Recitation Handout 17: Radius and Interval of Convergence

Interval of Convergence

The interval of convergence of a power series: $\sum_{n=0}^{\infty} c_n \cdot (x-a)^n$ is the interval of x-values that can be plugged into the power series to give a convergent series.

The center of the interval of convergence is always the anchor point of the power series, a.

Radius of Convergence

The radius of convergence is half of the length of the interval of convergence. If the radius of convergence is R then the interval of convergence will include the open interval:

$$(a - R, a + R)$$
.

Finding the Radius of Convergence

To find the radius of convergence, R, you use the Ratio Test.

Step 1: Let $a_n = c_n \cdot (x - a)^n$ and $a_{n+1} = c_{n+1} \cdot (x - a)^{n+1}$.

Step 2: Simplify the ratio
$$\frac{a_{n+1}}{a_n} = \frac{c_{n+1} \cdot (x-a)^{n+1}}{c_n \cdot (x-a)^n} = \frac{c_{n+1}}{c_n} \cdot (x-a)^n$$

Step 3: Compute the limit of the absolute value of this ratio as $n \rightarrow \infty$.

Step 4: Interpret the result using the table below.

Limit of absolute value of ratio as $n \rightarrow \infty$.	Radius of convergence, R.	
Zero.	Infinite. The power series converges for all values of <i>x</i> .	
$N \cdot x - a $, where N is a finite, positive number.	$R = \frac{1}{N}$. The interval of convergence includes	
	$\left(a - \frac{1}{N}, a + \frac{1}{N}\right)$ and possibly the end-points $x = a - \frac{1}{N}$	
	and $x = a + \frac{1}{N}$.	
Infinity.	Zero. The power series converges at $x = a$ and nowhere	
	else.	

Are the end-points in the Interval of Convergence?

Each of the two end-points (x = a - R and x = a + R) may or may not be part of the interval of convergence. To determine whether the end-points are in the interval of convergence, you have to plug them into the power series (one at a time) to get an infinite series. You then use a convergence test to determine whether or not the infinite series converges or diverges. If the infinite series converges, then the end-point that you plugged into the power series is in the interval of convergence. Otherwise, the end-point is not in the interval of convergence.

If you use the ratio test at each end-point you usually get an inconclusive test so it is best to try a different convergence test when investigating the end-points of the interval of convergence.

$$\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n} \cdot \left(x-1\right)^n$$

$$a_n = \frac{a_{n+1}}{a_n} =$$

Limit of absolute value of ratio =

Г

 $\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n+1}}{n} \cdot \left(x-1\right)^n$

End points:	and		
Convergence or divergence	Convergence or divergence at first end-point:		
Convergence or divergence	Convergence or divergence at second end-point:		

$$\frac{a_n}{a_{n+1}} = \frac{a_n}{a_n}$$

Limit of absolute value of ratio =

End points:	and		
Convergence or divergence	Convergence or divergence at first end-point:		
Convergence or divergence	e at second end-point:		

$$\sum_{n=1}^{\infty} \frac{4^n}{n} \cdot (x-3)^n$$

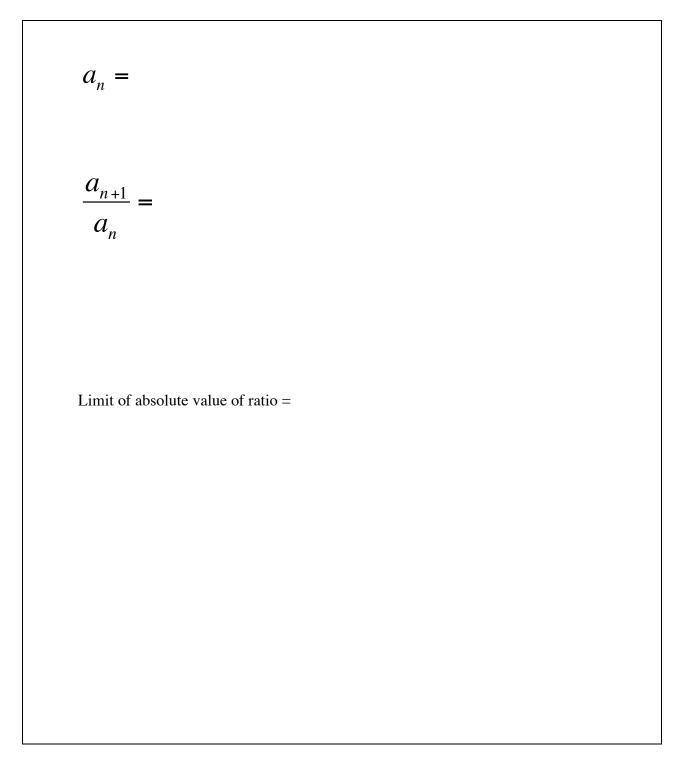
$$\frac{a_n}{a_{n+1}} =$$

Limit of absolute value of ratio =

 $\sum_{n=1}^{\infty} \frac{4^n}{n} \cdot (x-3)^n$

End points:	and	
Convergence or divergence at first end-point:		
Convergence or divergence at second end-p	oint:	

$$1 + 2 \cdot (x+5) + \frac{4!}{(2!)^2} \cdot (x+5)^2 + \frac{6!}{(3!)^2} \cdot (x+5)^3 + \frac{8!}{(4!)^2} \cdot (x+5)^4 + \dots$$



$$1 + 2 \cdot (x + 5) + \frac{4!}{(2!)^2} \cdot (x + 5)^2 + \frac{6!}{(3!)^2} \cdot (x + 5)^3 + \frac{8!}{(4!)^2} \cdot (x + 5)^4 + \dots$$

End points:

and

Convergence or divergence at first end-point:

Convergence or divergence at second end-point:

ANSWERS:

- (a) Radius of convergence = 1. Interval of convergence is (0, 2].
- (b) Radius of convergence = 0.5. Interval of convergence is (-0.5, 0.5).
- (c) Radius of convergence = 0.25. Interval of convergence is [2.75, 3.25).
- (d) Radius of convergence = 0.25. Interval of convergence is (-5.25, -4.75).