
Delaunay Refinement Algorithms for Estimating

Local Feature Size in 2D and 3D

Alexander Rand∗and Noel J. Walkington∗

July 14, 2009

Abstract

We present Delaunay refinement algorithms for estimating local fea-

ture on the input vertices of a 2D piecewise linear complex and on the

input vertices and segments of a 3D piecewise linear complex. These al-

gorithms are designed to eliminate the need for a local feature size oracle

during quality mesh generation of domains containing acute input angles.

In keeping with Ruppert’s algorithm, encroachment in these algorithms

can be determined through only local information in the current Delaunay

triangulation. The algorithms are simple enough to be implemented and

several examples are given.

1 Introduction

The prototypical Delaunay refinement algorithm given by Ruppert[1] is an ele-
gant method for computing a quality, conforming Delaunay triangulation of a
non-acute 2D piecewise-linear complex (PLC). Ruppert’s analysis involves prov-
ing that the size of the mesh at a point x (which can be measured equivalently
as the distance to the second nearest vertex to x or the circumradius of the
triangle containing x) is a good approximation of the local feature size at x up
to a constant depending on the minimum angle threshold used by the algorithm.
As observed by Pav and Walkington[2], this means that Ruppert’s algorithm
is not only a method for quality mesh generation but also is an algorithm for
computing local feature size.

The extension of Ruppert’s algorithm to allow 3D PLCs with acute an-
gles between input features is a topic of active research. Initial solutions to
this problem have relied on algorithms for computing conforming Delaunay
tetrahedralization[3, 4] and thus require the local feature size of the PLC be

∗Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
USA. Supported in part by National Science Foundation Grant DMS–0811029. This work
was also supported by the NSF through the Center for Nonlinear Analysis.

†AMS Classification: 65D99, 68U99
‡Submitted IJCGA, October 2008.

1

given to the algorithm as input, rather than be implicitly computed by the al-
gorithm as was done by Ruppert’s algorithm[5]. The subsequent algorithm of
Pav and Walkington[2] (referred to as PW3D) removed this requirement.

This paper develops a Delaunay refinement algorithm for estimating the
local feature size as needed for quality mesh generation. It features two im-
portant improvements over PW3D. First, encroachment operations in the new
algorithm are local in the Delaunay tetrahedralization as opposed to the oper-
ations in PW3D which are local in the Euclidean distance. An operation which
is “local in the Euclidean distance” requires a breadth-first-search through the
tetrahedralization up to a prescribed Euclidean distance from a given simplex,
while an operation which is “local in the Delaunay tetrahedralization” only in-
volves the immediate Delaunay neighbors of the vertices of a given simplex.
Ruppert’s algorithm is local in the Delaunay triangulation. Second, our algo-
rithm has been implemented, unlike many algorithms for conforming Delaunay
tetrahedralization including PW3D.

The two algorithms for 3D quality mesh generation that have been imple-
mented rely on relaxing the notion of Delaunay tetrahedralization and alterna-
tive feature sizes. The first is the constrained Delaunay refinement algorithm
of Si and Gartner[6, 7]. In this case, a constrained Delaunay tetrahedraliza-
tion is computed and local feature size is estimated at the input vertices. This
is then interpolated incrementally on the edges as the refinement progresses.
The second is the algorithm of Cheng, Dey and Ramos[8, 9] with its recent
improvements[10]. This algorithm creates weighted Delaunay meshes of smooth
surfaces from only local information but involves a user supplied sizing param-
eter. Our algorithm has been implemented and used as part of a quality mesh
generator[11]: this paper serves to provide a rigorous proof of the algorithm for
estimating local feature size used in this software.

To highlight the types of estimates we seek, consider a simplified version of
Ruppert’s algorithm: Algorithm 1 describes Ruppert’s algorithm in two dimen-
sions without any quality requirement on the output triangles. A segment is
considered encroached in Algorithm 1 if there is another vertex in its diametral
ball.

Algorithm 1 Ruppert’s Algorithm - conformity only

Create an initial Delaunay triangulation of the input vertices.
Queue all encroached segments.
while the queue of segments is nonempty do

Insert the midpoint of the front segment into the Delaunay triangulation.
Update the queue of encroached segments.

end while

Upon termination of Algorithm 1, the local feature size at any input vertex
can be approximated by a quantity which is local in the Delaunay triangulation.
This is summarized in the following theorem.

2

Theorem 1. Given any non-acute 2D PLC as input, Algorithm 1 terminates.
Upon termination, for any input vertex q0,

1

2
lfs(q0) ≤ N(q0) ≤

√
2 lfs(q0).

Here, lfs(·) denotes the local feature size of the input PLC and N(·) denotes
the distance to the nearest neighbor in the resulting Delaunay triangulation.
The definitions of these functions are given in Section 2. The lower bound in
Theorem 1 follows from the standard analysis of Ruppert’s algorithm, but the
upper bound is not a part of the usual theory. However, it is an estimate of this
type which is needed in forming a protected region around acute input angles
for conforming Delaunay refinement. Our work involves finding algorithms in
2D and 3D for which analogous upper bounds hold independent of the smallest
angle in the input.

A generic Delaunay refinement algorithm which will be specified in the later
sections is described in Section 3. Theorem 1 will be duplicated in Section 4 for
an algorithm which allows acute input angles. These estimates are analogous to
those needed in the full 3D algorithm which is stated and analyzed in Section 5.
Finally, some examples of are given in Section 6.

2 Preliminaries

The typical input to a Delaunay refinement algorithm is a piecewise linear com-
plex.

Definition 1. In two dimensions:

• A 2D piecewise linear complex (PLC), C = (P ,S), is a pair of sets of
input vertices P and input segments S, such that the endpoints of each
segment of S are contained in P and the intersection of any two segments
of S is also contained in P .

• A PLC C′ = (P ′,S′) is a refinement of the PLC C = (P ,S) if P ⊂ P ′

and each segment in S is the union of segments in S′.

Definition 2. In three dimensions:

• A 3D piecewise linear complex (PLC), C = (P ,S,F), is a triple of sets
of input vertices P , input segments S, and polygonal input faces F such
that the boundary of any feature or the intersection of any two features
is the union of other lower-dimensional features in the complex.

• A PLC C′ = (P ′,S′,F ′) is a refinement of the PLC C = (P ,S,F) if
P ⊂ P ′ and each segment in S is the union of segments inS′ and every
face in F is the union of faces in F ′.

When refining a PLC, certain simplices near the boundaries of input features
have special importance in the analysis. These are defined below.

3

Definition 3. Consider a refinement (P ′,S′,F ′) [or (P ′,S′)] of an input PLC
(P ,S,F) [or (P ,S)].

• An end segment is a segment in S′ for which at least one endpoint is an
input vertex in P . vertex lies on an input segment in S.

• The spindle of a segment s in S′, denoted Spind(s), is the set containing

– s if s is not an end segment, or

– s and all end segments adjacent to s if s is an end segment.

For a simplex s, Rs denotes its circumradius. For any vertex q inserted into
the mesh by our refinement algorithms, rq denotes the insertion radius of vertex
q, i.e. the distance from q to its nearest neighbor in P ′ when it is inserted into
the Delaunay triangulation. Denote the diametral ball of the segment between
a and b by B(ab) and the circumball of the triangle with vertices a, b, and c by

B(âbc).
An appropriate notion of feature size is essential in the analysis of Delaunay

refinement algorithms. The standard definition of local feature size is given
below as well as another related sizing function (called mesh feature size).

Definition 4. Let C be a PLC with refinement C′ and let P ′ be the vertex set
of C′.

• The i-local feature size at point x with respect to C, lfsi(x, C) is the
radius of the smallest closed ball centered at x which intersects two disjoint
features of C of dimension no greater than i.

• The i-mesh feature size at point x with respect to C, mfsi(x, C) is
the radius of the smallest closed ball centered at x which intersects two
features of C of dimension no greater than i.

• The nearest neighbor function, N(x,P ′) := lfs0(x, C′), returns the
distance from x to its second nearest neighbor in P ′.

The above definitions do not require any distinction between the input PLC
and its refinement. However, we state the definitions in this way as local feature
size functions will usually be evaluated with respect to some initial PLC while
the nearest neighbor function will be analyzed on the intermediate or resulting
triangulations. To simplify the notation in these cases, a few conventions will
be followed.

4

q

lfs(q)

lfs0(q)
mfs(q)

N(q)

Figure 1: Example of sizing functions in Definition 4 for a 2D PLC. The black
dots represent input vertices while the white dots represent vertices inserted
during the refinement.

Conventions

• If the PLC argument is omitted in the mesh or local feature size func-
tion, it is assumed to be the input complex, e.g. lfsi(x) := lfsi(x, C).

• If the vertex set argument is omitted in the nearest neighbor function,
it is assumed to be the vertex set of the current refined complex, e.g.
N(x) := N(x,P ′).

• If the dimension argument is omitted in the mesh or local feature size
function, it is assumed to be (d − 1), e.g. lfs(x, C) := lfsd−1(x, C).

Figure 1 depicts the feature size at the vertex of a mesh during a possible
refinement. Note that the feature size is defined at all points in Rd, not just
vertices of the mesh. Each of these functions is Lipschitz (with constant 1). For
a fixed PLC, local feature size is strictly positive while mesh feature size can
equal zero.

If the argument supplied to any of the above feature size functions is a set
of points, rather than a point, then the result is defined to the be infimum of
the function over the set, i.e.

lfsi(s, C) := inf
x∈s

lfsi(x, C).

Often it will be important to show identical estimates on the local feature
size of end segments and the mesh feature size of non-end segments. It is useful
to refer to these two cases with the same notation.

Definition 5. The i-feature size of segment s is defined as follows.

fsi(s) =

{
lfsi(s) if s is an end segment,

mfsi(s) if s is a non-end segment.

5

Given segment s in S′, point x is called an i-feature size witness for s if x
is contained in a feature of C of dimension at most i which is disjoint from s.
Given simplex s in C′, point x is called a local feature size witness for s
if x is contained in a feature of C which is disjoint from another feature of C
containing s. Simplex s′ is called a i-feature size witness for simplex s if every
point of s′ is an i-feature size witness for s.

The definition of feature size is closely related to that of local gap size used
by Cheng and Poon[12]. The notion of i-feature size witness will be used by
recognizing that if x is an i-feature size witness of segment s, then

fsi(s) ≤ dist(x, s).

Finally, the following form of the Delaunay property is used often throughout
the analysis.

Proposition 1. [Delaunay Property] Let P be a finite subset of Rd. Let B be
a ball with vertex q ∈ P on the boundary of B. If P ⋂

B 6= ∅, then q has a
Delaunay neighbor B.

3 Generic Delaunay Refinement Algorithm

Each of the Delaunay refinement algorithms considered will be in the form of
Algorithm 2.

Algorithm 2 Delaunay Refinement

Create an initial Delaunay triangulation.
Queue all unacceptable simplices.
while the queue of simplices is nonempty do

if it is safe to split the front simplex then

Take an action based on the front simplex.
Update the queue of unacceptable simplices.

else

Remove the front simplex from the queue.
end if

end while

To specify a concrete algorithm from Algorithm 2, it necessary to describe
the following statements.

Action Where should a vertex (a Steiner point) be inserted to “split”
a simplex? Should other (usually lower dimensional) features
be queued for splitting?

Priority In what order should be queue be processed?
Unacceptability Which simplices are unacceptable?

Safety Which simplices are safe to split?

6

First, Algorithm 3 is a restatement of Algorithm 1 (Ruppert’s algorithm with
a 0◦ minimum angle threshold) as a specialization of the general algorithm.

Algorithm 3 Ruppert’s Algorithm - conformity only

Action Insert the midpoint of the segment.
Priority Process segments in any order.

Unacceptability A segment is unacceptable if it has a nonempty diametral
disk.

Safety Any simplex is safe to split.

It is important to note that each of these specifications for the algorithm can
be computed locally in the Delaunay triangulation of the current vertex set. This
is an essential property of Delaunay refinement algorithms. In our view, any
algorithm which matches the form of Algorithm 2 and can be updated based on
the local Delaunay triangulation is a Delaunay refinement algorithm and any
algorithm that doesn’t fit these to requirements is not.

Some of these specifications for Ruppert’s algorithm are so simple that they
can be easily overlooked. However, it is important to generalize Delaunay refine-
ment algorithms in each of the four ways considered above for different purposes.
Here is a brief description of how this has been done in the literature.

Action The general action for removing an unacceptable simplex involves
inserting a vertex inside the circumball of the simplex to ensure that it no
longer exists in the Delaunay triangulation. Chew’s first Delaunay refinement
algorithm[13] used the insertion of circumcenters to remove poor quality tri-
angles from the mesh. The circumcenter is a natural choice since this gives
the furthest guaranteed distance between the new vertex and any others in
the Delaunay triangulation based only on the existence of the original simplex.
Ruppert’s algorithm added the idea of yielding to lower dimensional features
of the input. Off-center vertices and general selection regions have also been
studied[14, 15, 16] using the same yielding procedure as Ruppert’s algorithm.
An example of a different action taken by the algorithm can be seen with
Chew’s second Delaunay refinement algorithm[17]. This method maintains a
constrained Delaunay triangulation, involves a different yielding procedure, and
removes vertices from the mesh following certain midpoint insertions. The al-
gorithm of Miller, Hudson, and Phillips includes a yielding procedure in which
circumcenters yield to input vertices which have not been inserted into the
mesh[18].

Priority The priority queue for most Delaunay refinement algorithms involves
prioritizing lower dimensional simplices before higher dimensional ones[1, 19].
For time efficient algorithms, this priority queue must be modified[20, 18, 21],
typically requiring simplices queued for quality to be processed before those

7

queued based on encroachment. Prioritizing queued simplices of equal dimen-
sion (often by circumradius) has also been used in some algorithms[20, 22].

Unacceptability There are typically two types of unacceptability criteria:
encroachment criteria which ensure that the refined triangulation conforms to
the input PLC, and quality requirements which are desirable of the resulting
simplices. For the encroachment criteria, the most common approach involves
asking if a simplex has a nonempty circumball. This is useful since any simplex
with a empty circumball must appear in the Delaunay triangulation. Methods
which utilize constrained Delaunay triangulations often relax this requirement
and consider protecting a smaller lens around each segment or ignore an explicit
encroachment criteria all together[17, 23].

The quality criteria is usually based on the radius-edge ratio (or the closely
related Voronoi quality) of the triangulation. Quality also may be specified via
a user defined sizing parameter. Most Delaunay refinement algorithms allow
sizing functions of this type, but a few require this type of criteria explicitly in
the proofs of correctness[13, 9].

Safety Meshing non-acute domains does not typically require any check that
a simplex is safe to split. When handling domains with small angles, typical
approaches involve not splitting triangles based on quality if they are near a
small input angle in some sense[24, 25]. In 3D, the Tetgen code[6, 7] relies on a
similar principle for determining when to stop refining near small input angles.

4 Estimating Feature Size in 2D

We develop an algorithm for estimating the local feature size of a mesh at input
vertices of a 2D PLC. Estimates of this time are often useful in ensuring the
termination of quality Delaunay refinement algorithms in the presence of acute
angles between adjacent input segments. While there are a number of effective
algorithms for quality mesh generation in 2D[24, 25], this algorithm is developed
as a natural predecessor to the 3D version given in Section 5.

Local feature size is estimated at each input vertex in terms of the distance
to its nearest Delaunay neighbor in the resulting triangulation. The algorithm
is very similar to Ruppert’s algorithm with two key differences: triangles are not
split based on radius-edge quality and certain segments are not split to prevent
infinite encroachment sequences near acute angles.

The algorithm for estimating feature size is divided into two steps as given
in Algorithm 4. These steps are labeled according to the highest dimensional
features in the input complex refined: Step 0 only depends upon the input
vertices while Step 1a involves input vertices and segments.

(Step 0) Compute the Delaunay triangulation of the input vertices.

Step 0 involves computing the Delaunay triangulation of the set of input
vertices. This yields a simple estimate on lfs0 at each of the input vertices.

8

Algorithm 4 Estimate Feature Size 2D

(Step 0) Compute the Delaunay triangulation of the input vertices.
(Step 1a) Estimate lfs at all input vertices via Delaunay refinement.

Lemma 2. Upon the termination of Step 0, for each vertex q0 in the input
PLC, N(q0) = lfs0(q0).

(Step 1a) Estimate lfs at all input vertices via Delaunay refinement.

Step 1a of Algorithm 4 is a Delaunay refinement algorithm specified by the
four rules given in Algorithm 5. It is important to recognize that adjacent
segments have not been split to equal lengths as a preprocess to this algorithm.
To ensure termination, a segment s is not allowed to split if the encroaching
vertex is on a segment adjacent to s and the resulting segments are shorter than
the shortest segment in Spind(s). This criteria is reflected in the unacceptability
rule.

Algorithm 5 Estimate Feature Size 2D - Step 1a

Action Insert the circumcenter of a segment.
Priority Simplices (only segments in this case) may be processed in

any order.
Unacceptability A segment s is unacceptable if it has an endpoint q with a

Delaunay neighbor p inside the diametral disk of s and either
p is a 1-feature size witness for s or s is more than twice the
length of the shortest segment in Spind(s).

Safety It is safe to split any simplex.

First, it is shown that the algorithm terminates and that the distance to
the nearest neighbor provides an appropriate upper bound on local feature size
in the resulting mesh. This estimate is similar to those shown in Ruppert’s
analysis.

Theorem 3. Algorithm 4 terminates. For any input vertex q0,

1

2
lfs(q0) ≤ N(q0,P ′)

holds throughout the algorithm.

Proof. Let q0 ∈ P be any input vertex. Initially, N(q0) = lfs0(q0) ≥ lfs(q0) so
the base case holds. Suppose a vertex q is inserted as the midpoint of segment s
and q is the closest neighbor to an input vertex q0. If s is disjoint from q0, then
lfs(q0) ≤ |q0 − q|. If s is incident to q0, then (by the unacceptability rule) the
vertex encroaching s, denoted q′, must be on a segment which is disjoint from
q0. Thus, lfs(q0) ≤ |q0 − q′| ≤ 2|q0 − q|. This bound ensures the termination of
the algorithm.

9

s′ q
x

q0

(a) Definitions.

s′ q

p

x

q0

(b) Case that s′ is an end segment.

Figure 2: Diagrams for the proof of Theorem 4.

Next, it can be shown that the distance from an input vertex to its nearest
neighbor in the resulting triangulation also provides a lower bound on the local
feature size.

Theorem 4. Upon the termination of Algorithm 4,

N(q0,P ′) ≤
√

2 lfs(q0)

for any input vertex q0 ∈ P.

Proof. If N(q0,P) = lfs(q0) (i.e. the local feature size at q0 is realized by an
input vertex), then the statement follows by

N(q0,P ′) ≤ N(q0,P) = lfs(q0).

Otherwise, lfs(q0) = dist(q0, s) for some segment s ∈ S disjoint from q0 (i.e.
the local feature size of q0 is realized by a segment s). Let x be the nearest
point on segment s to q0. Let s′ ∈ S′ be a subsegment of s containing x and let
q be the nearest endpoint of s′ to q0. This situation is depicted in Figure 2(a).

Now, suppose that N(q0,P ′) >
√

2 lfs(q0). Then the following inequalities
hold.

2 lfs(q0)
2 < N(q0,P ′)2

< |q0 − q|2

= lfs(q0)
2 + |x − q|2.

Conclude that |x − q0| = lfs(q0) ≤ |x − q|. This inequality implies that q0 lies
in the diametral disk of s′. So either s′ is unacceptable or q is an input vertex
and there is a vertex p ∈ P ′ in B(q0q) \ B(q0, |x − q|) which lies on a segment
adjacent to s′ since q0 and q cannot be Delaunay neighbors. The ball B(q0, |x−
q|) must be empty by the assumption on the local feature size of q0. Thus vertex

p ∈ B(q0q) \ B(q0, |x − q|) and it follows that |p − q| ≤ |x − q| ≤ |s′|
2 as seen in

10

Figure 2(b). Thus |s′| ≥ |pq| which is in the spindle of s′. So s′ is unacceptable.
Since upon termination there are no unacceptable segments, the desired bound
must hold.

The constants in Theorem 3 and Theorem 4 are both sharp and independent
of the smallest input angle. Note that the inequality in Theorem 4 is identical
to the upper bound in in Theorem 1 for Ruppert’s algorithm in the non-acute
case: acute input angles slightly complicate the algorithm but do not weaken
the result.

5 Estimating Feature Size in 3D

The idea of the previous chapter can be extended to 3D Delaunay refinement.
In this case, the goal is to estimate local feature size and 1-feature size on
all segments (the (d − 2)-dimensional features) of the input complex. While
the distance from an input vertex to its nearest neighbor was used to estimate
feature size in 2D, the 3D analogy uses the length of segments in the refined
PLC.

Algorithm 6 will yield the desired feature size estimates in terms of segment
lengths. Step 1b and Step 2b are specific Delaunay refinement algorithms which
will be described later. Each of the other steps is a simple procedure which
occurs in a single pass over the Delaunay triangulation.

Algorithm 6 Estimate Feature Size 3D

(Step 0) Compute the Delaunay tetrahedralization of the input vertices.
(Step 1a) Split adjacent segments at equal lengths based on 0-local feature
size.
(Step 1b) Estimate fs1 on all segments via Delaunay refinement.
(Step 2a) Split segments to improve the 1-feature size estimate.
(Step 2b) Estimate lfs on all segments via Delaunay refinement.

The following two theorems demonstrate that in the refined PLC the length
of each segment is a good estimate for the local feature size or 1-feature size
of that segment. The lower bound on segment lengths given in Theorem 5
involves standard techniques used in the analysis of Ruppert’s algorithm. The
upper bound on segment lengths given in Theorem 6 requires a more in depth
analysis than that of previous algorithms.

Theorem 5. Throughout Algorithm 6, all segments s ∈ S′ satisfy

min

(
1

16
fs1(s),

1

4
lfs(s)

)
≤ |s|.

Theorem 6. Following the termination of Algorithm 6, all segments s ∈ S′

satisfy

|s| ≤ min

(√
2 fs1(s),

5

3
lfs(s)

)
.

11

Figure 3: This illustrative example consists of 3 faces: one large square which
is slightly below two smaller squares which are side by side.

Figure 4: (Left) Example mesh following Step 0. (Right) Enlarged mesh of one
of the smaller squares.

In order to show these two theorems, output conditions on the PLC are
determined following each step. Step 2b will yield a mesh satisfying precisely
these conditions in the theorems.

We illustrate this algorithm by considering the results of each step on a sim-
ple PLC. The example consists of three squares (contained inside a sufficiently
large bounding box): one large square which is slightly below two coplanar,
disjoint squares as seen in Figure 3. Observe that the small feature size between
the sides of the two small squares will be realized in Step 1b, while the feature
size between the small planes and the large plane will be realized in Step 2b.

(Step 0) Compute the Delaunay tetrahedralization of the input vertices.

Computing the Delaunay tetrahedralization of the input vertices is a com-
mon first step in many Delaunay refinement algorithms. In our running example,
this simply leads to the Delaunay triangulation of each of the squares as seen
in Figure 4.

Lemma 7. Upon the termination of Step 0, the following inequalities hold at
all input vertices of the mesh,

lfs2(q0) ≤ lfs1(q0) ≤ lfs0(q0) = N(q0,P ′).

12

Figure 5: (Left) Example mesh following Step 1a. (Right) Enlarged mesh of
one of the smaller squares.

(Step 1a) Split adjacent segments at equal lengths based on 0-local feature size.

This step consists of a single pass of each of the input vertices. For each
input vertex q0, all segments containing this vertex are split at a distance of
N(q0,P′)

3 away from q0. The result of this step on the running example can be
seen in Figure 5. Notice that small faces are split at a small distance on one
side due to the close proximity of their corners to each other.

After completing Step 1a, a number of properties hold which are summarized
in the next proposition.

Lemma 8. Upon the termination of Step 1a, the following hold.

(I) N(q0,P ′) = 1
3 lfs0(q0) holds for all input vertices q0 ∈ P.

(II) If sn is a non-end segment and se is an adjacent end segment, |sn| ≥ |se|.

(III) If se and s′e are end segments and s′e /∈ Spind(se), then

dist(se, s
′
e) ≥ max(|se|, |s′e|).

Property III is particularly important. As segments are refined further, this
property continues to hold ensuring that the spindles of end segments corre-
sponding to different input vertices are sufficiently far apart.

(Step 1b) Estimate fs1 on all segments via Delaunay refinement.

The goal of this stage is to bound the length of each segment by the 1-feature
size of that segment. This occurs via a Delaunay refinement algorithm specified
in Algorithm 7.

By the specification given, checking if a simplex is unacceptable requires
that only Delaunay neighbors of the endpoints of the segment in question need

13

Algorithm 7 Estimate Feature Size 3D - Step 1b

Action Insert the midpoint of a segment.
Priority Longer segments are processed first.

Unacceptability Segment s is unacceptable if there is an endpoint q of a seg-
ment in Spind(s) with Delaunay neighbor p such that p is a
1-feature size witness for q and |q − p| < |s|.

Safety It is safe to split any segment.

Figure 6: (Left) Example mesh following Step 1b. (Right) Enlarged mesh of
one of the smaller squares.

to be queried. This is an important property of Ruppert’s algorithm that has
been carefully maintain.

Figure 6 shows the running example following Step 1b. Notice that the
main effect is that the nearby edges of the two small squares refine to realize
the feature size. The other segments are only split a few times.

First, we show that the algorithm described terminates and that the length
of each segment is bounded below by its feature size. This argument uses the
same arguments as the “usual” proofs of termination and grading of typical
Delauany refinement algorithms.

Lemma 9. Throughout Step 1b, any segment s in the refinement satisfies

1

4
fs1(s) ≤ |s|.

Proof. Inductively, we show that the lower bound holds at all segments through-
out this step.

Base Case. Following Step 1a, any end segment, se, containing input vertex q0

has length

|se| =
1

3
lfs0(q0).

The definition of the 1-feature size implies that

lfs0(q0) ≥ lfs1(q0) ≥ lfs1(se) = fs1(se).

14

se

s′ns′e
q0

p

(a) Case 1

sn

s′np

(b) Case 2

Figure 7: Two Cases in Lemma 9.

Thus |se| ≥ 1
3 fs1(se).

For any initial non-end segment, sn, there is an adjacent end segment se

such that |sn| ≥ |se|. Since se contains an input vertex (which is a 1-feature
size witness for sn), it follows that

|sn| ≥ |se| ≥ fs1(sn).

Thus, the lower bound on segment lengths holds initially.
The inductive step is shown in two cases corresponding to the insertion of

end segment midpoints and the insertion of non-end segment midpoints. These
cases are depicted in Figure 7.

Case 1. Consider an end segment se from q0 to q′ which is split forming an
new end segment s′e and a non-end segment s′n. Then there exists a vertex p
on an input feature disjoint from se which is of distance at most |se| from some
adjacent end segment to se.

fs1(s
′
e) ≤ dist(s′e, p) ≤ dist(q0, p) ≤ |se| + |se| = 4|s′e|.

For the non-end segment s′n, q0 is a 1-feature size witness, and thus

fs1(s
′
n) ≤ dist(s′n, q0) = |s′n|.

Case 2. Consider non-end segment sn which is split. This means that there is a
1-feature size witness p such that dist(sn, p) ≤ |sn|. Then for either of the new
end segments created, denoted s′n,

fs1(s
′
n) ≤ dist(s′n, p) ≤ |s′n| + |sn| = 3|s′n|.

We conclude that 1
4 fs1(s) ≤ |s| for all segments created during Step 1b.

This 1-lower bound on feature size of all segments ensures termination of the
algorithm.

Next we seek to bound the length of each segment from above in terms of
the feature size. In the previous lemma, the ordering of the queue of segments
is irrelevant. In order to get the upper bound, an arbitrary order does not

15

(a) Possible partial initial mesh

Not Delaunay Neighbors

Segment Too Long

(b) Possible refinement

Figure 8: Lemma 10 does not hold without specifying a refinement order.

work. To see this, consider a mesh including a portion similar to Figure 8(a).
If segments to the left are refined first, a situation similar to Figure 8(b) could
arise. Then, there is a segment on the right side which is longer than its distance
to the input vertex which is not on the segment. However, this segment may
not “see” this nearby vertex on its Delaunay cavity. Note: this requires another
vertex to block the long segment from seeing the nearby disjoint vertex, but this
vertex could be far away and thus not causing the long segment to split.

Prioritizing the queue by segment length prevents this problem. This re-
quirement, coupled with some geometric facts found in the appendix, lead to
the desired bound on segments following Step 1b.

Lemma 10. Upon the termination of Step 1b, all segments satisfy

|s| ≤
√

2 fs1(s).

Proof. The two key properties below will be verified throughout the algorithm
and will lead to the desired result.

Inductive Hypothesis: If segment s is not queued and |s| >
√

2 fs1(s),
then the following two statements hold.

1. If q0 ∈ P , q0 /∈ s and q is an endpoint of s, then |q − q0| ≥ |s|.

2. If s̄ is a 1-feature size witness for s such that dist(s, s̄) < |s|√
2
, q is an

endpoint of s, and q̄ is an endpoint of s̄, then |q − q̄| ≥ |s|.

Split Size Property. Any longest segment s such that |s| >
√

2 fs1(s) is
on the queue.

By showing the following three claims, we are able to conclude the lemma.

• The split size property ⇒ |s| ≤
√

2 fs1(s) upon termination.

• The inductive hypothesis ⇒ the split size property.

16

• The inductive hypothesis holds.

The split size property ⇒ |s| ≤
√

2 fs1(s) upon termination. Upon termi-
nation of the algorithm, the queue is empty. This |s| ≤

√
2 fs1(s) holds for all

segments: if any segment failed this bound, then the split size property would
imply that the queue is not empty.
The inductive hypothesis ⇒ the split size property. Let s be a segment
such that |s| >

√
2 fs1(s) and s is not on the queue. Then by the first property

of the inductive hypothesis, the feature size of s is not realized by an input
vertex. Thus, there exists a segment s̄ which is a 1-feature size witness for s
and dist(s, s̄) = fs1(s). By Proposition 2, s̄ is longer than s (otherwise the
segments would have endpoints that are nearby, which violates the inductive
hypothesis). The inductive hypothesis and Proposition 3 imply that s must
be a 1-feature size witness for s̄ (since otherwise s̄ must be an end segment
adjacent to the input feature containing non-end segment s). Combining these
facts yields

|s̄| > |s| >
√

2 fs1(s) ≥
√

2 fs1(s̄).

We conclude that s is not the longest segment failing the feature size bound.
The inductive hypothesis holds. The technical details of the proof lie in
verifying the inductive hypothesis.

Base Case. First consider initial end segments. Let q0 be an input vertex
contained in end segment se. Proposition 8 ensures that for all other vertices q̄
at the end of Step 1a which are not on an end segment adjacent to se, |q0− q̄| ≥
2|se|. Thus, the inductive hypothesis holds for all end segments. Next, consider
non-end segments. Let sn be a non-end segment between end segments se

and s′e. Initially, any vertex which is not an endpoint of sn is a 1-feature size
witness for sn. If there is another vertex which is of distance less than |sn| to an
endpoint of sn, then sn must be queued by some 1-feature size witness which is
a Delaunay neighbor to an endpoint of sn.

Next, we proceed to the inductive step. The inductive hypothesis must be
checked on all segments. There are two types of segments for which this must
be verified: segments that existed before the most recent vertex insertion and
segments that where formed by this insertion.

Case 1. Consider any newly formed segment s and suppose s violates the in-
ductive hypothesis. If the first criterion of the inductive hypothesis fails, let q̄
denote the input vertex such that |q̄ − q| < |s| for some endpoint q of s. Oth-
erwise, the second criterion fails meaning that |s| >

√
2 fs1(s), s is not on the

queue, and (by Proposition 2) there is a vertex q̄ and endpoint q of s such that
|q − q̄| < |s| and q̄ is a feature size witness for s. In either case, q̄ is a feature
size witness for s and the distance between q and q̄ is less than |s|. Since s is
not queued, this means that q and q̄ cannot be Delaunay neighbors.

Now by the Delaunay property there is some vertex p in the diametral ball
between q and q̄ which is a Delaunay neighbor of q. Again, p cannot be a
1-feature size witness for s, as this would cause s to be queued.

17

If s is an end segment, notice that no such p can exist. Every non-end
segment adjacent to a segment in the spindle of s has length of |s| or 2|s|, and
thus there is no vertex p on one of these segments at a distance of less than |s|
which is not an endpoint of some segment in Spind(s).

If s is a non-end segment, consider the segment ŝ which was split forming s.
If q̄ is a 1-feature size witness for ŝ, then ŝ fails the desired feature size bound
(see Figure 9(a)). However vertex p, which was inserted before q, was inserted
as the midpoint of a segment of length 2|p−q| < 2|s|. This violates the split size
property (and thus the inductive hypothesis). Otherwise ŝ is an end segment
and q̄ lies on an adjacent input segment (see Figure 9(b)). Let q0 be the input
vertex which is an endpoint of ŝ. In this case, there is a vertex, denoted p̄, on
the input segment containing q̄ such that

|q − q0| = |p̄ − q0|.

The diametral ball between q and p̄ only intersects line containing segment s in
the interior of s. So q has a Delaunay neighbor in this ball and this Delaunay
neighbor must be a 1-feature size for s. Thus s is unacceptable.

sq

p

q̄

(a) Diagram for Case 1 in which s is a
non-end segment and p prevents q and
q̄ from being Delaunay neighbors.

sq

q0p

q̄ p̄

ŝ

(b) Diagram for Case 1 in which s

is a non-end segment formed as the
result of the split of an end segment.

Figure 9: Diagrams for Lemma 10 Case 1

Case 2. Consider any segment s which is not newly formed. Again we assume
this segment s fails the inductive hypothesis and seek a contradiction. The
first criteria of the inductive hypothesis cannot fail as the input vertices and
endpoints of s did not change in the most recent insertion to the mesh (and
thus this statement holds by the inductive hypothesis). So the second criterion
must fail: s cannot be queued, |s| >

√
2 fs1(s), and there is a segment s̄ which

is a 1-feature size witness for s with dist(s, s̄) ≤ |s|√
2
, and s̄ has an endpoint q̄

is such that |q̄ − q| < |s| for some endpoint q of s. This vertex q̄ must be the
most recent vertex added to the mesh since the inductive hypothesis held at the
previous step.

Let ŝ denote the super-segment of s̄ which was split by the insertion of q̄
and let q′ denote the unlabeled endpoint of s. Next, we possibly relabel s̄ and
q if there is a better selection for our purposes.

(Relabel 1) By possibly relabeling, s̄ can be selected to be the subsegment of ŝ
which is closer to s. This swap can be made because if the original
selection of s̄ was incorrect, then the closer subsegment also satisfies

18

the same set of necessary properties. Then the nearest vertex on ŝ to

s must be in the interior of ŝ since dist(s, ŝ) ≤ |s|
2 while dist(q, ŝ) >

|s|√
2

and dist(q′, ŝ) > |s|√
2

(by the inductive hypothesis).

(Relabel 2) Suppose q′ is the nearest vertex on s to s̄ and |q′ − q̄| ≤ |s|. Then
replace q by q′.

Since s is not on the queue, then q and q̄ cannot be Delaunay neighbors. As
in Case 1, q must have a Delaunay neighbor p in the diametral ball between q
and q̄ which cannot be a 1-feature size witness for q. If p is the endpoint of some
segment on the spindle of s, replace q with p and s with the segment in Spind(s)
which contains p. This new s must have the same length as the original s as
otherwise s would be queued. The Delaunay property can be applied again since
the new q and q̄ cannot be neighbors. This can be repeated until a vertex p is
found which is not the endpoint of a segment in Spind(s), lies in the diametral
ball between q and q̄ and is not a 1-feature size witness for s. This configuration
is depicted in Figure 10. As p cannot be a 1-feature size witness for s, p cannot
be an input vertex and thus p belongs to some segment sp.

s q

p

q̄

q′

sp

s̄

ŝ

Figure 10: Segment s fails the inductive hypothesis, q̄ is a nearby feature size
witness to s and p is not a 1-feature size witness for s.

Next, we show that s is a 1-feature size witness for s̄. If not, s must be
a non-end segment on an input feature which is adjacent to s̄ (since s̄ is a 1-
feature size witness for s). In this situation, p cannot exist since it would lie in
the end segment adjacent to q (which is in Spind(s̄)). See Figure 11. Thus s is
a 1-feature size witness for s̄.

Now, we will utilize the Delaunay property, the split size property and a
couple geometric facts to assert the following inequalities:

|s| > |q − q̄| > |q − p| > |sp| ≥ |s̄| ≥ |s|
2

.

Each of these inequalities is now justified.

(i) |s| > |q− q̄| follows from the assumption that s fails the inductive hypoth-
esis.

(ii) |q − q̄| > |q − p| follows from the construction of p and the Delaunay
property.

19

s

q

q̄
s̄

ŝ

Figure 11: If s is a non-end segment and s̄ is an end segment, p cannot exists
as it must lie in the end segment adjacent to q.

(iii) |q − p| > |sp| is a result of Proposition 4.

(iv) |sp| ≥ |s̄| follows from the split size property at the time when p was
inserted.

(v) |s̄| ≥ |s|
2 is a result of the split size property before q̄ is inserted.

Finally, a contradiction will be achieved by showing |s̄| ≥ |q − q̄| in three
different subcases.

Subcase A. Suppose that q is the nearest vertex on s to s̄. Letting x̄ be the
nearest vertex on s̄ to s as in Figure 12(a), observe that

|s|2
2

+ |x̄ − q̂|2 > |q − x̄|2 + |x̄ − q̂|2 = |q − q̂|2 ≥ |s|2.

Thus, |x̄− q̂| > s√
2

> |q− x̄|. See Figure 12(a). Then |s̄| can be estimated using

the Pythagorean theorem:

|s̄|2 ≥ |q̄ − x̄|2 + |x̄ − q̂|2
> |q̄ − x̄|2 + |q − x̄|2
= |q − q̄|2.

Thus |s̄| ≥ |q − q̄|.
Subcase B. Let the nearest vertex on s to s̄, denoted x, be in the relative interior
of s. In this case, note that the nearest points between the lines containing s
and s̄ occur in the segments s and s̄. Denote these nearest points on s and s̄ by
x and x̄ and conclude that |x − x̄| is orthogonal to s and s̄.

Let P be the plane containing s̄ which is orthogonal to |x − x̄| and let π
denote the projection of points into plane P , depicted in Figure 12(c). Let r
be the radius of the disk D = P ∩ B(q, |s|) so r2 + |x − x̄|2 = |s|2. Then q̄ ∈ D
(by the failure of the inductive hypothesis) and q̂ /∈ D (since |s̄| ≥ |s|). For an
appropriate vertex p to exist, (x− q) · (q̄− π(q)) < 0. If s is a non-end segment,
this is a result of the fact that p cannot lie in the interior of s and thus does not
lie in π(s). In the case of an end segment, q′ is an input vertex and the distance

20

q

s̄x̄q̄ q̂

≥ |s|
< |s|√

2

< |s|

(a) Subcase A

q′

s̄q̄ q̂

≥ |s|≥ |s|
< |s|√

2

(b) Subcase C

π(s) π(q)

s̄

x̄

q̄

q̂

D

r

a

b

(c) Subcase B

Figure 12: Diagram for Case 2 of Lemma 10

from q′ to p must be at least 3
2 |s|, since |sp| ≥ |s|

2 . The law of cosines gives that
cos(∠pπ(q)π(q′)) ≤ − 1

4 and thus (x − q) · (q̄ − π(q)) < 0 holds.
Let a be the length of the component of q̄ − q in the direction of s and let b

be the length of the component of q− q̄ which is orthogonal to both s and x− x̄
as seen in Figure 12(c). This gives the following sequence of inequalities:

|s̄|2 = |q̄ − q̂|2 ≥ (r + a)2 + b2

> r2 + a2 + b2

≥ |s|2
2

+ a2 + b2

≥ |x − x̄|2 + a2 + b2

= |q − q̄|2.

Thus we have achieved the desired inequality, |s̄| > |q − q̄|.
Subcase C. Suppose that q′ is the nearest vertex on s to s̄ as depicted in
Figure 12(b). By (Relabel 2), we can conclude that the distance from each of
the endpoints of s̄ to q′ is at least |s|. The minimum distance from q′ to s̄ is

less than |s|√
2
, and so |s̄| > |s|. Combining with inequality (i), this implies that

|s̄| > |q − q̄|.
The inequality |s̄| > |q − q̄| holds in each of the three cases, and thus a

contradiction has been reached in each case.

21

The estimates in the Lemma 13 will prove essential in the later steps. The
current refinement ensures that the length of each segment is a good estimate
(up to a factor of 4

√
2) of the 1-feature size on the segment.

Lemma 10 would be much simpler to prove if the split size property could
be replaces with a requirement that the length of segments which are split form
a non-increasing sequence. Unfortunately, this is not the case. Consider a mesh
as outlined in Figure 13(a). Notice that the length two segment is not queued
initially, as all vertices are sufficiently far from its endpoints. When the leftmost
of the length one segments is split, this midpoint causes the longer length two
segment to be queued. See Figure 13(b).

1.99

1

> 2

2

(a) Initial Mesh

1st Split

2nd Split

(b) Refined Mesh

Figure 13: Sequence of split segment lengths is not monotone.

While the length of segments which are split increases, this example does
not break the inductive hypothesis! It is important to notice in this case that
the initial long segment (of length two which will be denoted by s) has a feature
size of 1.99 meaning that initially, |s| <

√
2 fs1(s).

(Step 2a) Split segments to improve the 1-feature size estimate.

This step is a simple operation: split all segments into fourths. This is
needed as the 1-feature size bound on the segment lengths found in the previous
section is not quite strong enough for the algorithm in the next step. Figure 14
shows the result of this step on the example input. This additional refinement
strengthens to the bound determined in Step 1b which will be needed in the
analysis of Step 2b.

The bounds from Lemmas 9 and 10 are now replaced with slightly different
bounds.

Lemma 11. Following Step 2a, for any segment s,

1

16
fs1(s) ≤ |s|.

22

Figure 14: Example mesh following Step 2a.

Proof. Let s be a subsegment of some segment ŝ which existed at the end of
Step 1b. It follows that

fs1(s) ≤ fs1(ŝ) ≤ 4|ŝ| = 16|s|

and the lemma holds.

Lemma 12. Following Step 2a, for any segment s satisfies

|s| ≤ 1

2
√

2
lfs1(s).

Proof. Following Step 1b, |ŝ| ≤
√

2 fs1(ŝ) ≤
√

2 lfs1(ŝ), for all segments ŝ. If s is
a subsegment of ŝ, then lfsi(ŝ) ≤ lfsi(s). Now let s be one of the four segments
created during this step from segment ŝ. Then,

|s| =
1

4
|ŝ|

≤
√

2

4
lfs1(ŝ)

≤ 1

2
√

2
lfs1(s).

Note that the estimate |s| ≤ 1
2
√

2
fs1(s) may not hold for some segments

created during Step 2a. When end segments are split, newly formed non-end
segments may have 1-feature size which is much smaller than the 1-feature size
of the original end segment .

(Step 2b) Estimate lfs on all segments via Delaunay refinement.

In this step, segments and triangles (in the current Delaunay triangulation
of the faces) are split to estimate the local feature size on the segments. This is
performed via a Delaunay refinement algorithm which is given in Algorithm 8.

23

Algorithm 8 Estimate Feature Size 2D - Step 2b

Action Insert the circumcenter of a segment or triangle.
Priority Triangles are given highest priority, in any order. Segments

are then prioritized by length.
Unacceptability A segment s is unacceptable if it has an endpoint q with a

Delaunay neighbor p such that |q − p| < |s| and either p is a
local feature size witness for s or p is a 1-feature size witness
for s. A triangle t is unacceptable if it has a vertex q with
Delaunay neighbor p such that |p − q| < 2Rt and p does not
lie in the face containing t.

Safety It is not safe to split a triangle in face f if its circumcenter
c will have a Delaunay neighbor q which is the endpoint of a
segment s in face f and |c − q| < |s|.

Figure 15: (Left) Example mesh following Step 2b. (Right) Enlarged mesh of
one of the smaller squares.

The priority rule in this algorithm is atypical: higher dimensional simplices
are usually processed first. This fact will be used in the proof but it is mainly
used to simplify the arguments. It is likely that the same (or very similar)
results hold using a more traditional priority queue.

The mesh resulting from Step 2b in our running example is given in Fig-
ure 15. This is the only step in which vertices are added in faces rather than
just on segments.

First, Theorem 5 can be shown using standard ideas from the analysis of
Delaunay refinement algorithms.

Proof of Theorem 5. Lemma 11 implies |s| ≥ 1
16 fs1(s) for all initial segments.

It must be shown that any segment s formed during Step 2b also satisfies the
bound. A segment is only split if it is queued and segments are only queued if
there is a nearby 1-feature size witness or local feature size witness. In the first
case, an identical argument to that in Lemma 9 implies that 1

4 fs1(s) ≤ |s|. In
the second case, a very similar argument yields 1

4 lfs(s) ≤ |s|.

Theorem 6 is an immediate result of the next two lemmas.

24

Lemma 13. Upon termination of Step 2b, each segment s satisfies

|s| ≤ 5

3
lfs(s).

Proof. This inequality is shown by induction. Specifically, we show the following
inductive hypothesis.

Inductive Hypothesis Let s be a segment such that |s| > 5
3 lfs(s). If s is

not on the queue then there is some triangle t which is on the queue.

First, if the inductive hypothesis holds, then the desired bound holds at
termination since whenever the desired bound fails, the queue is not empty.
Next, suppose that s is some segment such that |s| > 5

3 lfs(s) and s is not
queued. We will show that this implies that some triangle must be on the
queue.

Following Step 2a, |s| ≤ lfs1(s)

2
√

2
for all segments s. Since splitting a segment

decreases its length and cannot increase its local feature size, this bound will
hold on all segments throughout the step. This ensures that no segment or input
vertex can be the witness to the local feature size of s. Thus, there must be an
input face f such that dist(s, f) = lfs(s). Using Proposition 6, conclude that
there is some x in a face f and an endpoint q of s such that lfs(s) = |x − q|,
and the vector q − x is orthogonal to the plane containing f .

Let L denote the line containing s, P denote the plane containing f , and π
denote the projection function into P . Suppose there is a segment s′ ∈ Spind(s)
with endpoint q′ which is closer to P than q. First, estimate the distance from
x to the boundary of f , ∂f :

dist(x, ∂f)2 = dist(q, ∂f)2 − |x − q|2

≥ 8|s|2 − 9

25
|s|2.

So dist(x, ∂f) ≥ 2|s|. Considering any vertex p ∈ s′,

|π(q′) − x| ≤ |q′ − q| ≤ 2|s|.

Thus π(q′) ∈ f . This means that s and q can be replaced with s′ and q′ and
the local feature size bound still fails. Thus without loss of generality, assume
that s is the nearest segment in Spind(s) to P .

In two cases, we show that the triangle t in f which contains x has been
placed on the queue.

Case 1. Suppose that q is an input vertex. Now, let B be the ball of radius |s|
2

with q on the boundary and x on its diameter containing q as in Figure 16(a).
The segment s is not on the queue, so q cannot have any Delaunay neighbors in
B which witness the feature size of s. Since q is an input vertex and the nearest
vertex on any segment containing q to face f , this means that B must be empty.

Proposition 7 implies that x belongs to some triangle in f with circumradius

of at least
√

2
3 |q − x| as in Figure 17. Then applying Proposition 8 ensures

25

s

q

xf

B ≤ 3
5 |s|

(a) Case 1

s

q

x f

B′ ≤ 3
5 |s|

(b) Case 2

Figure 16: Delaunay neighbors to vertex q are considered in different balls in
the the two different cases.

s
q

px

f

t

<
√

2
3 |q − x|

Figure 17: Diagram for Case 1.

that a vertex p of t must have a Delaunay neighbor which is not in the face at

distance of at most
√

5
3 |q − x| < 2Rt. Thus t has been queued at some step of

the algorithm.

Case 2. Suppose that q is not an input vertex. Let q0 be an input vertex on the
segment containing s. First, claim that |q0 − q| ≥ |s|. If s is an end segment,
this is trivial. If s is the subsegment of an end segment which existed at the
end of Step 0, then this holds because s must be produced by a sequence of
midpoint insertions. If s is a subsegment of a non-end segment which existed
following Step 0, then q0 is a 1-feature size witness for s and Step 2a ensures
that |s| ≤ 1

2
√

2
fs1(s) < |q − q0|.

Next, consider the angle θ between L and π(L) as in Figure 18(a). Using
the fact that q is interior to an input segment, we will show that sin θ ≤ 3

5 . Let
y = L ∩ P . If sin θ > 3

5 then |q − y| ≤ |s| which means that y is contained in
the input segment containing s and thus cannot be contained in f . This means
that there is some point z on the segment xy contained in the boundary of f .
Then the distance between z and q is less than |s|, meaning lfs1(s) < |s|. This
violates the bound given in Step 2a which is maintained by the algorithm.

Let B′ be a ball of radius |s|
2 which has a diameter with one endpoint at q

and intersects π(L) as in Figure 16(b). We assert that if B′ is not empty, then
the neighbor of q which lies in B′ must be a local feature size witness for s. If

26

f

s

q

x

y

z

L

π(L)

q0

θ

(a) The angle between the input
segment containing s and f can-
not be large.

s

q

x f

c
B′

x0

θ

|s|
2

(b) Estimating |x − x0|.

Figure 18: Diagrams for Case 2.

s is a non-end segment, this is clear as B′ only touches the line containing s at
q. If s is an end segment, let q0 be the input vertex which is an endpoint of s.
The ball B′ is below the cone formed by rotating L around the line containing
q0 and π(q0). Since q is the nearest vertex to P on the spindle of s, this implies
that B′ does not intersect any input segment containing q0.

Since s is not queued and any vertex in B′ would serve as an appropriate
witness to cause s to be queued, B′ must be empty.

Next we seek to apply Proposition 7 based on the fact that B′∩P∩f = ∅. Let

c be the center of B′ and let x0 = π(c). As seen in Figure 18(b), |x−x0| = |s| sin θ

2
and the radius of B′ ∩ P is

√
|s|2
4

sin2 θ − |q − x|2 + |q − x||s| cos θ.

Using Proposition 7, conclude that the triangle t containing x has circumradius
of at least

Rt ≥
√
|q − x||s| cos θ − |q − x|2.

Since |q − x| < 3
5 |s| and cos θ ≥ 4

5 ,

Rt ≥
√
|q − x||s| cos θ − |q − x|2

≥ |q − x|
√

5

3
· 4

5
− 1

≥ |q − x|√
3

.

Now, by Proposition 8, there is a vertex of triangle t which has a Delaunay
neighbor which is not in f and thus t has been queued.

27

In Case 1 and Case 2 it was shown that t must have been put on the queue.
If t is on the queue, then the inductive hypothesis holds. If the triangle queue is
empty, deduce that t was processed and its circumcenter was rejected for being
too close to a nearby edge based on the safety rule.

The circumcenter of t is only rejected if there was some segment ŝ with
endpoint q̂, such that |ct − q̂| < |ŝ| and ŝ lies in f . Since f is disjoint from the
input feature containing s, this means that s must be a 1-feature size witness
for ŝ and vice versa. Then,

|q − q̂|2 = |q − x|2 + |x − q̂|2
≤ 3R2

t + (|ct − q̂| + |x − ct|)2
≤ 3R2

t + (|ŝ| + Rt)
2

≤ 7|ŝ|2. (1)

Above, the fact |ŝ| > |ct − q̂| ≥ Rt was used to estimate Rt by |ŝ|. The
second inequality holds since the circumdisk of t must be empty by the Delaunay
property.

The estimate in Lemma 12 is maintained throughout this step, so dist(s, ŝ) ≥ 2
√

2|ŝ|.
This inequality contradicts the (1) since

√
7 < 2

√
2 =

√
8.

Also, it is important that this step maintains the estimate on the 1-feature
size derived in Step 1b.

Lemma 14. Upon termination of Step 2b, each segment s satisfies

|s| ≤
√

2 fs1(s).

This lemma is immediate for most of the segments. Any end segment must
satisfy this bound as |s| ≤ 1

2
√

2
fs1 following Step 2a and reducing the length of

an end segment can only increase its 1-feature size. Similarly, for any segment
which is a subsegment of a non-end segment which existed at the end of Step 1b,
the same argument applies. This leaves only newly formed non-end segments
which are subsegments of end segments of the mesh produced by Step 1b.

This proof is nearly identical to the proof of Lemma 10. In the base case,
any segment which fails the bound must be queued since adjacent segments have
the same length and thus no vertices on the same input segment can prevent
the segment in question from being queued. In each step of the proof, nearby
Delaunay neighbors of the endpoints of a segment are considered. In the Step 1b
proof, either these neighbors are appropriate feature size witnesses to cause the
segment to be queued, or they lie on an input segment. In Step 2b, this is still
the case, due to the safety rule. This ensures that the endpoints of segment s
will not have any Delaunay neighbors in any plane containing s within a distance
of |s|.

6 Examples

The following three examples are given to demonstrate the 3D algorithm for
estimating local feature size.

28

Figure 19: Initial PLC input and final refined mesh for the pyramid example.

Figure 20: Base of the pyramid following steps 0, 1a, 1b, 2a, and 2b.

Example 1. The first example is a square pyramid shown in Figure 19. The
mesh of the square base produced following each step of the algorithm can be
seen in Figure 20. Similar output for one of the triangular sides is given in
Figure 21.

Example 2. This example consists of a wheel of 20 faces which lies slightly
above a disjoint square as depicted in Figure 22. The mesh of the square base
produced following each step of the algorithm can be seen in Figure 23. Similar
output for one of the rectangular “spokes” of the wheel is given in Figure 24.
Note that the algorithm still terminates even in the presence of acute angles in
the input. The number of vertices after each step is listed in Table 1.

Example 3. In the final example, we consider a PLC containing two non-convex
faces shown in Figure 25. The refinement of one of these faces is shown in
Figure 26.

In these examples, nearby edges typically cause more refinement than nearby
faces. This is a result of Step 2a which causes segments to be split in fourths
after they have been refined to realize fs1. This can also be seen in Theorem 5
as each segment is guaranteed to have length of at least 1

4 lfs(s) or 1
16 fs1(s). A

Figure 21: Side of the pyramid following steps 0, 1a, 1b, 2a, and 2b.

29

Figure 22: Wheel example input.

Figure 23: Base plane of the wheel example following steps 0, 1a, 1b, 2a, and
2b.

Figure 24: One ”spoke” in the wheel example following steps 0, 1a, 1b, 2a, and
2b. The center of the wheel is at the bottom while the disjoint square is to the
left of this face.

Figure 25: Example containing non-convex input faces.

30

Table 1: Number of vertices following each step of the algorithm for the wheel
example.

Step 0 1a 1b 2a 2b
Vertices 72 202 518 2,051 11,351

Figure 26: One of the faces in Example 3 following steps 0, 1a, 1b, 2a, and 2b.

small fs1 does in practice lead to more refinement than simply a small lfs as
was suggested by the constants in the proof.

The proof of Lemma 13 (and thus Theorem 6) uses Step 2a to ensure a bound
on each segment’s length by lfs1. For some segments, this is an over-refinement
since they were refined based on mfs1 and not lfs1. We continue to study an
adaptive variant of Step 2a which attempts to only split segments in fourths
when absolutely necessary.

In practice, the algorithm has been seen to terminate even after changing
Step 2a to only split segments in half (instead of fourths). This significantly
reduces the output size (often by 50% or more in cases containing small input
angles between faces). In further studies, we will seek to justify this modifica-
tion of the algorithm in the proof or give a counterexample showing that the
algorithm can fail without performing Step 2a as specified.

A Geometric Facts

Proof of Proposition 1. Let q ∈ P ∩ ∂B and let p ∈ P ∩ B. Then there exists
a ball B′ such that B′ (B and {q, p} ⊂ ∂B′ (see Figure 27). If P ∩ B′ 6= ∅,
repeat the previous construction using B′ instead of B. Eventually, P ∩B′ = ∅,
since P is finite. Then q must have some Delaunay neighbor in ∂B′, denoted
p′. (If P is in general position, then p = p′.) Since B′ \ B = q, conclude that
p′ ∈ B.

31

q

p

B

B′

Figure 27: Diagram for the proof of Proposition 1

Proposition 2. Let s and s̄ be segments with |s| ≥ |s̄|. If dist(s, s̄) < |s|√
2
, then

there are endpoints q on s and q̄ on s̄ such that |q − q̄| < |s|.

Proof. Suppose that all pairs of endpoints are such that |q − q̄| ≥ |s|. The
Pythagorean theorem and the fact that |s| ≥ |s̄| imply that

dist(q, s̄) ≥
√

3

2
|s|

for either endpoint q of s. Again applying the Pythagorean theorem yields that

dist(s, s̄) ≥ |s|√
2

which completes the proof.

The constant in Proposition 2 is sharp. Consider two skew segments, the
first with endpoints (−1, 0, 0) and (1, 0, 0) and the second between (0,−1,

√
2)

and (0, 1,
√

2). Then the distance between the two segments of
√

2 and the
distance between any pair of endpoints is 2.

The next proposition characterizes a special property which holds when the
spindle of an end segment contains segments of equal length.

Proposition 3. Let se be an end segment such that

|se| = min
s′∈ Spind(se)

|s′|

Let sn be a non-end segment on an input segment which is adjacent to se. If

|se| > |sn| and dist(sn, se) ≤ |sn|√
2
, then there are endpoints of sn and se, given

by qn and qe, respectively, such that |qn − qe| ≤ |sn|.

Proof. Let q0 be the input vertex contained in se. Pick xe ∈ se and xn ∈ sn

such that
|xe − xn| = dist(sn, se).

32

Since sn and se are coplanar, at least one of the points (either xn or xe) is an
endpoint of its segment. Since sn and se are not parallel, the choice of xn and
xe is unique. First, we argue that xn is an endpoint of sn. This follows because
if not, then the nearest point on sn is the nearest point on the line containing
sn to xe. For either endpoint of se, the nearest point on this line is at most a
distance |se| away from q0. Since se is the shortest segment in its spindle, this
point cannot be contained in sn.

So, xn must be an endpoint of sn. Since xn is a vertex, it will be denoted
qn. If xe is an endpoint of se, the desired bound holds since by letting qe be
this endpoint, we observe,

|qe − qn| = dist(sn, se) ≤
|sn|√

2
< |sn|.

Otherwise, xe lies in the interior of se. Let a,b,c and d denote the distances
shown in Figure 28(a). Note that c = dist(sn, se) and b + d = |se|. Also,
a ≥ |se| and thus

∠q0qeqn ≥ ∠q0qnqe. (2)

Moreover,

|se|2 ≤ a2

= b2 + c2

≤ b2 +
|sn|2

2

≤ b2 +
|se|2

2
.

Thus b2 ≥ |se|2
2 ≥ c2. This means that ∠qnq0qe ≥ π

4 . Combining this with (2)
implies that

∠q0qeqn ≥ 3π

8
>

π

4
.

This means that c > d and thus

|qe − qn|2 = c2 + d2 ≤ 2c2 ≤ |sn|2

which completes the proof.

Proposition 4. Let s be a segment with endpoint q such that

|s| = min
s′∈ Spind(s)

|s′|.

Let p be a Delaunay neighbor of q such that p is not a feature size witness for s,
p is not an endpoint of any segment in the spindle of s, and |q − p| < |s|. Then
p belongs to a segment sp such that |sp| ≤ |q − p|.

33

sn

se xe

qn

qe
q0

a

b

c
d

(a) Proposition 3

p

qs

x
q′

(b) Proposition 4

Figure 28: Diagrams for the proofs of two propositions.

Figure 29: Given any triangle, the three diametral balls between vertices and
the circumcenter cover the triangle.

Proof. If p lies on the same input segment as q, then there clearly exists sp

between p and q such that |sp| ≤ |p − q|.
Otherwise, s is an end segment and p lies on an adjacent input segment,

denoted s0. Let x be the nearest point on this adjacent input segment to q.
The result holds due to the following sequence of inequalities:

|q − p| > |x − p| > |q′ − p| ≥ |sp|.

See Figure 28(b).

Proposition 5. Let t be a triangle, and let x ∈ t. Then there is a vertex qt of
t such that |x − qt| ≤ Rt.

Proof. Let ct be the circumcenter of triangle t. Observe that t is covered by
the three diametral balls between each vertex and the circumcenter. See Figure
29.

Proposition 6. Let s be a segment in a PLC. Then one of the following holds.

• lfs(s) = lfs1(s).

34

• There is some endpoint q of s and x in the interior of a disjoint face such
that

dist(q, x) = lfs(s),

and qx is orthogonal to the face containing x.

Proof. Suppose lfs(s) 6= lfs1(s). Then there exists a face f and point x ∈ f
such that f is disjoint from s and lfs(s) = |x−y| for some y ∈ s. For any such f ,
x and y, x /∈ ∂f since otherwise x would be contained in a segment of the PLC
which is disjoint from s and thus x would be a witness that lfs(s) = lfs1(s).
This means that x−y is orthogonal to the face f . Further, y is an endpoint of s
or s is parallel to some vector in the face f . In the former case, the proposition
has been shown. In the latter, let P be the plane containing f . Then

min
x∈P

|x − y| = min
x∈P

|x − y1|

holds for any y, y1 ∈ s. Since

arg min
x∈P

|x − y| /∈ ∂f

for any y ∈ s, conclude that arg minx∈P |x − y| ∈ f for all y ∈ s. Thus y can be
selected as an endpoint of s which completes the proof.

Proposition 7. Consider a set of coplanar vertices P. Suppose ball B(x0, R)
contains no vertices of P. Consider x ∈ B(x0, R) and x in the convex hull of
P. Let t be a triangle in the Delaunay triangulation of P containing x. Then

Rt ≥
√

R2 − |x − x0|2.

Using the fact that B(x, R−|x−x0|) ⊂ B(x0, R) only ensures that Rt ≥ R − |x − x0|.
This weaker bound will hold whenever x is in the circumdisk of t. The stronger
bound comes from the fact that x is actually inside triangle t. This is depicted
in Figure 30.

Proof. If B(x0, R) ⊂ B(t) or B(x0, R) = B(t), then Rt ≥ R and the re-
sult follows. Next, no triangle t exists such that B(t) ⊂ B(x0, R) since then
∂B(t) \ B(x0, R) contains at most one point and B(x0, R) contains no vertices
of P . In the remaining case, both B(x0, R) \ B(t) and B(t) \ B(x0, R) are
nonempty. Let {p1, p2} = ∂B(x, R′)∩ ∂B(x0, R) and let s = p1p2. We consider
two cases depicted in Figure 31.

Case 1. s lies between x and x0. Then by the Pythagorean theorem,

R2 = dist(x0, s)
2 +

|s|2
4

.

Applying dist(x0, s) ≤ |x − x0| leads to the inequality

Rt ≥
|s|
2

≥
√

R2 − |x − x0|2.

35

xx0

min circumradius

no vertices

(a) If point x is contained in the circum-

circle of (Delaunay) triangle t and lies in
disk which contains no vertices, then the
circumradius of t is at least the distance
from x to the boundary of the empty disk.

xx0

min circumradius

no vertices

(b) If point x is contained in (Delaunay) tri-
angle t and lies in an empty disk, then the
lower bound on the circumradius of t is larger
than the distance from x to the boundary of
the empty disk.

Figure 30: Diagrams for Proposition 7.

x

s

x0

B(t)

(a) Case 1.

x

s

x0
B(t)

(b) Case 2.

Figure 31: Two cases in the proof of Proposition 7.

36

ct

x

qt

B(ct, Rt)

(a) Top view

ctx

q y

tqt

≤
√

3Rt

Rt

(b) Side view

Figure 32: Triangle t in Proposition 8

Case 2. s does not lie between x and x0. Let L be the line which is parallel to
s and passes through x0. In this case, observe that

L ∩ B(x0, R) ⊂ B(t).

Thus Rt ≥ R ≥
√

R2 − |x − x0|2.

Proposition 8. Let t be a Delaunay triangle in a face f . Let q be a vertex which
is not in f such that the nearest point to q on the plane containing t, denoted x,
lies in t. If |q−x| <

√
3Rt, then there is a vertex of t, qt, which has a Delaunay

neighbor, p, such that p is not in the face containing t and |qt − p| < 2Rt.

Proof. Let q, t, x be as in the statement of the proposition. Let ct be the
circumcenter of t. Since x lies in t, by Proposition 5, there is a vertex of t,
denoted qt, such that |x − qt| ≤ Rt. See Figure 32. Let y = ct + q − x. Then
observe the following properties.

• ∂B(qty) ∩ f is the diametral circle between ct and qt.

• q ∈ B(qty).

Finally, applying Proposition 1, it follows that qt must have a Delaunay neighbor
p in B(qty), and thus |qt−p| ≤ |qt−y| ≤ 2Rt. Moreover, p cannot be in the face
f since the diametral circle of ct and qt must be empty since t is a Delaunay
triangle in the face.

References

[1] Jim Ruppert. A Delaunay refinement algorithm for quality 2-dimensional
mesh generation. J. Algorithms, 18(3):548–585, 1995.

37

[2] Steven E. Pav and Noel J. Walkington. Robust three dimensional Delaunay
refinement. In Proc. 13th Internat. Meshing Roundtable, pages 145–156,
2004.

[3] Michael Murphy, David M. Mount, and Carl W. Gable. A point-placement
strategy for conforming Delaunay tetrahedralization. Internat. J. Comput.
Geom. Appl., 11(6):669–682, 2001.

[4] David Cohen-Steiner, Éric Colin de Verdière, and Mariette Yvinec. Con-
forming Delaunay triangulations in 3D. Comput. Geom., 28(2-3):217–233,
2004.

[5] Siu-Wing Cheng and Sheung-Hung Poon. Three-dimensional Delaunay
mesh generation. In Proc. 14th Symp. Discrete Algorithms, pages 295–304,
2003.

[6] Hang Si and Klaus Gartner. Meshing piecewise linear complexes by con-
strained Delaunay tetrahedralizations. In Proc. 14th Internat. Meshing
Roundtable, pages 147–163, 2005.

[7] Hang Si. On refinement of constrained Delaunay tetrahedralizations. In
Proc. 15th Internat. Meshing Roundtable, pages 510–528, 2006.

[8] Siu-Wing Cheng, Tamal K. Dey, and Edgar A. Ramos. Delaunay refinement
for piecewise smooth complexes. In Proc. 18th Symp. Discrete Algorithms,
pages 1096–1105, 2007.

[9] Siu-Wing Cheng, Tamal K. Dey, and Joshua A. Levine. A practical Delau-
nay meshing algorithm for a large class of domains. In Proc. 16th Internat.
Meshing Roundtable, pages 477–494, 2007.

[10] Tamal K. Dey and Joshua A. Levine. Delaunay meshing of piecewise
smooth complexes without expensive predicates. Technical Report OSU-
CISRC-7108-TR40, Computer Science and Engineering Research Center,
Ohio State University, 2008.

[11] Alexander Rand and Noel Walkington. 3D Delaunay refinement of sharp
domains without a local feature size oracle. In Proc. 17th Internat. Meshing
Roundtable, 2008.

[12] Siu-Wing Cheng and Sheung-Hung Poon. Three-dimensional Delaunay
mesh generation. Discrete Comput. Geom., 36(3):419–456, 2006.

[13] L. Paul Chew. Guaranteed-quality triangular meshes. Technical Report
TR-89-983, Computer Science Department, Cornell University, 1989.

[14] Alper Üngör. Off-centers: A new type of Steiner points for computing size-
optimal quality-guaranteed delaunay triangulations. In Proc. 6th Latin
Amer. Symp. Theor. Inform., pages 152–161, 2004.

38

[15] Andrey Chernikov and Nikos Chrisochoides. Three-dimensional semi-
generalized point placement method for delaunay mesh refinement. In 16th
Internat. Meshing Roundtable, pages 25–44, October 2007.

[16] Ravi Jampani and Alper Üngör. Construction of sparse well-spaced
point sets for quality tetrahedralizations. In Proc. 16th Internat. Mesh-
ing Roundtable, pages 63–80, 2007.

[17] L. Paul Chew. Guaranteed-quality mesh generation for curved surfaces. In
Proc. 9th Symp. Comput. Geom., pages 274–280, 1993.

[18] Benôıt Hudson, Gary Miller, and Todd Phillips. Sparse Voronoi refinement.
In Proc. 15th Internat. Meshing Roundtable, pages 339–356, 2006.

[19] Gary L. Miller, Steven E. Pav, and Noel J. Walkington. Fully incremental
3D Delaunay refinement mesh generation. In Proc. 11th Internat. Meshing
Roundtable, pages 75–86, 2002.

[20] Gary L. Miller. A time efficient Delaunay refinement algorithm. In Proc.
15th Symp. Discrete Algorithms, pages 400–409, 2004.

[21] Umut A. Acar, Benôıt Hudson, Gary L. Miller, and Todd Phillips. SVR:
practical engineering for a fast 3D meshing algorithm. In Proc. 16th Inter-
nat. Meshing Roundtable, pages 45–62, 2007.

[22] Alexander Rand. Reordering Ruppert’s algorithm. In Proc. 18th Fall Work-
shop Comput. Geom., 2008.

[23] Charles Boivin and Carl Ollivier-Gooch. Guaranteed-quality triangular
mesh generation for domains with curved boundaries. Internat. J. Numer.
Methods Engrg., 55(10):1185–1213, 2002.

[24] Jonathan Richard Shewchuk. Mesh generation for domains with small an-
gles. In Proc. 16th Symp. Comput. Geom., pages 1–10, 2000.

[25] Gary L. Miller, Steven E. Pav, and Noel J. Walkington. When and why
Ruppert’s algorithm works. In Proc. 12th Internat. Meshing Roundtable,
pages 91–102, 2003.

39

