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Abstract. The Lloyd algorithm originated in the context of optimal quantization and represents
a fixed point iteration for computing an optimal quantizer. Reducing average distortion at every step,
it constructs a Voronoi partition of the domain and replaces each generator with the centroid of the
corresponding Voronoi cell. Optimal quantization is obtained in the case of a centroidal Voronoi
tessellation (CVT), which is a special Voronoi tessellation of a domain Ω ∈ R

d having the property
that the generators of the Voronoi diagram are also the centers of mass, with respect to a given
density function ρ ≥ 0, of the corresponding Voronoi cells. The Lloyd iteration is currently the most
popular and elegant algorithm for computing CVTs and optimal quantizers, but many questions
remain about its convergence, especially in d-dimensional spaces (d > 1). In this paper, we prove
that any limit point of the Lloyd iteration in any dimensional spaces is nondegenerate provided that
Ω is a convex and bounded set and ρ belongs to L1(Ω) and is positive almost everywhere. This
ensures that the fixed point map remains closed and hence the standard theory of descent methods
guarantees weak global convergence of the Lloyd iteration to the set of nondegenerate fixed point
quantizers. While previously only conjectured, the convergence properties of the Lloyd iteration are
rigorously justified under such minimal regularity assumptions on the density functional. The results
presented in this paper go beyond existing convergence theories for CVTs and optimal quantization
related algorithms and should be of interest to both the mathematical and engineering communities.
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1. Introduction. Given a bounded domain Ω ∈ R
d and a set of distinct points

Z = {zi}ni=1 ⊂ Ω, for each point zi, i = 1, . . . , n, define the corresponding Voronoi
region Vi(Z), i = 1, . . . , n, by

Vi(Z) =
{
z ∈ Ω | |z − zi| < |z − zj | for j = 1, . . . , n and j �= i

}
,

where | · | denotes the Euclidean norm in R
d. Clearly Vi(Z) ∩ Vj(Z) = ∅ for i �= j,

and ∪n
i=1V i(Z) = Ω so that {Vi(Z)}ni=1 is a tessellation of Ω. We refer to V(Z) =

{Vi(Z)}ni=1 as the Voronoi tessellation of Ω associated with the point set Z. A point
zi is called a generator; a subdomain Vi(Z) ⊂ Ω is referred to as the Voronoi re-
gion corresponding to the generator zi. It is well known that the dual tessellation
(in a graph-theoretical sense) to a Voronoi tessellation of Ω is the so-called Delau-
nay triangulation (DT). All Voronoi regions Vi(Z)’s are convex (especially convex
polygons/polyhedra, except for their part on the boundary) if Ω is convex.
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Given a density function ρ(z) ≥ 0 defined on Ω, for any region V ⊂ Ω, define cV ,
the mass center or centroid of V , by

cV =

∫
V

yρ(y) dy∫
V

ρ(y) dy

.

Then a special family of Voronoi tessellations can be defined in the following.
Definition 1.1 (see [6]). We refer to a Voronoi tessellation (Z,V(Z)) of Ω as

a centroidal Voronoi tessellation (CVT) if and only if the points Z = {zi}ni=1 which
serve as the generators of the associated Voronoi regions V(Z) = {Vi(Z)}ni=1 are also
the centroids of those regions, i.e., if and only if we have that

zi = cVi(Z) for i = 1, . . . , n .

General Voronoi tessellations do not satisfy the CVT property. It is worth noting
that for a given domain and density, at least one CVT exists [1] but may not be
unique [6]. The CVT concept can be generalized to very broad settings that range
from abstract spaces and distance metrics to discrete point sets [6]. In the latter
setting, it can be recognized as being closely related to the k-means and h-means
algorithms in clustering and quantization applications [10]. Its extension to general
surfaces and manifolds has also been studied in [7, 8]. CVTs are very useful in many
applications, including but not limited to image and data analysis, vector quantiza-
tion, resource optimization, design of experiments, optimal placement of sensors and
actuators, cell biology, territorial behavior of animals, numerical partial differential
equations, point sampling, meshless computing, mesh generation and optimization,
reduced-order modeling, computer graphics, and mobile sensing networks.

CVTs possess an optimization property that can be used as a basis for an alternate
definition. Given any set of points Z = {zi}ni=1 in Ω and any tessellation V = {Vi}ni=1

of Ω, define the energy by

(1.1) E(Z,V) =
n∑

i=1

∫
Vi

ρ(y)|y − zi|2 dy.

Then it can be shown that E is minimized only if (Z,V) forms a CVT of Ω [6].
Notice that (Z,V) still may not be a minimizer of E although (Z,V) is a CVT. For
some properties of the minimizers of the energy functional E (i.e., CVTs or optimal
quantizations), see discussions in [6, 2, 21]. Although the energy E may not be directly
identified with the energy of some physical system, it is often naturally associated with
quantities such as error distortion, variance, and cost in many applications.

Currently the most popular and effective algorithm for construction of CVTs is
the so-called Lloyd algorithm [18] that is a simple iteration between constructing
Voronoi diagrams and mass centroids.

Algorithm 1.1 (Lloyd algorithm). We are given a domain Ω, a density function
ρ(x) defined on Ω, and a positive integer n.
0. Select an initial set of n distinct points Z = {zi}ni=1 on Ω.
1. Construct the Voronoi regions V(Z) = {Vi(Z)}ni=1 of Ω associated with Z.
2. Determine the centroids of the Voronoi regions V(Z); these centroids form the

new set of points Z.
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3. If the new points meet some convergence criterion, return (Z,V(Z)) and termi-
nate; otherwise, go to step 1.

The Lloyd algorithm also coincides with the simplest version of the k-means algo-
rithm in clustering and quantization fields [10, 12, 18, 15]. A commonly used stopping
criterion is to test whether ‖Zk − Zk−1‖ ≤ ε holds for some predefined tolerance ε
at some iteration k. It is worth noting that the energy E(Z,V(Z)) decreases mono-
tonically along the Lloyd iteration. Some acceleration schemes based on multigrid
techniques are proposed in [4]. A probabilistic version of the Lloyd method for com-
puting CVTs and its parallel implementation have also been studied in [14]. One
famous generalization in the vector quantization setting is the Linde–Buzo–Gray al-
gorithm [17], widely used in statistics and data mining applications.

Since Lloyd’s pioneering work, many studies have been done on convergence prop-
erties of the Lloyd iteration [6, 5, 13, 16, 19]. Despite the algorithm’s long history
and wide popularity in many applications, its convergence theory is far from being
complete. Many researchers addressed the question of existence and uniqueness of an
optimal quantizer. Most notably, in [9] and later in [24] and [16], it was shown that the
Lloyd method is a local contraction (thus locally convergent) in the one-dimensional
space when the density function is logarithmically concave. This result was reiterated
in [6] with a much simpler proof. In [25], this result was extended to all continuous
and positive densities in the one-dimensional setting of scalar quantization. A differ-
ent approach was used in [5], where the fixed point map was shown to be closed and a
weak global convergence result was presented for all continuous and positive density
functionals along with some numerical studies and precise theoretic estimates of the
local convergence rate.

In higher dimensions, convergence results are much more limited. For discrete
distributions, the algorithm is shown to converge and, moreover, reach a CVT in
a finite number of steps [23, 11]. In the case of continuous distributions, [11, 22]
show convergence of the energy functional by defining the value of the Lloyd map on
degenerate points. In order to ensure that the algorithm is closed, this requires that
degenerate points be defined as fixed points in the definition of the algorithm. So,
while standard theory of descent methods ensures that this extended Lloyd algorithm
will converge to a fixed point, these limit points could be degenerate. Similarly,
the multidimensional global convergence of a subsequence argument presented in [5]
implicitly assumed nondegeneracy of the Lloyd map and hence suffered from a similar
deficiency. We seek to apply the theory of descent methods to the Lloyd algorithm
without any extension to degenerate points. This makes sense as it will be shown
that points of degeneracy locally maximize the energy in some sense. Moreover, this
is necessary in order to ensure that limit points are in fact CVTs.

In this paper we prove that for an arbitrary, positive density function under a mild
L1 regularity assumption, the fixed point mapping remains closed, which guarantees
weak global convergence of the Lloyd iteration. Although we rely on the standard
global convergence theory for descent algorithms as discussed in previous investiga-
tions (see, e.g., [22, 24]), we take a more direct approach of rigorously justifying the
nondegeneracy of the limiting and intermediate iteration points, an approach that
much simplifies the analysis of the method and that addresses a question that es-
caped rigorous treatment until now. These results ensure that Lloyd iterates do not
approach degenerate points and that any limit point of the algorithm is a CVT with
n distinct generators.

The rest of the paper is organized as follows. In section 2, we introduce some
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necessary notation and give an overview of some relevant results and properties. In
subsection 3.1, we derive precise estimates on the distance from a centroid to the
boundary of the domain and obtain an upper bound on the difference of two Voronoi
regions. In subsection 3.2 we present the proof of nondegeneracy of the limit points
of the Lloyd iteration, followed in section 3.3 by the main result of the weak global
convergence of Lloyd algorithm. Conclusions and some open questions are given in
section 4.

2. Preliminaries. For any set V ⊂ Ω, let us denote by m(V ) the measure of V ,
i.e.,

m(V ) :=

∫
V

dy,

and by M(V ) the mass of V , i.e.,

M(V ) :=

∫
V

ρ(y) dy.

The fact that ρ is positive almost everywhere means that M(V ) > 0 if m(V ) > 0. We
also define Ω̂n as follows:

Ω̂n := {Z = (z1, . . . , zn) ∈ Ω
n | zi �= zj ∀ i �= j}.

The so-called Lloyd map is the function T : Ω̂n → Ω̂n that takes a tuple of generators
into the tuple of the centroids of its Voronoi regions (exactly the iteration used in the
Lloyd algorithm). More precisely, let T = (T1, . . . ,Tn); then, for any Z ∈ Ω̂n,

Ti(Z) =

∫
Vi(Z)

yρ(y) dy∫
Vi(Z)

ρ(y) dy

for i = 1, . . . , n. The Lloyd map is continuous from Ω̂n to Ω̂n [6, 5] but not defined
on Ω̄n \ Ω̂n. The Lloyd algorithm is then the process generating a sequence of point
sets:

Z,T(Z),T2(Z), . . . ,Tk(Z), . . . .

Clearly, the resulting Lloyd iterates are bounded.
For any Z ∈ Ω̂n, the quantization energy is defined as

G(Z) = E(Z,V(Z)) =

n∑
i=1

∫
Vi(Z)

ρ(y)|y − zi|2 dy.

The quantization energy function is also continuous on Ω̂n. Furthermore, this energy
can be extended continuously to Ω

n
. When Z �∈ Ω̂n, the value of G is given by the

same formula except we consider Z without duplicate components. For example, in
the case of n = 2, if Z = (z1, z2) and z1 �= z2, then

G(Z) =

∫
V1(Z)

ρ(y)|y − z1|2 dy +

∫
V2(Z)

ρ(y)|y − z2|2 dy.
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In the degenerate case, we have Z = (z1, z1), so that

G(Z) = G((z1)) =

∫
Ω

ρ(y)|y − z1|2 dy.

The derivative of G in Ω̂n is given [6] by

(2.1)
∂G
∂zi

(Z) = 2M(Vi(Z))(Zi − Ti(Z)),

and thus the set of critical points of G in Ω̂n is exactly the set of fixed points of the
Lloyd map and thus is the set of CVTs.

For convenience of discussion, a more general energy H is defined in [5] as follows:
for any (Y,Z) ∈ (Ω̂n, Ω̂n),

H(Y,Z) = E(Z,V(Y)) =

n∑
i=1

∫
Vi(Y)

ρ(y)|y − zi|2 dy.

Notice that H cannot be continuously extended to (Ω
n
,Ω

n
) like the function G. The

Lloyd algorithm is in fact a dual minimization process [5]: for any Z ∈ Ω̂n,

H(Z,T(Z)) = min
Y∈Ω̂n

H(Z,Y),

H(Z,Z) = min
Y∈Ω̂n

H(Y,Z).

As long as ρ is positive almost everywhere, the above minimization problems on the
right-hand side both have a unique solution. Thus we have that

G(T(Z)) = H(T(Z),T(Z)) ≤ H(Z,T(Z)) ≤ H(Z,Z) = G(Z).(2.2)

Uniqueness of the centroid implied by the positive density in a convex set ensures
that if (Z,V(Z)) is not a CVT, then G(T(Z)) < G(Z).

The following definition of weak convergence will be used throughout the paper.
Definition 2.1. Denote by σ(x, S) a distance between a point x ∈ Ω and a set S

and by Γ the set of fixed points of T. We will say that the sequence of Lloyd iterates
{Zi}∞i=0 is weakly convergent if limi→+∞ ∇G(Zi) = 0 and limi→+∞ σ(Zi,Γ) = 0.

In other words, the sequence of Lloyd iterates converges in a weak sense if the
energy values asymptotically approach some limit and the sequence of Lloyd iteration
points approaches the set of fixed points of T.

In order to analyze global convergence of the Lloyd algorithm in general dimen-
sional spaces, we recall the following result.

Theorem 2.1 (see [5, 20]). If the iterates in the Lloyd algorithm stay in a
compact set where the Lloyd map T is continuous, then the algorithm is weakly globally
convergent, i.e., limi→+∞ ∇G(Zi) = 0 for the Lloyd iterates {Zi}∞i=0 starting from any
initial guess (in other words, any limit point of {Zi}∞i=0 is a critical point of G).

Theorem 2.1 was proved in [5] using the properties of H and the (weak) global
convergence theorem stated in [20]. It was also shown in [5] and [25] that the Lloyd
algorithm has to converge to the set of critical points of the energy in one-dimensional
space provided that ρ is strictly positive and smooth, but for higher dimensional cases,
this question is still open, as discussed earlier in the introduction.
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It has also never been rigorously justified that the set of limit points cannot
contain more than one point, except for the case of log-concave density in the one-
dimensional case, restricting the convergence in the aforementioned result to the
“weak” sense as given in Definition 2.1. Although we conjecture that a stronger
convergence result can be obtained in most practical cases, this question requires a
separate rigorous treatment, while at present we focus our attention on extending
Theorem 2.1 to higher dimensions.

More precisely, the goal of this paper is to present a proof for the weak global
convergence of the Lloyd algorithm in any dimensional space. We do this by show-
ing that limit points of the Lloyd method in R

d are nondegenerate, and hence the
algorithm converges in the sense of Definition 2.1 for any L1 density functions in any
dimension.

3. Weak global convergence of Lloyd iteration. In the following part of
this paper, we assume that the following conditions hold.

Assumption 3.1. (1) The domain Ω ∈ R
d is a convex and bounded set with the

diameter

diam(Ω) := sup
z,y∈Ω

|z − y| = RΩ < +∞.

(2) The density function ρ belongs to L1(Ω) and is positive almost everywhere.
Consequently, we have that

0 < M(Ω) = ‖ρ‖L1(Ω) =

∫
Ω

ρ(y)dy < +∞.

For the proof of weak global convergence of the Lloyd algorithm, we will show
that any limit point of the algorithm is nondegenerate (in Ω̂n) and thus the iterates
stay inside a compact set in Ω̂n. The weak global convergence of the algorithm will
then follow from Theorem 2.1. This ensures that any limit point of the algorithm
does in fact correspond to a CVT. Before these results can be shown, a number
of technical intermediate lemmas must be shown. The goal of these lemmas is to
estimate how the quantization energy changes between iterations of the Lloyd map
when iterates approach the boundary of Ω̂n. As iterates approach the boundary of Ω̂n,
some generator approaches the boundary of its Voronoi region. As all Voronoi regions
are convex sets, it becomes important to bound the distance between the boundary
and the centroid of a generic convex set in Ω with a prescribed mass.

3.1. Some lemmas. First, let us present a classic result from measure theory.
Lemma 3.1. Let Assumption 3.1 be satisfied. Then for any ε > 0, there exists a

constant η > 0 such that

(3.1) M(V ) =

∫
V

ρ(y) dy ≤ ε

for any set V ⊂ Ω with m(V ) ≤ η.
The proof of this lemma is given in the appendix. For any ε ≥ 0, define

Eε = {η ∈ [0,m(Ω)] | M(V ) ≤ ε if V ⊂ Ω with m(V ) ≤ η},

and Lemma 3.1 tells us that Eε is a nonempty set, so that

(3.2) ηε := sup
η∈Eε

η
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is well defined and satisfies that ηε1 ≤ ηε2 if ε1 ≤ ε2. It is also obvious that ηε > 0 if
ε > 0. For a given ε ≥ 0, ηε is often difficult to compute, but here we assert only its
existence.

Now we estimate the distance from the boundary to the centroid of a general
convex set. The important feature of the estimate below is that the lower bound on
the distance between the centroid and the boundary of a general convex set depends
only on the set through the mass of the set.

For any V ∈ Ω, let RV := diam(V ) denote the diameter of V (clearly RV ≤ RΩ),
and define the V -dependent constant δV by

δV :=
η2
M(V )/4

64R2d−1
V

,

where ηM(V )/4 is the constant defined in (3.2) with ε = M(V )
4 . Then the following

result holds.

Lemma 3.2. Let Assumption 3.1 be satisfied. Then for any convex set V ⊂ Ω, it
holds that

(3.3) dist(cV , ∂V ) ≥ δV ,

where dist(cV , ∂V ) denotes the shortest distance from the centroid of V denoted by
cV to the boundary of V .

Proof. Without loss of generality, we assume that the origin is the nearest bound-
ary point to the centroid cV , and we let cV have the coordinate (0, x) for some x > 0,
where 0 denotes the zero vector in R

d−1. Since V is convex and supz,y∈Ω |z−y| = RV ,
we must have RV ≥ yd ≥ 0 for any y = (y1, . . . , yd) ∈ V . Further, the dth coordinate
of cV exactly equals dist(cV , ∂V ). Then, from the definition of the centroid, we have
that

dist(cV , ∂V ) =

∫
V
ρ(y)yd dy∫

V
ρ(y) dy

=

∫ RV

0

∫
A(yd)

ρ(ỹ, yd)yd dỹdyd

M(V )

=

∫ RV

0
yd[

∫
A(yd)

ρ(ỹ, yd) dỹ] dyd

M(V )
,(3.4)

where ỹ = (y1, . . . , yd−1) and A(yd) = {ỹ ∈ R
d−1 | (ỹ, yd) ∈ V }. Let us define

fρ(yd) :=

∫
A(yd)

ρ(ỹ, yd) dỹ.

The representation above has essentially reduced the problem to a similar one-
dimensional problem. To bound (3.4) from below, follow the following steps. In the
first step, we find a set such that

∫
S
fρ(yd) dyd is sufficiently large and fρ is bounded

below away from 0. Second, a lower bound on this Lebesgue measure of this set is
found. Finally, the third step is to combine these estimates to get a lower bound on
(3.4) in terms of the mass of V .



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1430 M. EMELIANENKO, L. JU, AND A. RAND

Step 1. For any number μ > 0, define Sμ = {yd | fρ(yd) > μRd−1
V } and let L(Sμ)

denote the measure of Sμ. First, we have

M(V ) =

∫
V

ρ(y) dy

=

∫ RV

0

fρ(yd) dyd

=

∫
Sμ

fρ(yd) dyd +

∫
[0,RV ]−Sμ

fρ(yd) dyd

≤
∫
Sμ

fρ(yd) dyd + μRd
V .

Set μ1 = M(V )

2Rd
V

; then the above inequality gives us

(3.5)

∫
Sμ1

fρ(yd) dyd ≥ M(V ) − μ1R
d
V = M(V ) − M(V )

2
=

M(V )

2
.

Step 2. From the fact that

M(V ) ≥
∫
Sμ

fρ(yd) dyd ≥ L(Sμ)μRd−1
V ,

it is easy to deduce that

L(Sμ) ≤ M(V )

μRd−1
V

,

and so that

m(Vμ) ≤ L(Sμ)Rd−1
V ≤ M(V )

μ
,

where Vμ = {(ỹ, yd) ∈ V | yd ∈ Sμ, ỹ ∈ A(yd)}. Setting μ2 = M(V )
ηM(V )/4

, we have

m(Vμ2) ≤
M(V )

μ2
= ηM(V )/4.

Then, by Lemma 3.1, we obtain that

(3.6)

∫
Sμ2

fρ(yd) dyd =

∫
Sμ2

∫
A(yd)

ρ(ỹ, yd) dỹdyd =

∫
Vμ2

ρ(y) dy ≤ M(V )

4
.

According to (3.5) and (3.6), we get

(3.7)

∫
Sμ1−Sμ2

fρ(yd) dyd ≥ M(V )

2
− M(V )

4
≥ M(V )

4
.

Notice that we also have∫
Sμ1

−Sμ2

fρ(yd) dyd ≤ μ2R
d−1
V L(Sμ1).(3.8)
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The combination of (3.7) and (3.8) gives us

(3.9) L(Sμ1
) ≥ M(V )

4μ2R
d−1
V

.

Step 3. Using (3.4) and (3.9), we get

dist(cV , ∂V ) =

∫ RV

0
ydfρ(yd) dyd

M(V )

≥

∫
Sμ1

ydμ1R
d−1
V dyd

M(V )

≥
μ1R

d−1
V

∫ L(Sμ1 )

0
yd dyd

M(V )

≥ μ1R
d−1
V [L(Sμ1)]

2

2M(V )

≥ μ1M(V )

32μ2
2R

d−1
V

≥
η2
M(V )/4

64R2d−1
V

,

which completes the proof.
Remark 3.1. If ρ ∈ Lq(Ω) for some q > 1, then δV can be selected such that it

does not depend on the constant ηM(V )/4 such as

δV :=
M(V )2q/(q−1)

4(5q−3)/(q−1)‖ρ‖2q/(q−1)
Lq(V ) R2d−1

V

.

This follows from that fact that applying the Hölder inequality to
∫
Sμ

fρ(yd) dyd gives

us that ∫
Sμ

fρ(yd) dyd ≤
‖ρ‖Lq(V )[M(V )](q−1)/q

μ(q−1)/q
,

and so that ∫
Sμ2

fρ(yd) dyd ≤ M(V )

4
,

where μ2 =
(4‖ρ‖Lq(V ))

q/(q−1)

[M(V )]1/(q−1) .

The next lemma is a local estimate on the difference in the quantization energy
over a particular set with respect to different generators. For our purposes, it is
important to compare the energy with respect to the centroid to the energy generated
by a point near the boundary. To prove this, the previous lemma is essential; it
ensures that the centroid is sufficiently far away from the boundary. This again leads
to an estimate that depends on the particular convex set V through M(V ).
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For any convex set V ⊂ Ω, let us define the V -dependent constant γV by

γV :=
M(V )δ2

V

4
.

Lemma 3.3. Let Assumption 3.1 be satisfied and V ⊂ Ω be a convex set. Then
for any z ∈ V with dist(z, ∂V ) ≤ δV

2 , it holds that

(3.10)

∫
V

ρ(y)|y − cV |2 dy ≤
∫
V

ρ(y)|y − z|2 dy − γV ,

where cV is the centroid of V .
Proof. First, from Lemma 3.2, it is obvious that

|z − cV | ≥ dist(cV , ∂V ) − dist(z, ∂V ) ≥ δV
2
.

We have ∫
V

ρ(y)|y − z|2 dy −
∫
V

ρ(y)|y − cV |2 dy

=

∫
V

ρ(y)〈y − z,y − z〉dy −
∫
V

ρ(y)〈y − cV ,y − cV 〉dy

=

∫
V

ρ(y)(|y|2 + |z|2 − 2〈y, z〉)dy

−
∫
V

ρ(y)(|y|2 + |cV |2 − 2〈y, cV >〉dy

=

∫
V

ρ(y)(|z|2 − |cV |2) dy + 2

∫
V

ρ(y)〈y, cV − z〉dy.

Notice that ∫
V

ρ(y)(|z|2 − |cV |2) dy = M(V )(|z|2 − |cV |2)(3.11)

and ∫
V

ρ(y)〈y, cV − z〉dy =

〈∫
V

yρ(y) dy, cV − z

〉

= 〈M(V )cV , cV − z〉

= M(V )(|cV |2 − 〈cV , z〉).(3.12)

Using (3.11) and (3.12), we go further and get∫
V

ρ(y)|y − z|2 dy −
∫
V

ρ(y)|y − cV |2 dy

= M(V )(|z|2 + |cV |2 − 2〈cV , z〉)

= M(V )|z − cV |2

≥ M(V )δ2
V

4
,
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which deduces (3.10) and completes the proof.
Before presenting the next lemma, we need to define some notation. For any

point set Z ∈ Ωn, denote by Zi the ith point of Z.
Definition 3.1. Let k, n ∈ N. For any points Z ∈ Ω̂k and Y ∈ Ω̂n, define the

d∗-distance from Z to Y by

d∗(Y,Z) = max
1≤j≤k

min
1≤i≤n

|Zj − Yi|.

Then the natural definition of the distance between Z and Y is given by

d(Y,Z) = max(d∗(Y,Z), d∗(Z,Y)).

This is a generalization of the regular Euclidean difference between two elements
of Ωn to the case of vectors of a different length. This definition will become useful for
us when we consider a degenerate set of generators in the proof of our main theorem.
Provided with this definition, let us consider the set theoretic difference of the two
Voronoi tessellations generated by the vectors Z and Y as

k∑
i=1

M (Vi(Z) − ∪j∈SiVj(Y)) .

This definition is illustrated in Figure 3.1 below.

Fig. 3.1. An illustration of the definition of d(Y,Z) and the difference of Voronoi tessellations

generated by Z and Y, where Z ∈ Ω̂3 and Y ∈ Ω̂4 (shaded).

The next lemma for quantifies the fact that if two possibly degenerate points in
Ωn are close together in the sense of Definition 3.1, then the corresponding Voronoi
regions of these points are also close together in some sense. The appropriate mea-
surement of how far apart these Voronoi regions are is the total mass of the difference
of corresponding Voronoi regions.

Lemma 3.4. Let Assumption 3.1 be satisfied. Fix Z ∈ Ω̂k for k ≤ n. For any
ε > 0, there exists a δε > 0 such that if Y ∈ Ω̂n and d(Z,Y) ≤ δε, then

k∑
i=1

M (Vi(Z) − ∪j∈SiVj(Y)) ≤ ε,
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where {Si}ki=1 is any partition of {1, . . . , n} satisfying Si ∈ {j | |Zi − Yj | ≤ |Zm −
Yj | for all m ∈ {1, . . . , k}}.

Proof. Let us suppose that Y ∈ Ω̂n and d(Z,Y) < δ for some δ > 0. Since
Z ∈ Ω̂k is fixed, let us define the constant dZ by

dZ = min
i 	=j

|Zi − Zj |
2

.

We let δ be small enough such that δ ≤ dZ

2 ; then it is not difficult to verify that Si

is a nonempty set for each 1 ≤ i ≤ k. From Definition 3.1, it is also obvious that for
any 1 ≤ i ≤ k,

|y − Zi| − δ ≤ |y − Yj | ≤ |y − Zi| + δ ∀ y ∈ Ω, j ∈ Si.

For any y, if y ∈ Vi(Z)−∪j∈SiVj(Y) (i.e., y ∈ Vi(Z) and y �∈ ∪j∈SiVj(Y)), then
we will argue by contradiction that dist(y, ∂Vi(Z)), the shortest distance from y to
the boundary of Vi(Z), satisfies

dist(y, ∂Vi(Z)) < σ =
3δ

αZ
,(3.13)

where αZ = 2√
(1+RΩ/dZ)2+(RΩ/dZ)2

is a constant depending only on Z and RΩ. Let us

first assume that dist(y, ∂Vi(Z)) ≥ σ. We will show that y ∈ ∪j∈Si
Vj(Y). Take

any 1 ≤ j ≤ k with j �= i; without loss of generality, assume that Vi(Z) and
Vj(Z) are neighbor Voronoi cells. Notice that Vi(Z) and Vj(Z) are both convex poly-
gons/polyhedra except for the part belonging to the boundary of Ω; see Figure 3.2
for an illustration of two-dimensional cases.

Z i Z j
ijd

hy

w

i
jV  (Z)

V  (Z)

y

y

Fig. 3.2. Two neighboring Voronoi regions.
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One can easily verify that

|y − Zj | − |y − Zi| =
√

(dij + wy)2 + h2
y −

√
(dij − wy)2 + h2

y

≥ 2dijwy√
(dij + wy)2 + h2

y

=
2wy√

(1 + wy/dij)2 + (hy/dij)2
.

Since dij ≥ dZ, RΩ ≥ wy > σ, and hy ≤ RΩ, we obtain

|y − Zj | − |y − Zi| ≥
2σ√

(1 + RΩ/dZ)2 + (RΩ/dZ)2

= 3δ.

Then, for any j ∈ Si and any m ∈ Sl with l �= i, it holds that

|y − Yj | ≤ |y − Zi| + δ

≤ |y − Zl| − 3δ + δ

≤ |y − Ym| + δ − 2δ

≤ |y − Ym| − δ

< |y − Ym|.

This means that y ∈ ∪j∈SiVj(Y) and gives us a contradiction with y �∈ ∪j∈Si
Vj(Y), so

that the inequality (3.13) holds. Since Vi(Z) ⊂ Ω is convex and diam(Ω) = RΩ < +∞,
it holds that

m(∂Vi(Z)) ≤ Sd

(
RΩ

2

)d−1

,(3.14)

where Sd = 2πd/2

Γ(d/2) denotes the hypersurface area of an d-sphere of unit radius; see [3]

for details. Then the inequality (3.13) with (3.14) implies that

m(Vi(Z) − ∪j∈SiVj(Y)) ≤ σSdR
d−1
Ω

2d−1
.

Then selecting

δ = δε := min

(
dZ

2
,

2d−1ηε/kαZ

3SdR
d−1
Ω

)

ensures that m(Vi(Z) − ∪j∈SiVj(Y)) ≤ ηε/k. Due to Lemma 3.1, this means that

k∑
i=1

M (Vi(Z) − ∪j∈SiVj(Y)) =

k∑
i=1

∫
Vi(Z)−∪j∈Si

Vj(Y)

ρ(y) dy

≤
k∑

i=1

ε

k

≤ ε,
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and thus the result holds.
Remark 3.2. In the case that ρ ∈ Lq(Ω) for some q > 1, the Hölder inequality

again can be used to find a δε in the above lemma which does not depend on the
constant ηε/k such as

δ = δε := min

(
dZ

2
,

2d−1αZ

3SdR
d−1
Ω

(
ε

k‖ρ‖Lq(Ω)

)q/(q−1)
)
.

3.2. Nondegeneracy of limit points. Now, let us present our first important
result.

Theorem 3.5. Let Assumption 3.1 be satisfied. Given n ∈ N and any initial
point Z0 ∈ Ω̂n, let {Zi}∞i=0 be the iterates of the Lloyd algorithm starting with Z0.

Then any limit point Z of these iterates is nondegenerate (i.e., Z ∈ Ω̂n).
Proof. Let Z ∈ Ω

n
be any limit point of these iterates {Zi}∞i=0. We will argue by

contradiction that Z ∈ Ω̂n. Let us first assume that Z = (Z1, . . . ,Zn) is degenerate,
i.e., in the sense that several of its components are equal. Without loss of generality,
assume that Z1 = · · · = Zr for some 1 < r ≤ n.

Since Zi’s are Lloyd iterates, by the continuity of G on Ω
n

and the monotone
decrease of G along Zi’s due to (2.2), we know that

(3.15) G(Zi) ↘i→+∞ G(Z);

i.e., G(Zi) monotonically decreases and converges to G(Z). Let Z̃ ∈ Ω̂k (k = n−r+1 <
n) be the set of points in Z without duplication; i.e.,

Z̃ = (Z̃1, . . . , Z̃k) = (Z1,Zr+1, . . . ,Zn).

It is obvious that G(Z̃) = G(Z). From {Zi}∞i=0, select a subsequence {Zij}∞j=0 such

that Zij → Z as j → +∞.
Now define

α =
M(V1(Z̃))

2r
, β =

η2
α/4

64R2d−1
Ω

, and γ =
αβ2

4
.

Obviously we have α, β, γ > 0 since (V1(Z̃)) is a convex set with positive measure.
Now let us select a j∗ large enough such that the following inequalities hold:

M(∪r
m=1Vm(Zij∗ )) >

M(V1(Z̃))

2
,(3.16)

G(Zij∗ ) − G(Z̃) <
γ

2
,(3.17)

|Zij∗
m − Zm| < β

4
, m = 1, 2, . . . , n.(3.18)

Inequality (3.16) holds for large j∗ by Lemma 3.4 using ε = M(V1(Z̃))
2 . Further,

that also means that for some m ∈ {1, . . . , r}, M(Vm(Zij∗ )) > α. Without loss of
generality, assume this m is 1, i.e., M(V1(Z

ij∗ )) > α. That gives us

(3.19) δ
V1(Z

ij∗ )
≥ β, γ

V1(Z
ij∗ )

≥ γ.
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The inequalities (3.18) and (3.19) imply

dist(Z
ij∗
1 , ∂V1(Z

ij∗ )) ≤ |Zij∗
1 − Z1| + |Zij∗

2 − Z1| <
β

2
≤

δ
V1(Z

ij∗ )

2
.

Then by Lemma 3.3 and (3.19), we immediately obtain∫
V1(Z

ij∗ )

ρ(y)|y − c
V1(Z

ij∗ )
|2 dy

≤
∫
V1(Z

ij∗ )

ρ(y)|y − Z
ij∗
1 |2 dy − γ

V1(Z
ij∗ )

≤
∫
V1(Z

ij∗ )

ρ(y)|y − Z
ij∗
1 |2 dy − γ.(3.20)

Now, let us estimate the quantization energy G(T(Zij∗ )). Using the dual mini-
mization property, we get

G(T(Zij∗ )) = H(T(Zij∗ ),T(Zij∗ ))

≤ H(Zij∗ ,T(Zij∗ ))

=

∫
V1(Z

ij∗ )

ρ(y)|y − T1(Z
ij∗ )|2 dy

+

n∑
k=2

∫
Vk(Z

ij∗ )

ρ(y)|y − Tk(Z
ij∗ )|2 dy.

It is easy to see that

n∑
k=2

∫
Vk(Z

ij∗ )

ρ(y)|y − Tk(Z
ij∗ )|2 dy ≤

n∑
k=2

∫
Vk(Z

ij∗ )

ρ(y)|y − Z
ij∗
k |2 dy(3.21)

since Tk(Z
ij∗ ) is the centroid of Vk(Z

ij∗ ). With (3.17), (3.20), and (3.21), we have

G(T(Zij∗ )) ≤
∫
V1(Z

ij∗ )

ρ(y)|y − Z
ij∗
1 |2 dy − γ

+
n∑

k=2

∫
Vk(Z

ij∗ )

ρ(y)|y − Z
ij∗
k |2 dy

= G(Zij∗ ) − γ

< G(Z̃) +
γ

2
− γ

= G(Z̃) − γ

2
,

which contradicts the fact (3.15). We conclude that Z ∈ Ω̂n; i.e., any limit point of
the Lloyd iteration cannot be a degenerate point.
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Theorem 3.6. Let Assumption 3.1 be satisfied. Given n ∈ N and any initial
point Z0 ∈ Ω̂n, let {Zi}∞i=0 be the iterates of the Lloyd algorithm starting with Z0.
Then there exists a constant DZ0 > 0 depending only on n, Ω, ρ, and Z0 such that
for any i ≥ 0,

|Zi
j − Zi

k| > DZ0

for all j, k ∈ {1, . . . , n} and j �= k.
Proof. We will use the contradiction argument again. Let us assume that the

theorem is not true, then for all m ∈ N, there always exist an index im, some jm, km ∈
{1, . . . , n}, and jm �= km such that

|Zim
jm

− Zim
km

| < 1

m
.

Let us consider the subsequence {Zim}∞m=1. Without loss of generality, assume the
index set I = {im}∞m=1 is a monotonically increasing sequence (otherwise we can do
that by adding some restriction such as ik+1 > ik during choosing {Zim}∞m=1). Notice
that the set JK = {(jm, km)}∞m=1 has at most n(n − 1) different elements, so there
exists a pair {(j∗, k∗)} ∈ JK that appears infinitely many times along the increasing of
m, and let us record their appearances by the increasing sequence {m1,m2, . . . } ⊂ N.
This means that

|Zimp

j∗ − Z
imp

k∗ | < 1

mp
∀ p ∈ N.(3.22)

Since {Zimp} are bounded, there always exists a convergent subsequence of {Zimp},
and assume Z is the corresponding limit point. Due to (3.22), we must have Zj∗ = Zk∗ ,
which means that Z is a degenerate point. However, Z is also a limit point of the
original Lloyd iterates {Zi}∞i=0, and according to Theorem 3.5, Z could not be a
degenerate point. We then get a contradiction, and so the theorem holds.

Remark 3.3. In Theorem 3.6, we are only able to show existence of the lower
bound of the distances between any pair of generators of all Lloyd iterates starting
with Z0. For the one-dimensional case, an explicit estimate was derived in [5] when
the density function is strictly positive and smooth.

A direct consequence of Theorem 3.6 is the following corollary.
Corollary 3.7. Let Assumption 3.1 be satisfied. Given n ∈ N and any initial

point Z0 ∈ Ω̂n, let {Zi}∞i=0 be the iterates of the Lloyd algorithm starting with Z0.
Then the Lloyd map is continuous at any of the iterates {Zi}∞i=0 and m(Vj(Z

i)) ≥
(
DZ0

2 )d for any 1 ≤ j ≤ n and i ≥ 0.

3.3. Main result. Finally, let us present our main result in the following theo-
rem.

Theorem 3.8 (weak global convergence). Let Assumption 3.1 be satisfied. Given
n ∈ N and any initial point Z0 ∈ Ω̂n, let {Zi}∞i=0 be the iterates of the Lloyd algorithm
starting with Z0. Then the following hold:

(1) {Zi}∞i=0 is weakly convergent (i.e., limi→+∞ ∇G(Zi) = 0) and any limit point
of {Zi}∞i=0 is also a nondegenerate critical point of the quantization energy G
(and thus a CVT).

(2) Moreover, it also holds that limi→+∞ ‖Zi+1 − Zi‖ = 0.
Proof. Using the result of Corollary 3.7, we see that we can define a compact set

(away from the degenerate points) such that for any initial point Z0 ∈ Ω̂n, the Lloyd
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iterates (the images of the Lloyd maps) will stay in such a compact set. Thus, we
can apply Theorem 2.1 and Corollary 3.7 to deduce the weak global convergence of
the Lloyd iterations. The first part of the theorem is then complete with the help of
Theorem 3.5.

From Corollary 3.7, we also know that for any 1 ≤ k ≤ n and i ≥ 0,

m(Vk(Z
i)) ≥

(
DZ0

2

)d

> 0.

Together with Lemma 3.1 and the assumption that ρ is positive almost everywhere,
we know that there exists some constant M∗ > 0 such that

M(Vk(Z
i)) ≥ M∗ > 0.(3.23)

Using (2.1), we then get

‖∇G(Zi)‖ =

(
n∑

k=1

∣∣∣ ∂G
∂zk

(Zi)
∣∣∣2
)1/2

=

(
n∑

k=1

|2M(Vk(Z
i))(Zi

k − Tk(Z
i))|2

)1/2

≥ 2M∗

(
n∑

k=1

|Zi
k − Tk(Z

i)|2
)1/2

= 2M∗‖Zi − Zi+1‖.(3.24)

Consequently, we get

0 ≤ lim
i→+∞

‖Zi+1 − Zi‖ ≤ 1

2M∗ lim
i→+∞

‖∇G(Zi)‖ = 0,

which deduces the second part of this theorem.
Remark 3.4. It is a consequence of part (1) of Theorem 3.8 that the generators

of any limit point configuration of the Lloyd algorithm cannot lie on the boundary
of the convex domain, since the limit point is a CVT and the density function ρ is
positive almost everywhere.

Remark 3.5. Part (2) of Theorem 3.8 in fact tells us that the Lloyd method
always terminates under general practical stopping criteria.

4. Conclusions and open questions. In this paper, we prove that any limit
point of the Lloyd iteration is nondegenerate provided that Ω is a convex and bounded
set and ρ belongs to L1(Ω) and is positive almost everywhere in any dimensional space.
It follows that, for every initial point set, the Lloyd iteration always approaches the
set of nondegenerate critical points of the so-called quantization energy (which is
exactly the set of CVTs). These results go beyond those presented in earlier papers;
they enlarge the class of densities in the one-dimensional case and assign a stronger
meaning to the statement of global convergence of the Lloyd iteration by eliminating
the possibility of degeneracy. Although the proofs in their generality hold for all L1

density functions, we have been able to provide a more constructive characterization
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for the constants δV and δε in the case of Lq, q > 1, which possess their own merit
from a practical point of view.

There are still some open questions. Throughout our proof, the convexity of
Ω is required in many places. The first question is whether this condition is really
necessary or whether Ω can be a nonconvex set with some constraints. Another
question is under which conditions weak convergence transforms into a strong single
limit-point convergence. Also, it remains to explore whether the proof can be extended
to replace the density function with a more general measure; ideally, it would be
extended to a set of measures more general than those considered in [22]. Finally, it is
also very meaningful and interesting to study the convergence properties of the Lloyd
algorithm when the CVT is defined under some other error weighting functions, such
as the very commonly used l1 and l∞ that arise in many engineering applications.
The geometric proof provided here clearly provides room for such generalizations;
however, the detailed analysis would complicate current presentation and hence is left
to a separate treatment. These questions and generalizations are the focus of current
research and will be addressed in subsequent publications.

Appendix. Proof of Lemma 3.1.
Proof. Suppose that the claim is false. Then there exists an ε0 > 0 such that

for all k ∈ N, ∃Ak ⊂ Ω with m(Ak) ≤ (1/2)k+1, it holds that
∫
Ak

ρ(y) dy > ε0. Let

Bk = ∪∞
i=kAi; clearly m(Bk) ≤

∑∞
k=1 m(Ai) ≤ (1/2)k and

∫
Bk

ρ(y) dy > ε0 for all

k ∈ N. Since {
∫
Bk

ρ(y) dy}∞k=1 is a positive nonincreasing sequence, it is easy to see
that

lim
k→+∞

∫
Bk

ρ(y) dy ≥ ε0 > 0.

On the other hand, notice that B1 ⊃ B2 ⊃ · · · . By the dominated convergence
theorem in measure theory, we have

lim
k→+∞

∫
B∗

ρ(y) dy = lim
k→+∞

∫
Ω

(1Bk
(y)ρ(y)) dy

=

∫
Ω

lim
k→+∞

(1Bk
(y)ρ(y)) dy

= 0,

which gives us a contradiction, and so this lemma holds.
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