this case substitute the bound fan (7.5) into (7.4).
2
9 Bh  ah
R0 2 4 4 (@ - 7)
ﬁh N a?h? B 6_]12
4 4a 4 4
Bh\? | R*(1-p)
da 4
Then,1 — 3 > ; impliesR7, , 5 > Ca O

Next, consider the following sets of functions.

Th(o, B) = {ue H (Ty(a, 3))|u(0,0) = 0,u(h,0) = 0,u(Bh,ah) =0}

Enla,B) = {ueH(Thozﬂ i/ (Bs, as) 3—0}
= (o, 8) = {uEHlTh |/ (s,0) 5—0}

These sets are motivated as follows. For ang H?(T),(«, 3)), (u— Liu) € F(a, ),
<68 (u— ) + 5 (u— Ilu)) € Zu(a, 3), and Z (u — I u) € =}, (o, ). When the subscript
h equalsl in any of these sets (and when denotingpf«, /3)), it will be omitted. Also, denote
the coordinates bx = (z,y). The proof begins with a uniform Poincaré inequality oves t
class of triangles witlx and/h set tol (i.e. only varyings).

Lemma 7.6. Let
/ [ui + uzﬂ dx
A? = inf L .

E(lvﬁ)UE/(lvﬁ) / Ude
el 0

ThenA? > 0.
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Proof. Note that this inequality is shown f@r(1, 0) in [2] using the Poincaré inequality. Since
there is a bound on the aspect ratio of all triangle§iiii1, 5) | 3 € [0, 3]} and all these triangles
longest edge length of similar length, the usual change mdbtes yields the lemma. ]

The following lemma is the key to extending the proof of Bskauand Aziz to general trian-
gles. The corresponding original lemma lacks the deperedeng.

Lemma 7.7. Let

/ [u2, + 2u2, 4+ uZ,)] dx
B*(a,3) = inf T(ep)

ue (@) / [u% + uzﬂ dx
T (a,3)

Then(ﬁ—z + 1) B, 3) > 4.

Proof. LetU(x,y) = u(x, ay) for (z,y) € T(1, 5).

2 1
/ (U2, + U2, + ngy] dx
7(1,8)

Awﬂw+§%hm

ﬁ+1ﬁmm: £+1 inf
a? ' a? ue 7 (1,0)
The middle term is split and then using the fact that 1 gives

Aﬂm{U@+U%+§gW@+U;”dx

LMJ@+§@Mm

(6_2 + 1) BZ(@7 B) > (6—2 + 1) inf

Oé2
Rearranging and ignoring some unimportant terms yields

/62 / Ugm -+ Ugy dx ﬂg / U:?:c + Uu’?y dx
(Ge1)pen =t {0 N
o ue 7 (1,6) / U2+ Lu2] dx ¢ / (U2 + 5U2] dx
T(1,8) Ta.p)

/ B (U2, + U2) + U2, + U2, dx
2 7(1,8)

+
2
sa !/ U2 + LU2 dx
T(1,8)
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Letw = BU, + U,. By observingw € =(1, ), we can proceed to apply Lemma 7.6 on the
numerator of the third term.
1
B2UZ, + Uﬁy + 52U§y + Ugy dx > 5/ (wi + wz) dx
T(1,8)

AZ
7 ’UJ2 dX

T(1,8)
AZ
- 5 (BU, + U,)* dx

T(1,8)
A2
2

T(1,8)

v

1
~U; — B°U; dx.
T(1.9)

>

Applying Lemma 7.6 tdJ, (sincelU, € ='(1, 3)) gives

/ U2, + Uiy dx > A2/ U? dx.
T(1,8) T(1,8)

/ U2+ B0z 4 5L (U2 - pPU2) dx
T(1,8)

Combining yields

2

(ﬁ—2+1) B*(a,3) > A? inf

« u€ T (1,0) / U§+$Uy2 dx
T(1,8)

The next two lemmas involve very similar proofs to the pregiéwo.
Lemma 7.8. Let

[ ez, v ax
T(1,6)

A% = inf
we 7(1,8) / W2 dx
Belo,3 e

ThenA?z > 0.

Lemma 7.9. Let

/ 2, + 202, +12,] dx
B*(a, B) = inf Te.f)
uec I (a,B) / u?dx
Gelo. ] T
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Remark.Unlike Lemma 7.7, the inequality in Lemma 7.9 is independdni. This is because

the 5 dependence results from derivatives in the denominatociwdie not present in this case.
Now we can prove the desired theorem.

Theorem 7.10.There existg’, independent ok, « and 5 such that

u— Ilu|H%h<a,m S Cliriap) |U|H%h(o‘ﬁ)

hold for allu € H*(T,(, 3)) and anye, h € (0,1] and3 € [0, 1].

Proof. Observe that
|u— 11U|H2 = ‘U‘HQ (76)

Ty (e, 8) T (0, 3)
sincel,u is a piecewise linear function iff*. Lettingu(x,y) = u(hx, hy), Lemma 7.7 can be
applied to the functiom — ;.

1

lu — Iluﬁ{%h(aﬁ) = 2 lu — fﬂﬁ{;(aﬁ)
< A26h2 <§_z - 1) [a - Ilaﬁ{%mﬁ)
- % <a_z " 1) " |U|§{%h(@ﬁ) '
The inequality then follows by applying Proposition 7.5 =

A standard example shows that this bound scales in th optiraglwith respect tg3 (and
thus Ry, (a,3))- Consider the functiom(z,y) = 2? on the trianglel},(«, 5). The interpolant
in this case id;u = hx + gh(ﬁ — 1)y. Then excluding higher order terms, we compute the
following norms.

2
|72 ~ 2ah?
Ty, (e, 8)
2 h2
2 2 o
u— Luli ~ {1+ — | —
| |HTh(a~,/3) ( a? 2

It is clear that the ratio between these terms matches thedbioulr heorem 7.10.

7.2.4 Interpolating Rough Functions

Interpolating functions inf/!(§2) leads to some complications. The usual Lagrange interpolan
is poorly defined sincé?!(Q2) functions need not be continuous. Techniques of averaging ¢
be used to avoid this problem and produce the optimal intenp®[16, 40]. These approaches
are suitable for meshes satisfying minimum angle condittmt estimates involve the maximum
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degree of the triangulation. This is a result of the fact fhr@vious methods for average in-
terpolation involve averaging in the reference configoratjor over a patch of elements in the
reference configuration) and then ensuring some overlagittons. For general triangulations,
this overlap condition can fail. Figure 7.1(c) demonssadepossible refinement in which the
size of the triangulation is decreasing yet a uniform degamend will fail.

We will demonstrate a general estimate which holds for amapgulation without any angle
conditions. We consider a simplified situation: lete H](Q2) (i.e. u is 0 on the boundary of
2) and leth be a uniform sizing parameter for the mesh (i.e. we will regjaill edges of the
triangulation to be no longer thar. The interpolant constructed will give the expected error
estimate and satisfy the zero boundary conditions.

Denote

Q= {z € Q| dist(z,0Q) > h}

and lety;, be the following cutoff function.

1 if € Qgh,
¢h($) = w if z €y \ Qap,,
0 if e R? \ Qh-

The distance to the boundary function is Lipschitz apdelongs tof ! (R?).
Proposition 7.11. There exists a constant > 0 such that for allu € H}(€2),

|¢hU|H1(Q) <C |u|H1(Q) :
Proof. Proof follows by applying the product rule and the Poincaesgjuality.

||V(7/’hu)||L2(Q) < ||V(¢h)u||L2(Q;L\QQh) + ||1/)hVU||L2(Q)
< [IVenll @000

[ull 200 + VUl 220

1
< 7 ull 2@\ T IVl 20

O

Since the Lagrange interpolation operator is poorly defimexlinstead consider the interpo-
lation operatot;, 7 : L*(Q2) — H'(Q) defined by

IAhju = Il (Mh (@Dhu))

where; is the linear Lagrange interpolant/, is the mollifier discussed in Section 7.1, and
1y, is the cuttoff function above. The cutoff function is usecettsure that the interpolant has
the same boundary values as the the functioifhen that the interpolant is in the typical finite
element space.
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Theorem 7.12. There exists”' depending only upof2 such that for allu € H}(2) and all
triangulations7 of 2 with no edges longer thah,

Hu — Ihju‘ ‘L2(Q) < Chlulggy -
Remark.This is consistent with the classical interpolation theiariProposition 7.2 which gives
T 2
Hu a [h’TuHm(Q) < OR Tl ey
for functionsu in H?(2) without restrictionon the triangulation.

Proof. First, the estimate is divided into three terms:

o= Tz g <1l = nell a0y + 1Mo (ee) =l oo

+ [ 11 (Mp(Ynu)) — Mp(¥ru)]] 2q) -

L

The first term can be estimated using the Poincare inequaltigre|0S2| denotes the perimeter
of Q). Throughout, this argument; denotes the running constant and is not labeled after each
estimate.

||u — ?/)hu||L2(Q) = |[(1 - ¢h)u||L2(Q\th)

< ||u||L2(Q\Q2h)
< ClOQp | |ul g1 orqyy)
< CloQUh ul g -

The second term is estimated using (7.1) and Propositidn 7.1

|| M (¢pu) — ¢hu|‘L2(Q) < Ch |¢hU|H1(Q)
<Ch |u|H1(Q) :

Finally, analysis of the third term involves PropositioR,4:7.2), and Proposition 7.11.

(11 (M () = My (Y1)l 20y < CR? [Ma(¥0) 2
<Ch |¢hU|H1(Q)
< Chlulggy -

Combining the three terms yields the result. O
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7.3 2D Delaunay Refinement for the FEM

As noted earlier, the 2D Delaunay refinement algorithm desdrby Miller, Pav and Walkington
[30] and Algorithm 5.3 (the intestine protection scheme)duce meshes with no large angles
and thus by noting the theorem of Jamet and that of Babu3kaaiz, these meshing algorithms
are suitable for the finite element method. In light of The@oi&10, it follows that triangulations
produced by Shewchuk’s terminator algorithm [41] and Aition 5.2 (the collar protection
scheme) also produce suitable meshes for the finite elemethch although large angles may
exist, the circumradius of any remaining triangle is projoal to the local feature size.

However, the interpolation estimate in Theorem 7.10 suggeslifferent Delaunay refine-
ment algorithm which focuses on producing a mesh with neelaimgcumradii rather than ensure
triangle quality via angle bounds. Given a user specifieidgitunction,h : 2 — (0, co) which
is bounded below by some positive constant, Algorithm 7.1 pvbduce a triangulation such
that the circumradius of each triangle is bounded by themmini value ofi. over the triangle.
The following algorithm will terminate as long as the inpatisfies one condition: all acutely
adjacent input segments must have equal length (modulorsai/2).

Algorithm 7.1 Simple Delaunay Refinement for FEM
Action Insert the circumcenter of a simplex unless the simplex iBaadle and
the circumcenter encroaches upon a segment. In this casee doe en-
croached segment for splitting.

Priority Segments are processed before triangles.
Unacceptability] A segment is unacceptable if its diametral disk is non-empty. A trikertg
iS unacceptable lgrg h(z) < Ry.

Safety It is safe to split any simplex.

This algorithm can be thought of as a graded version of ChérgsDelaunay refinement
algorithm [13] (given in Algorithm 7.2), which introduceti¢ idea of circumcenter insertion
and produce uniform meshes. Chew observed that in the caseafstant sizing function and
appropriate restrictions on input segment lengths, refargraf triangles with large circumradii
leads to triangulation with minimum angle at le@st
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Algorithm 7.2 Chew'’s first Delaunay refinement algorithm [13]

Action Insert the circumcenter of a triangle.
Priority Triangles are prioritized by circumradius, larger circaxlir are processeq
first.
Unacceptability| A triangle is unacceptable if it has a circumradius larganth
Safety It is safe to split any simplex.

Theorem 7.13.Given a sizing function : 2 — R which is bounded away frothand an input
PLC in which adjacent segments are split at equal lengthgothm 7.1 terminates and for
each triangléef in the resulting triangulation,

%min (h(1), Hs(t)) < R, < inf h(x)
whereh(t) := inf, . g, (14v2)r,) () @ndg is the last vertex of inserted into the mesh.

Two triangulations produced by this algorithm is shown igufe 7.5. Despite the lack of any
guarantee on the minimum angle in the resulting triangutatine vast majority of the triangles
do not contain small angles. This is consistent with theltesChew’s algorithm which shows
that in the case of a constant sizing function, a minimumebglind can be achieved. Triangles
with large angles typically only occur near discontinugtie the sizing function.
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(a) Two meshes generated using Algorithm 7.1 and sizingtimmevhich is quadratic in the horizontal
direction.

(b) Two meshes generated using Algorithm 7.1 and a discantis sizing function.

Figure 7.5: Algorithm 7.1 examples
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