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1 Overview

Ruppert’s algorithm [6] is an elegant method for gener-
ating size-competitive meshes, but admits a poor worst
case run-time. Recent time-efficient Delaunay refinement
algorithms [2] rely on bounding the the degree of each
intermediate triangulation and thus ensure that all local
operations in the Delaunay triangulation are efficient. We
propose a simple alternative to Ruppert’s algorithm which
maintains this additional property that the all intermediate
triangulations have bounded degree.

The algorithm combines three main ideas. First, the
yielding procedure of Ruppert’s algorithm is eliminated
by instead deleting a nearby circumcenter whenever a
midpoint or input point is inserted in the mesh in the spirit
of Chew’s second algorithm [1]. Second, quality of the
mesh is maintained before conformity in a similar fash-
ion to the SVR algorithm [2]. Finally, the triangles on
the priority queue are prioritized by circumradius with the
largest simplices processed first.

The resulting algorithm produces a conforming Delau-
nay, size-competitive quality mesh. Additionally, there
is an explicit bound on the degree of each triangulation
produced by the algorithm which depends only on the
minimum angle acceptable for output triangles, denoted
κ. The algorithm is simple and can be implemented by
making a few changes to Ruppert’s algorithm.

2 Preliminaries

Given a non-acute piecewise linear complex (PLC)C =
(P ,S) composed of sets of points and segments, we seek
a refinementC′ = (P ′,S′) which conforms to the input
and contains no triangles with angles less thanκ◦. The
algorithm incrementally builds a refinement for this pur-
pose.

Definition 1. Let q ∈ P ′ be a vertex added to the
mesh.

• nq is anearest neighborto q in the triangulation.
• rq is theinsertion radius of q: the distance fromq to

nq whenq is inserted.
• q is called aquality point if q was inserted as the cir-

cumcenter of a poor quality triangle.
• q is called aconformality point if q is an input point

or was inserted as the midpoint of a segment.

Definition 2. Given a PLCC, the local feature sizeof
a pointp, denoted lfs(p, C) or lfs(p), is the radius of the
smallest disk centered atp that intersects two disjoint fea-
tures ofC.

Local feature size will always be evaluated with respect
to the input PLCC, and the second argument will be omit-
ted.

Definition 3. A simplex isunacceptableif it is
• an input point which has not been inserted,
• a segment with a nonempty diametral disk, or
• a triangle with an angle less thanκ◦.

3 Algorithm
The following algorithm is very similar to Ruppert’s al-
gorithm: it maintains a queue of unacceptable simplices
and processes the front simplex by inserting its circum-
center. The main difference from Ruppert’s algorithm is
that quality points do not yield to segments they encroach,
but when conformality points are inserted, a nearby cir-
cumcenter is removed (if it exists).

Algorithm 1 Reordered Ruppert

Initialize the Delaunay triangulation of a bounding box.
Form a priority queue of all unacceptable simplices.
while the queue is nonemptydo

Insert the circumcenterq of the top simplexs.
if q is a conformality pointthen

if nq is a quality pointthen
Removenq.

end if
end if
Update the priority queue of unacceptable simplices.

end while

When processing queued simplices, triangles are given
the highest priority, followed by input points and finally
segments. Triangles are prioritized by circumradius with
larger triangles processed first.

4 Results
First, the algorithm is shown to produce meshes with the
same desirable properties as Ruppert’s algorithm: the re-
sulting Delaunay triangulation conforms to the input PLC,
and the output is graded to the local feature size. These
first two theorems mirror the standard results for Rup-
pert’s algorithm.



κ Ruppert Algorithm 1

5◦ 266 266
10◦ 284 297
15◦ 312 366
20◦ 352 477
25◦ 473 647

Table 1: Number of points in the resulting example meshes for
different minimum angles.

Theorem 1. The triangulation produced by Algorithm 1
conforms to the input PLC and contains no angles less
than κ.

Theorem 2. For κ < arcsin
(

1

4
√

2

)

, Algorithm 1 termi-

nates. Moreover, there exists Cκ > 0 such that for each
vertex q inserted into the mesh, lfs(q) ≤ Cκ rq .

Finally, the degree of each Delaunay triangulation is
bounded throughout the duration of the algorithm. A sim-
ilar result in [2] relies on ensuring no small angles occur at
any point during the algorithm and used this quality bound
to imply the degree bound. While Algorithm 1 allows ar-
bitrarily small angles to occur in intermediate Delaunay
triangulations, it is still possible to compute and explicitly
bound the degree of these triangulations.

Theorem 3. There exists D(κ) depending only on κ such
that the degree of the Delaunay triangulation at any step
during Algorithm 1 is bounded by D(κ).

The key idea in this proof is that whenever a point is in-
serted into the mesh, any new triangle formed has no an-
gles larger than180 − κ degrees. So, while the algorithm
allows arbitrarily small angles to occur in the triangula-
tion, it does not allow angles which are near180◦.

Only Theorem 3 relies on the specific order of the tri-
angles in the priority queue in the algorithm: the other
results hold as long as triangles are processed before seg-
ments. Algorithm 1 does not lead to a degree bound if
the smallest triangles are processed first. A bound on the
value ofD(κ) in Theorem 3 can be computed explicitly.
Forκ = 10.2◦, this bound is 248.

Figure 1 gives an example of a mesh refined using Al-
gorithm 1 and Ruppert’s algorithm for several differentκ

values. Table 1 contains the number of vertices in the re-
sulting meshes.

5 Extensions
This algorithm can be extended to higher dimensions with
a slight modification. Simplices queued for mesh quality
are processed at a higher priority than those for mesh con-
formity. As in the 3D extension of Ruppert’s algorithm
[3], insertions for conformity are prioritized by dimen-
sion with the lowest dimension handled first. As in the

Figure 1: (top) An input PLC. (left) Output of Ruppert’s algo-
rithm usingκ = 10

◦, 15
◦, and25

◦. (right) Output of Algo-
rithm 1 usingκ = 10

◦, 15
◦, and25

◦. While Theorem 2 only
ensures that Algorithm 1 terminates forκ less than10.2

◦ (com-
pared to20.7

◦ for Ruppert’s algorithm), Algorithm 1 terminates
in practice for higherκ values.

SVR algorithm [2], insertions for quality are prioritized
by dimension with the highest dimension handled first.

This modification also enlarges the allowable range for
the minimum angle parameter toκ < arcsin(1

4
). Rup-

pert’s algorithm still provides a wider range for this mini-
mum angle parameter, accepting anyκ < arcsin( 1

2
√

2
).

We expect that the degree bound on intermediate trian-
gulations will also hold if the largest first priority queue
on triangles is replaced with a first in-first out queue. In
this case, it is likely that the explicit degree bound on the
triangulations is weaker.

We hope to integrate this approach with techniques for
applying Delaunay refinement to domains with acute an-
gles [4, 5].
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