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Abstract

Let X be a simplicial complex. X is called d-Leray if the homology groups of any

induced subcomplex of X vanish in dimensions d and higher. X is called d-collapsible

if it can be reduced to the void complex by sequentially removing a simplex of size

at most d that is contained in a unique maximal face. X is called d-representable

if it is the nerve of a family of convex sets in Rd. It was shown by Wegner that

any d-representable complex is d-collapsible and any d-collapsible complex is d-Leray.

Moreover, many combinatorial properties of families of convex sets are known to follow

from the d-Lerayness or d-collapsibility of the nerve of the family.

In this thesis we study different combinatorial, topological and geometric aspects

of simplicial complexes and the relations between them. We focus in particular on the

notions of d-Lerayness, d-collapsibility and d-representability.

First, we prove some general upper bounds on the collapsibility of a complex X (the

minimum integer d such that X is d-collapsible). We then apply these bounds to several

families of simplicial complexes related to different properties of graphs and hypergraphs.

As an application, we obtain some old and new results concerning “rainbow independent

sets” in graphs.

Inspired by results of Montejano and Oliveros, we study the t-tolerance complex of

a complex X. This is the complex whose simplices are formed as the union of a simplex

in X and a set of size at most t. We show that, for any t and d, there is a function

h(t, d) such that the t-tolerance complex of any d-collapsible complex is h(t, d)-Leray.

Next, we study the d-boxicity of a simplicial complex X, which is the minimal k

such that X can be written as the intersection of k d-representable complexes. This is

an extension of the classical notion of boxicity of graphs introduced by Roberts. We

prove tight upper bounds and corresponding lower bounds on the d-boxicity of simplicial

complexes with n vertices, improving upon previous work by Witsenhausen. We also

present a related conjecture about the representability of complexes on n vertices.

Finally, we study certain complexes associated to linear and affine spaces over finite

fields: we investigate the topology of the complex of line-free sets in a finite affine plane

and its relation to blocking sets having certain stability properties, and we study the

asymptotic behavior of the Laplacian eigenvalues of complexes of flags in Fnq , settling a

special case of a conjecture of Papikian.
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Abbreviations and Notations

[n] : the set {1, 2, . . . , n}(
V
k

)
: the collection of all subsets of size k of the set V

2V : the collection of all subsets of the set V

X(k) : the collection of all k-dimensional simplices of the complex X

X(k) : the k-dimensional skeleton of the complex X

X[U ] : the subcomplex of X induced by U

st(X,σ) : the star of the simplex σ in the complex X

lk(X,σ) : the link of the simplex σ in the complex X

dim(σ) : the dimension of the simplex σ

dim(X) : the dimension of the complex X

X ∗ Y : the join of the complexes X and Y

Ck(X;R) : the space of R-valued k-chains of the complex X

Ck(X;R) : the space of R-valued k-cochains of the complex X

H̃k (X;R) : the k-th reduced homology group of X with coefficients in R

H̃k (X;R) : the k-th reduced cohomology group of X with coefficients in R

C(X) : the collapsibility of a complex X

L(X) : the Leray number of a complex X

rep(X) : the representability of a complex X

h(X) : the maximal dimension of a missing face of X

N(C) : the nerve of a family of sets C
CovH,p : the complex of sub-hypergraphs of H with covering number at

most p

IntH : the complex of pairwise intersecting sub-hypergraphs of H
In(G) : the complex whose missing faces are the independent sets of size n

in G

fG(n) : minimal integer k such that any family of k independent sets of

size n in G have a rainbow independent set of size n

η(r, t) : the maximum number of vertices in an r-uniform t-critical hyper-

graph

Tt (K) : the t-tolerance complex of K
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box(G) : the boxicity of the graph G

boxd(X) : the d-boxicity of the complex X

Fq : the finite field of order q

Xq : the complex of line-free subsets of F2
q

X̂q : the complex of line-free subsets of F2
q \ {0}

Fln,q : the complex of flags in Fnq
L+
k (X) : the k-dimensional weighted upper Laplacian on X
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Chapter 1

Introduction

A simplicial complex is a topological space formed as the union of simple building

blocks, called simplices. Simplicial complexes can be naturally associated to various

combinatorial or geometric objects, and the topological structure of these complexes

often sheds light on combinatorial properties of the original object.

In this thesis we study different topological, combinatorial and geometric aspects of

simplicial complexes and the relations between them. We focus on the properties of

d-Lerayness, d-collapsibility and d-representability, which are defined as follows:

Let X be a simplicial complex on vertex set V . For U ⊂ V , the subcomplex of X

induced by U is the complex X[U ] = {σ ∈ X : σ ⊂ U}. Let F be a field. X is called

d-Leray if H̃k (X[U ];F) = 0 for any U ⊂ V and any k ≥ d. The Leray number of X,

denoted by L(X), is the minimum d such that X is d-Leray.

Let η be a simplex of X of size at most d that is contained in a unique maximal face

τ ∈ X. Then, we say that the complex X ′ = X \ {σ ∈ X : η ⊂ σ ⊂ τ} is obtained from

X by an elementary d-collapse. The complex X is called d-collapsible if there exists a

sequence of elementary d-collapses from X to the void complex ∅. The collapsibility of

X, denoted by C(X), is the minimum d such that X is d-collapsible.

Let C = {C1, . . . , Cm} be a family of sets. The nerve of C is the simplicial complex

N(C) = {I ⊂ [m] : ∩i∈ICi 6= ∅}.

A complex X is called d-representable if it is isomorphic to the nerve of a family of

convex sets in Rd. The representability of X, denoted by rep(X), is the minimum d

such that X is d-representable.

The notions of d-collapsibility and d-Lerayness were introduced by Wegner in

the seminal paper [Weg75], where he showed that any d-representable complex is d-

collapsible, and any d-collapsible complex is d-Leray. In the following years, further

research was done on the relations between these properties (see e.g. [MT09, Tan10b])

and on combinatorial applications, in particular in the context of Helly-type problems

(see e.g. [Kal84, AK85, KM05]).

5



Here, we first develop some tools for bounding the collapsibility of a simplicial

complex. We then apply these tools for studying various families of complexes associated

to different properties of graphs, hypergraphs and matrices.

Next, we study the topology of “tolerance complexes”, a family of simplicial com-

plexes related to a “tolerant version” of Helly’s theorem due to Montejano and Oliveros

([MO11]).

We then study the d-boxicity of a complex, a notion related to d-representability,

which generalizes the classical notion of boxicity of a graph due to Roberts ([Rob69]).

Finally, we study two families of complexes associated to vector spaces over finite

fields. The first ones are the complexes of line-free sets in finite affine planes. In order

to determine the homology of these complexes, we study certain stability properties of

affine blocking sets. The second family that we study is that of the complexes of flags

in Fnq . We study the Laplacian eigenvalues of these complexes, solving a special case of

a conjecture of Papikian ([Pap16]).

In the following sections we give a detailed account of our results.

1.1 Minimal exclusion sequences and collapsibility of com-

plexes of hypergraphs

Let H be a finite hypergraph. We identify H with its edge set. The rank of H is the

maximal size of an edge of H.

A set C is a cover of H if A ∩ C 6= ∅ for all A ∈ H. The covering number of H,

denoted by τ(H), is the minimal size of a cover of H.

For p ∈ N, let

CovH,p = {F ⊂ H : τ(F) ≤ p}.

That is, CovH,p is a simplicial complex whose vertices are the edges of H and whose

simplices are the hypergraphs F ⊂ H that can be covered by a set of size at most

p. Some topological properties of the complex Cov([n]r ),p were studied by Jonsson in

[Jon08].

The hypergraph H is called pairwise intersecting if A ∩B 6= ∅ for all A,B ∈ H. Let

IntH = {F ⊂ H : A ∩B 6= ∅ for all A,B ∈ F}.

So, IntH is a simplicial complex whose vertices are the edges of H and whose simplices

are the hypergraphs F ⊂ H that are pairwise intersecting.

Our main results are the following:

Theorem 1.1.1. Let H be a hypergraph of rank r. Then CovH,p is
((
r+p
r

)
− 1
)
-

collapsible.

Theorem 1.1.2. Let H be a hypergraph of rank r. Then IntH is 1
2

(
2r
r

)
-collapsible.

6



The following examples show that these bounds are sharp:

• Let H =
(

[r+p]
r

)
be the complete r-uniform hypergraph on r + p vertices. The

covering number of H is p+ 1, but for any A ∈ H the hypergraph H \ {A} can be

covered by a set of size p, namely by [r+p]\A. Therefore the complex Cov([r+p]r ),p

is the boundary of the
((
r+p
r

)
− 1
)
-dimensional simplex, so it is homeomorphic

to a
((
r+p
r

)
− 2
)
-dimensional sphere. Hence, Cov([r+p]r ),p is not

((
r+p
r

)
− 2
)
-Leray,

and therefore it is not
((
r+p
r

)
− 2
)
-collapsible.

• Let H =
(

[2r]
r

)
be the complete r-uniform hypergraph on 2r vertices. Any A ∈ H

intersects all the edges of H except the edge [2r]\A. Therefore the complex Int([2r]r )

is the boundary of the 1
2

(
2r
r

)
-dimensional cross-polytope, so it is homeomorphic

to a
(

1
2

(
2r
r

)
− 1
)
-dimensional sphere. Hence, Int([2r]r ) is not

(
1
2

(
2r
r

)
− 1
)
-Leray, and

therefore it is not
(

1
2

(
2r
r

)
− 1
)
-collapsible.

A related problem was studied by Aharoni, Holzman and Jiang in [AHJ19], where

they show that for any r-uniform hypergraph H and p ∈ Q, the complex of hypergraphs

F ⊂ H with fractional matching number (or equivalently, fractional covering number)

smaller than p is (drpe − 1)-collapsible.

Our proofs rely on two main ingredients. The first one is the following theorem:

Theorem 1.1.3. Let X be a simplicial complex on vertex set V . Let S(X) be the

collection of all sets {v1, . . . , vk} ⊂ V satisfying the following condition:

There exist maximal faces σ1, σ2, . . . , σk+1 of X such that:

• vi /∈ σi for all i ∈ [k],

• vi ∈ σj for all 1 ≤ i < j ≤ k + 1.

Let d′(X) be the maximum size of a set in S(X). Then X is d′(X)-collapsible.

Theorem 1.1.3 is a special case of a more general result, due essentially to Matoušek

and Tancer (who stated it in the special case where the complex is the nerve of a family

of finite sets, and used it to prove the case p = 1 of Theorem 1.1.1; see [MT09]).

The second ingredient is the following combinatorial lemma, proved independently

by Frankl and Kalai.

Lemma 1.1.4 (Frankl [Fra82], Kalai [Kal84]). Let {A1, . . . , Ak} and {B1, . . . , Bk} be

families of sets such that:

• |Ai| ≤ r, |Bi| ≤ p for all i ∈ [k],

• Ai ∩Bi = ∅ for all i ∈ [k],

• Ai ∩Bj 6= ∅ for all 1 ≤ i < j ≤ k.

7



Then

k ≤
(
r + p

r

)
.

Finally, we present some additional applications of Theorem 1.1.3. In particular, we

obtain the following result:

Let F be a field. Let A be a finite set of matrices in Fm×n. Let

ρ(A) = max{rank(A) : A ∈ span(A)}.

For r ∈ N, define the simplicial complex

MA,r = {B ⊂ A : ρ(B) ≤ r}.

Theorem 1.1.5. Assume that F is infinite. Then, the complex MA,r is r(r + 1)-

collapsible.

1.2 Complexes of graphs with bounded independence num-

ber

Let G = (V,E) be a (simple) graph. A set I ⊂ V is called an independent set in G if no

two vertices in I are adjacent in G. The independence number of G, denoted by α(G),

is the maximal size of an independent set in G. For U ⊂ V , we denote by G[U ] the

subgraph of G induced by U . For every integer n ≥ 1, we define the simplicial complex

In(G) = {U ⊂ V : α(G[U ]) < n}.

For example, I2(G) is the clique complex of G, i.e. U ∈ I2(G) if and only if G[U ] is a

complete graph. For any graph G, the complex I1(G) is just the empty complex {∅}.
Here, we study the collapsibility of the complexes In(G), for several classes of graphs.

Our main motivation is the following problem, presented by Aharoni, Briggs, Kim and

Kim in [ABKK19]:

Let F = {A1, . . . , Am} be a family of (not necessarily distinct) non-empty subsets

of some finite set V . For a positive integer n ≤ m, a rainbow set of size n for F is a set

of n distinct elements in V of the form {ai1 , . . . , ain}, where 1 ≤ i1 < i2 < · · · < in ≤ m
and aij ∈ Aij for each j ≤ n.

Let G be a graph, and let F be a finite family of independent sets in G. A rainbow

independent set in G with respect to F is a rainbow set for F that forms an independent

set in G. For a positive integer n, let fG(n) be the minimum integer t such that every

collection of t independent sets of size n in G has a rainbow independent set of size n.

For a graph class G and a positive integer n, let

fG(n) = sup
G∈G

fG(n).

8



The connection between the complexes In(G) and the parameters fG(n) is given by

the following version of Kalai and Meshulam’s “topological colorful Helly theorem”:

Theorem 1.2.1 (Kalai and Meshulam [KM05]). Let X be a d-collapsible simplicial

complex on vertex set V , and let Xc = {σ ⊂ V : σ /∈ X}. Then, every collection of d+ 1

sets in Xc has a rainbow set belonging to Xc.

Theorem 1.2.1 is a special case of Theorem 2.1 in [KM05] (see Section 2.4 for a

detailed derivation). An immediate application of Theorem 1.2.1 gives us:

Proposition 1.2.2. Let G be a graph and n ≥ 1 an integer. Then,

fG(n) ≤ C(In(G)) + 1.

Proof. Let G = (V,E). Recall that A ⊂ V does not belong to In(G) if and only if A

contains an independent set of size n in G. Therefore, by Theorem 1.2.1, every family

of C(In(G)) + 1 independent sets of size n in G has a rainbow set that contains an

independent set of size n.

The study of rainbow independent sets originated as a generalization of the “rainbow

matching problem” in graphs (note that a matching in a graph is an independent set

in its line graph); see e.g. [AB09, ABC+19, BGS17]. The application of collapsibility

numbers in the study of rainbow matchings was initiated in [AHJ19], and further

developed in [BK19]. In [HL20], the Leray number of complexes of graphs with bounded

matching number was studied, and some applications to rainbow matching problems

were found.

In [ABKK19], Aharoni et al. proved some results about fG(n) for different classes

of graphs. One of the main conjectures in [ABKK19] is the following.

Conjecture 1.2.3 (Aharoni, Briggs, Kim, Kim [ABKK19]). Let D(∆) be the class of

graphs with maximum degree at most ∆, and let n be a positive integer. Then,

fD(∆)(n) =

⌈
∆ + 1

2

⌉
(n− 1) + 1.

It was shown in [ABKK19] that Conjecture 1.2.3 is true for ∆ ≤ 2 and for n ≤ 3. In

the general case, the best bounds observed by Aharoni et al. are given by⌈
∆ + 1

2

⌉
(n− 1) + 1 ≤ fD(∆)(n) ≤ ∆(n− 1) + 1.

It is natural to ask whether the following extension of Conjecture 1.2.3 holds:

Question 1.2.4 (Aharoni [Aha19]). Let G be a graph with maximum degree at most

∆, and let n be a positive integer. Does the following bound hold?

C(In(G)) ≤
⌈

∆ + 1

2

⌉
(n− 1).

9



Our main results are the following:

Theorem 1.2.5. Let G = (V,E) be a chordal graph and n ≥ 1 an integer. Then,

C(In(G)) ≤ n− 1.

Moreover, if α(G) ≥ n, then C(In(G)) = n− 1.

Theorem 1.2.6. Let G = (V,E) be a graph with maximum degree at most ∆ and n ≥ 1

an integer. Then,

C(In(G)) ≤ ∆(n− 1).

The bound in Theorem 1.2.6 is tight only for ∆ ≤ 2. In the case n ≤ 3 we can prove

the following tight bounds, for general ∆:

Theorem 1.2.7. Let G = (V,E) be a graph with maximum degree at most ∆. Then,

C(I2(G)) ≤
⌈

∆ + 1

2

⌉
.

Theorem 1.2.8. Let G = (V,E) be a graph with maximum degree at most ∆. Then,

C(I3(G)) ≤

∆ + 2 if ∆ is even,

∆ + 1 if ∆ is odd.

Theorems 1.2.6, 1.2.7 and 1.2.8 settle Question 1.2.4 affirmatively in the special

cases where ∆ ≤ 2 or n ≤ 3. Unfortunately, the bound in Question 1.2.4 does not hold

in general: In Section 4.5 we present a family of counterexamples to the case ∆ = 3.

Combining these results with Proposition 1.2.2, we obtain corresponding upper

bounds for fG(n), thus recovering several results first proved in [ABKK19]. The

following bound, however, is new:

Theorem 1.2.9. Let G be a claw-free graph with maximum degree at most ∆, and let

n ≥ 1 be an integer. Then,

fG(n) ≤
⌊(

∆

2
+ 1

)
(n− 1)

⌋
+ 1.

Theorem 1.2.9 shows that Conjecture 1.2.3 holds for the subclass of claw-free graphs

with maximum degree at most ∆, in the case where ∆ is even. The proof of Theorem

1.2.9 relies on bounding the collapsibility of certain subcomplexes of the complex In(G).

1.3 Leray numbers of tolerance complexes

Let H be an r-uniform hypergraph on vertex set V . Recall that the covering number of

H, denoted by τ(H), is the minimum size of a set U ⊂ V such that U intersects all the
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edges of H. The hypergraph H is called t-critical if τ(H) = t and τ(H′) < t for every

hypergraph H′ that is obtained from H be removing an edge. The Erdős-Gallai number

η(r, t) is the maximum number of vertices in an r-uniform t-critical hypergraph. Erdős

and Gallai showed in [EG61] that η(2, t) = 2t and η(r, 2) =
⌊(

r+2
2

)2⌋
. For general r

and t, Tuza proved in [Tuz85] the bound

η(r, t) <

(
r + t− 1

r − 1

)
+

(
r + t− 2

r − 1

)
,

which is tight up to a constant factor. In particular, we have η(r, t) = O(tr−1) for r

fixed and t→∞, and η(r, t) = O(rt) for t fixed and r →∞.

Let F be a family of sets. We say that F has a point in common with tolerance t

if there is a subfamily F ′ ⊂ F such that |F ′| ≥ |F| − t and ∩A∈F ′A 6= ∅. In [MO11],

Montejano and Oliveros proved the following Helly-type theorem.

Theorem 1.3.1 (Montejano-Oliveros [MO11, Theorem 3.1]). Let F be a family of con-

vex sets in Rd. If every subfamily F ′ ⊂ F of size at most η(d+ 1, t+ 1) has a point in

common with tolerance t, then F has a point in common with tolerance t.

In fact, it was shown in [MO11] that any family of sets satisfying a Helly property

satisfies also a corresponding “tolerant Helly property”. In terms of simplicial complexes,

this may be stated as follows:

Let K be a simplicial complex on vertex set V , and let t ≥ 0 be an integer. A

missing face of K is a set τ ⊂ V such that τ /∈ K but σ ∈ K for any σ ( τ . Let h(K)

be the maximal dimension of a missing face of K.

Define the simplicial complex

Tt (K) = {η ∪ τ : η ∈ K, τ ⊂ V, |τ | ≤ t}

= {σ ⊂ V : ∃η ⊂ σ, |σ \ η| ≤ t, η ∈ K}.

We call Tt (K) the t-tolerance complex of K. Note that T0 (K) = K for every complex

K.

Theorem 1.3.2 (Montejano-Oliveros [MO11, Theorem 1.1]). Let K be a simplicial com-

plex with h(K) ≤ d, and let t ≥ 0 be an integer. Then, h(Tt (K)) ≤ η(d+ 1, t+ 1)− 1.

It is known that any d-Leray complex K satisfies h(K) ≤ d (see e.g. [Weg75]).

By replacing the h(K) with the collapsibility or Leray number of K, the following

conjectures arise:

Conjecture 1.3.3. Let K be a d-Leray simplicial complex. Then, Tt (K) is (η(d+1, t+

1)− 1)-Leray.

Conjecture 1.3.4. Let K be a d-collapsible simplicial complex. Then, Tt (K) is (η(d+

1, t+ 1)− 1)-collapsible.
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Let t ≥ 1, and let A,B be two disjoint sets of size t+ 1 each. Let K be the simplicial

complex on vertex set A ∪B whose maximal faces are the sets A and B. It is easy to

check that K is 1-collapsible, and therefore 1-Leray (in fact, it is easy to show that it

is even 1-representable). On the other hand, the complex Tt (K) is the boundary of

the simplex A ∪B. That is, Tt (K) is a 2t-dimensional sphere. In particular, it is not

2t-Leray. Therefore, for d = 1, the bound η(2, t+ 1)− 1 = 2t+ 1 in Conjectures 1.3.3

and 1.3.4 cannot be improved.

For t = 1, it was shown in [MO11, Theorem 3.2] that there exists a d-representable

complex K such that T1 (K) is the boundary of a
(⌊(

d+3
2

)2⌋− 1
)

-dimensional simplex.

In particular, T1 (K) is not
(⌊(

d+3
2

)2⌋− 2
)

-Leray. Therefore, for t = 1, the bound

η(d+ 1, 2)− 1 =
⌊(

d+3
2

)2⌋− 1 in Conjectures 1.3.3 and 1.3.4 cannot be improved.

Our main result is the following weak version of Conjectures 1.3.3 and 1.3.4:

Theorem 1.3.5. Let K be a d-collapsible complex. Let t ≥ 0. Then, Tt (K) is h(t, d)-

Leray, where h(0, d) = d for all d ≥ 0, and for t > 0,

h(t, d) =

min{t,d}∑
s=1

(
d

s

)
(h(t− s, d) + 1)

+ d.

Note that we require the stronger property (collapsibility) for K, and obtain only

the weaker property (Leray) for the tolerance complex. For d = 1, we obtain the sharp

bound h(t, 1) = 2t+ 1 = η(2, t+ 1)− 1. For d > 1, h(t, d) is larger than the conjectural

bound η(d+ 1, t+ 1)− 1. However, for fixed t, we have h(t, d) = O(dt+1), which is of

the same order of magnitude as that of η(d+ 1, t+ 1)− 1.

In the special case d = 2, t = 1, we can prove the following stronger bound:

Theorem 1.3.6. Let K be a 2-collapsible complex. Then, T1 (K) is 5-Leray.

Note that 5 = η(3, 2)− 1, so the bound in Theorem 1.3.6 is tight.

1.4 Representability and boxicity of simplicial complexes

Let F = {F1, . . . , Fn} be a family of sets. The intersection graph of F is the graph on

vertex set [n], whose edges are the pairs {i, j} for 1 ≤ i < j ≤ n such that Fi ∩ Fj 6= ∅.
A graph G = (V,E) is called an interval graph if it is isomorphic to the intersection

graph of a family of compact intervals in the real line.

Let G be a graph. The boxicity of G, denoted by box(G), is the minimal integer

k such that G can be written as the intersection of k interval graphs. Equivalently,

box(G) is the minimal k such that G is isomorphic to the intersection graph of a family

of axis-parallel boxes in Rk.
The notion of boxicity was introduced by Roberts in [Rob69]. The following result

was first proved by Roberts in [Rob69], and later rediscovered by Witsenhausen in

[Wit80]:
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Theorem 1.4.1 (Roberts [Rob69], Witsenhausen [Wit80, Theorem 1]). Let G be a graph

with n vertices. Then

box(G) ≤
⌊n

2

⌋
.

Moreover, box(G) = n
2 if and only if G is the complete n

2 -partite graph with sides of size

2.

We extend the notion of boxicity from graphs to simplicial complexes as follows:

Let X be a simplicial complex. For every d ≥ 1, we define the d-boxicity of X,

denoted by boxd(X), as the minimal k such that X can be written as the intersection

of k d-representable simplicial complexes.

Let G = (V,E) be a graph. The clique complex of G, denoted by X(G), is the

simplicial complex on vertex set V whose simplices are the cliques in G, that is, the

sets U ⊂ V satisfying {u,w} ∈ E for all u,w ∈ U such that u 6= w.

Let B = {B1, . . . , Bn} be a family of axis-parallel boxes in Rk. It is well known

that any t boxes Bi1 , . . . , Bit have a point in common if and only if Bij ∩Bir 6= ∅ for

every 1 ≤ j < r ≤ t. Therefore, the nerve N(B) is exactly the clique complex of the

intersection graph of B. So, for any graph G, we have box(G) = box1(X(G)). Thus, we

can see the parameters boxd(X) as higher dimensional generalizations of the boxicity of

a graph.

Let X be a simplicial complex on vertex set V . Recall that a missing face of X is a

set τ ⊂ V such that τ /∈ X but σ ∈ X for any σ ( τ , and that h(X) is the maximal

dimension of a missing face of X. Note that a complex X satisfies h(X) = 0 if and only

if it is a simplex, and it satisfies h(X) = 1 if and only if it is the clique complex of some

graph G (the missing faces of X(G) are the edges of the complement graph of G).

A family F of subsets of size k of a set V of size n is called a Steiner (t, k, n)-system

if any subset of V of size t is contained in exactly one set of F . If any subset of V of size

t is contained in at most one set of F , then F is called a partial Steiner (t, k, n)-system.

A Steiner (2, 3, n)-system is also called a Steiner triple system.

In [Wit80, Theorem 2], Witsenhausen extended Theorem 1.4.1, proving that any

simplicial complex X with n vertices whose missing faces are all of dimension exactly d

has d-boxicity at most 1
2

(
n
d

)
. On the other hand, he showed in [Wit80, Theorem 3] that

a complex X whose missing faces form a Steiner triple system (in particular, h(X) = 2)

has 2-boxicity at least 1
3

(
n
2

)
.

Here, we extend Witsenhausen’s lower bound to all values of d, and prove an

improved upper bound, matching the lower bound.

Theorem 1.4.2. Let X be a simplicial complex with n vertices, satisfying h(X) ≤ d.

Then

boxd(X) ≤
⌊

1

d+ 1

(
n

d

)⌋
.

Moreover, if h(X) = d, then boxd(X) = 1
d+1

(
n
d

)
if and only if the missing faces of X

form a Steiner (d, d+ 1, n)-system.
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To prove the equality case in Theorem 1.4.2 we will need the following result:

Theorem 1.4.3. Let X be a complex whose set of missing faces is a partial Steiner

(d, d + 1, n)-system M. Then, X cannot be written as the intersection of less than

|M| d-Leray complexes. On the other hand, the d-boxicity of X is at most |M|. As a

consequence,

boxd(X) = |M|.

It was proved by Rödl in [Röd85] that, for any d ≥ 1, there exist partial Steiner

(d, d+ 1, n)-systems of size (1− o(1)) 1
d+1

(
n
d

)
. Therefore, the bound in Theorem 1.4.2

is asymptotically tight. Moreover, by a well known result of Keevash ([Kee14]), there

exist Steiner (d, d + 1, n)-systems for infinitely many values of n. Thus, the equality

case in Theorem 1.4.2 is achieved for infinitely many values of n.

The upper bound in Theorem 1.4.2 follows as a consequence of the next result:

Theorem 1.4.4. Let X be a simplicial complex on vertex set V . Let V1, . . . , Vk be

subsets of V satisfying Vi /∈ X for all i ∈ [k], such that for any missing face τ of X there

exists some i ∈ [k] satisfying |τ \ Vi| ≤ 1. Then, X can be written as an intersection

X = ∩ki=1Xi,

where, for all i ∈ [k], Xi is a (|Vi| − 1)-representable complex. In particular, X is(∑k
i=1(|Vi| − 1)

)
-representable.

Finally, we present the following conjecture related to the representability of com-

plexes without large missing faces:

Conjecture 1.4.5. Let X be simplicial complex with n vertices, satisfying h(X) ≤ d.

Then,

rep(X) ≤
⌊
dn

d+ 1

⌋
.

Moreover, rep(X) = dn
d+1 if and only if the missing faces of X consist of n

d+1 pairwise

disjoint sets of size d+ 1.

The d = 2 case of the conjecture follows from Robert’s theorem (Theorem 1.4.1)

and the d = n− 1 case follows from a result of Wegner (Theorem 6.3.3). Moreover, the

analogous bound is known to hold for Leray numbers (see [Ada14, Proposition 5.4]) and

for collapsibility ([KL19, Proposition 3.5]).

1.5 Complexes of line-free sets in finite affine planes

Let q be a prime power and let Fq be the finite field of order q. A set σ ⊂ F2
q is called

line-free if it does not contain any affine line.
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We define the following simplicial complexes:

Xq =
{
σ ⊂ F2

q : σ is line-free
}
,

X̂q =
{
σ ⊂ F2

q \ {0} : σ is line-free
}

= Xq \ 0.

A blocking set in F2
q is a set of points that intersects all the affine lines. One can

build a blocking set of size 2q− 1 by taking the union of any two non-parallel lines. The

following theorem shows that there are no smaller blocking sets:

Theorem 1.5.1 (Jamison [Jam77], Brouwer-Schrijver [BS78]). The minimum size of

a blocking set in F2
q is 2q − 1.

Note that a set σ ⊂ F2
q is line-free if and only if its complement is a blocking set.

Similarly, a set η ⊂ F2
q \ {0} is line-free if and only if its complement is a blocking set

containing the origin. Therefore, by Theorem 1.5.1, we have

dim(Xq) = dim(X̂q) = q2 − 2q.

The homology of the complexes Xq and X̂q seems to be quite “rich” (see Figures 1.1

and 1.2). We chose to focus on the top-dimensional homology groups H̃q2−2q(Xq) and

H̃q2−2q(X̂q).

H̃i(X2) =

{
Z3 if i = 0,

0 otherwise.

H̃i(X3) =


Z if i = 2,

Z11 if i = 3,

0 otherwise.

H̃i(X4) =


Z3 if i = 6,

Z45 if i = 7,

Z20 if i = 8,

0 otherwise.

Figure 1.1: The homology of the complexes Xq, for q ≤ 4.

Our main result is the following:

Theorem 1.5.2.

H̃q2−2q(Xq) =


Z3 if q = 2,

Z11 if q = 3,

Zq(q+1) if q > 3,

and
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H̃i(X̂2) =

{
Z2 if i = 0,

0 otherwise.

H̃i(X̂3) =


Z if i = 2,

Z4 if i = 3,

0 otherwise.

H̃i(X̂4) =


Z3 if i = 6,

Z13 if i = 7,

Z5 if i = 8,

0 otherwise.

Figure 1.2: The homology of the complexes X̂q, for q ≤ 4.

H̃q2−2q(X̂q) =

Z2 if q = 2,

Zq+1 if q > 2.

Let B be a blocking set in F2
q of size 2q − 1. We call B stable if for every point

v /∈ B there is some u ∈ B such that B ∪ {v} \ {u} is also a blocking set. We call B

strongly stable if 0 ∈ B and for every point v /∈ B there is some u ∈ B \ {0} such that

B ∪ {v} \ {u} is also a blocking set.

One of the main tools in the proof of Theorem 1.5.2 is the following characterization

of stable and strongly stable blocking sets:

Theorem 1.5.3. Let B be a blocking set in F2
q of size 2q − 1. Then, B is stable if and

only if B contains an affine line, and it is strongly stable if and only if it contains a

line through the origin.

1.6 Laplacian eigenvalues of complexes of flags

Let n ≥ 3 be an integer and q be a prime power. Let Fln,q be the simplicial complex

whose vertices correspond to non-trivial linear subspaces of Fnq , and whose simplices

correspond to flags; that is, the simplices are the sets of subspaces {V1, . . . , Vk} such

that V1 ⊂ · · · ⊂ Vk.
A flag of length n − 1 is called a complete flag. Note that the complete flags are

exactly the maximal faces of Fln,q. In particular, for any prime power q, Fln,q is a pure

(n− 2)-dimensional complex.

Let Ck(Fln,q) be the space of real k-cochains on Fln,q, and let dk : Ck(Fln,q) →
Ck+1(Fln,q) be the k-th coboundary operator.

Let Fln,q(k) be the set of k-dimensional simplices of Fln,q. For σ = {V1, . . . , Vk+1} ∈
Fln,q(k), let w(σ) be the number of complete flags extending σ. That is, w(σ) is the
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number of maximal faces of Fln,q containing σ. We define an inner product on the

vector space Ck(Fln,q) by

〈φ, ψ〉 =
∑

σ∈Fln,q(k)

w(σ)φ(σ)ψ(σ).

Let d∗k be the operator adjoint to dk with respect to this inner product.

We define the weighted upper k-Laplacian L+
k (Fln,q) : Ck(Fln,q)→ Ck(Fln,q) by

L+
k (Fln,q) = d∗kdk.

In [Pap16], Papikian conjectured the following:

Conjecture 1.6.1 (Papikian [Pap16]). Let n ≥ 3 and let q > 1 be a prime power. Let

0 ≤ k ≤ n− 3. Then,

1. The number of distinct eigenvalues of L+
k (Fln,q) does not depend on q.

2. As q tends to infinity, the positive (i.e nonzero) eigenvalues of L+
k (Fln,q) tend to

the integers

n− k − 2, n− k − 1, n− k, . . . , n− 1.

Or, more formally: for any ε > 0 there exists an integer q0 such that, for q ≥ q0,

for any eigenvalue λ of L+
k (Fln,q) there is some m ∈ {n−k−2, n−k−1, . . . , n−1}

such that

|λ−m| < ε.

Here, we prove the k = 0 case of the second part of Papikian’s conjecture:

Theorem 1.6.2. Let n ≥ 3 and let q be a prime power. Then, for any ε > 0 there is

an integer q0 such that, for q ≥ q0, any eigenvalue λ 6= 0, n− 1 of L+
0 (Fln,q) satisfies

|λ− (n− 2)| < ε.

That is, as q tends to infinity, all nonzero eigenvalues of L+
0 (Fln,q) either are equal to

n− 1 or tend to n− 2.
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Chapter 2

Background

2.1 Simplicial complexes

Let V be a finite set and let X ⊂ 2V be a family of sets. X is called a simplicial complex

if σ ∈ X for all τ ∈ X and σ ⊂ τ . The set V is called the vertex set of X. Unless

otherwise stated, we always assume that V = ∪σ∈Xσ. A set σ ∈ X is called a simplex

or a face of X. The dimension of a simplex σ ∈ X is dim(σ) = |σ| − 1. For short, we

call a k-dimensional simplex a k-simplex. Let X(k) be the set of all k-simplices.

The dimension of the complex X, denoted by dim(X), is the maximal dimension of

a simplex in X.

A missing face of a complex X is a set τ ⊂ V such that τ /∈ X but σ ∈ X for any

σ ( τ . We denote by h(X) the maximum dimension of a missing face of X. If all the

missing faces of X are of size 2 (that is, if h(X) = 1), then X is called a flag complex.

A subcomplex of X is a simplicial complex Y such that each simplex of Y is also a

simplex of X. The k-dimensional skeleton of X, denoted by X(k), is the subcomplex of

X consisting of all the faces of X of dimension k or less.

Let U ⊂ V . The subcomplex of X induced by U is the complex

X[U ] = {σ ∈ X : σ ⊂ U}.

Let τ ∈ X. We define the link of τ in X to be the subcomplex

lk(X, τ) = {σ ∈ X : σ ∩ τ = ∅, σ ∪ τ ∈ X},

the star of τ in X to be the subcomplex

st(X, τ) = {σ ∈ X : σ ∪ τ ∈ X}

and the costar of τ in X to be the subcomplex

cost(X, τ) = {σ ∈ X : τ 6⊂ σ}.
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If τ = {v}, we write lk(X, v) = lk(X, {v}), st(X, v) = st(X, {v}) and X \ v =

cost(X, {v}) = X[V \ {v}].
Let X1, . . . , Xm be simplicial complexes on pairwise disjoint vertex sets. We define

the join of X1, . . . , Xm to be the simplicial complex

∗mi=1Xi = X1 ∗X2 ∗ · · · ∗Xm = {σ1 ∪ σ2 ∪ · · · ∪ σm : σi ∈ Xi for all i ∈ [m]}.

Let v ∈ V . If v ∈ τ for every maximal face τ ∈ X we say that X is a cone over v.

For U ⊂ V , we denote by 2U = {σ : σ ⊂ U} the complete complex on vertex set U .

The complete k-dimensional complex on vertex set U is the complex

(2U )(k) = {σ ⊂ U : |σ| ≤ k + 1}.

2.2 Simplicial homology

Let X be a simplicial complex on vertex set V and let k ≥ −1. An ordered k-simplex

[v0, . . . , vk] is a k-dimensional simplex {v0, . . . , vk} ∈ X together with an order of its

vertices.

Let R be a commutative ring with unit element. Let Ck(X;R) be the free R-module

generated by the ordered k-simplices of X, under the relations

[v0, . . . , vk] = sgn(π)[vπ(0), . . . , vπ(k)],

for every k-simplex {v0, . . . , vk} ∈ X and permutation π : {0, . . . , k} → {0, . . . , k}
(where sgn(π) ∈ {1,−1} is the sign of the permutation).

The elements of Ck(X;R) are called k-chains.

We define a homomorphism ∂k : Ck(X;R)→ Ck−1(X;R) that acts on the spanning

set as follows:

∂k[v0, . . . , vk] =
k∑
i=0

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk].

The operator ∂k is called the boundary operator.

We define the group of k-cycles as Zk(X;R) = Ker(∂k) and the group of k-boundaries

as Bk(X;R) = Im(∂k+1). For any k, we have Bk(X;R) ⊂ Zk(X;R), so we can define

the quotient

H̃k(X;R) = Zk(X;R)/Bk(X;R).

The group H̃k(X;R) is called the k-th reduced homology group of X with coefficients in

R.

For R = Z, we denote H̃k (X;Z) = H̃k (X).

If H̃k (X;R) = 0 for all k ≥ −1, we call X acyclic (over R).

A useful tool for computing homology is the Mayer-Vietoris long exact sequence:
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Theorem 2.2.1 (Mayer-Vietoris). Let X,Y be simplicial complexes. Then, the follow-

ing sequence is exact

· · · → H̃k (X ∩ Y ;R)→ H̃k (X;R)
⊕

H̃k (Y ;R)→ H̃k (X ∪ Y ;R)→ H̃k−1 (X ∩ Y ;R)→ · · ·

A useful special case is the following:

Theorem 2.2.2. Let X be a simplicial complex on vertex set V , and let v ∈ V . Then,

the following sequence is exact

· · · → H̃k (lk(X, v);R)→ H̃k (X \ v;R)→ H̃k (X;R)→ H̃k−1 (lk(X, v);R)→ · · · .

Proof. Let A = X \ v and B = st(X, v). By Theorem 2.2.1, we have a long exact

sequence

· · · → H̃k (A ∩B;R)→ H̃k (A;R)
⊕

H̃k (B;R)→ H̃k (A ∪B;R)→ H̃k−1 (A ∩B;R)→ · · · .

Note that B is a cone over v, and therefore H̃k (B;R) = 0 for all k. Moreover, A∪B = X

and A ∩B = lk(X, v). So, we obtain a long exact sequence

· · · → H̃k (lk(X, v);R)→ H̃k (X \ v;R)→ H̃k (X;R)→ H̃k−1 (lk(X, v);R)→ · · · ,

as wanted.

The homology with field coefficients of a join of complexes can be computed by the

following simple formula:

Theorem 2.2.3 (Künneth Theorem). Let X = X1 ∗X2 ∗ · · · ∗Xm. Then,

H̃i(X;F) ∼=
⊕

i1+···+im=i−m+1,
−1≤ij≤dim(Xj) ∀j∈[m]

H̃i1(X1;F)⊗ · · · ⊗ H̃im(Xm;F).

2.2.1 Nerve theorems

Another tool we will need is the Nerve Theorem: Let X1, . . . , Xm be simplicial complexes.

The nerve of the family {X1, . . . , Xm} is the simplicial complex

N({X1, . . . , Xm}) = {I ⊂ [m] : ∩i∈IXi 6= {∅}}.

Theorem 2.2.4 (Leray’s Nerve Theorem). Let X1, . . . , Xm be simplicial complexes,

and let X = ∪mi=1Xi. If for every ∅ 6= I ⊂ [m], ∩i∈IXi is either empty or acyclic,

then

H̃k (X;R) ∼= H̃k (N({X1, . . . , Xm});R)

for all k ≥ −1.
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We present a proof of Theorem 2.2.4 and some generalizations of it in Appendix

2.A.

The following special case of the Nerve Theorem will be useful: Let X be a simplicial

complex, and let σ1, . . . , σm be the maximal faces of X. Let

N(X) = N({2σ1 , . . . , 2σm}).

Then, we have

Corollary 2.2.5. For all k ≥ −1,

H̃k (X;R) ∼= H̃k (N(X);R) .

Proof. For every I ⊂ [m], we have

∩i∈I2σi = 2∩i∈Iσi .

In particular, if ∩i∈I2σi 6= {∅}, then

H̃k (∩i∈I2σi ;R) = 0

for all k ≥ −1. Therefore, by Theorem 2.2.4, we have

H̃k (X;R) ∼= H̃k (N(X);R)

for k ≥ −1, as wanted.

2.2.2 Relative homology

Let X be a simplicial complex and let Y be a subcomplex of X. Let Ck(X,Y ;R) be

the free R-module generated by the ordered k-simplices in X \ Y , under the relations

[v0, . . . , vk] = sgn(π)[vπ(0), . . . , vπ(k)],

for every k-simplex {v0, . . . , vk} ∈ X \ Y and permutation π : {0, . . . , k} → {0, . . . , k}.
We define a homomorphism ∂k : Ck(X,Y ;R)→ Ck−1(X,Y ;R) that acts on the spanning

set by

∂k[v0, . . . , vk] =
∑

i∈{0,...,k}:
{v0,...,vi−1,vi+1,...,vk}/∈Y

(−1)i[v0, . . . , vi−1, vi+1, . . . , vk].

We define the group of k-cycles as Zk(X,Y ;R) = Ker(∂k) and the group of k-boundaries

as Bk(X,Y ;R) = Im(∂k+1). For any k, we have Bk(X,Y ;R) ⊂ Zk(X,Y ;R), so we can
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define the quotient

Hk (X,Y ;R) = Zk(X,Y ;R)/Bk(X,Y ;R).

For R = Z, we denote Hk (X,Y ;Z) = Hk (X,Y ).

The relative homology of the pair Y ⊂ X is related to the homology of the two

complexes via the following result:

Theorem 2.2.6 (Long exact sequence of a pair). Let Y ⊂ X be simplicial complexes.

Then, the following sequence is exact:

· · · → H̃k (Y ;R)→ H̃k (X;R)→ Hk (X,Y ;R)→ H̃k−1 (Y ;R)→ · · ·

The following relative version of the Mayer-Vietoris exact sequence will be useful:

Theorem 2.2.7 (Relative Mayer-Vietoris). Let Y ⊂ X be simplicial complexes. Let

C ⊂ A, D ⊂ B be simplicial complexes, such that X = A ∪B and Y = C ∪D. Then,

the following sequence is exact

· · · → Hk (A ∩B,C ∩D;R)→ Hk (A,C;R)
⊕

Hk (B,D;R)→

→ Hk (X,Y ;R)→ Hk−1 (A ∩B,C ∩D;R)→ · · ·

2.2.3 Cohomology and Alexander duality

Let X be a simplicial complex. Let R be a commutative ring with unit element.

Let k ≥ −1. A k-cochain is an R-valued skew-symmetric function on the ordered

k-simplices. That is, φ is a k-cochain if for any two ordered k-simplices σ, σ̃ in X that

are equal as sets, it satisfies φ(σ̃) = sgn(π)φ(σ), where π is the permutation that maps

σ to σ̃.

Let Ck(X) denote the space of k-cochains on X. We define a homomorphism

dk : Ck(X)→ Ck+1(X) by

dk(φ)([v0, . . . , vk]) =
k∑
i=0

(−1)iφ([v0, . . . , vi−1, vi+1, . . . , vk])

for any k-cochain φ and any ordered k-simplex [v0, . . . , vk]. The homomorphism dk is

called the coboundary operator.

We define the group of k-cocycles as Zk(X;R) = Ker(dk) and the group of k-

coboundaries as Bk(X;R) = Im(dk−1). For any k, we have Bk(X;R) ⊂ Zk(X;R), so

we can define the quotient

H̃k(X;R) = Zk(X;R)/Bk(X;R).
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The group H̃k(X;R) is called the k-th reduced cohomology group of X with coefficients

in R. For R = Z, we denote H̃k (X;Z) = H̃k (X).

Let F be a field. The following result is a simple corollary of the universal coefficient

theorem (see e.g [Hat02]).

Theorem 2.2.8. Let X be a simplicial complex. Then,

H̃k (X;F) ∼= H̃k(X;F)

for all k ≥ −1.

Another simple consequence of the universal coefficient theorem is the following:

Lemma 2.2.9. Let X be a simplicial complex. For any k ≥ −1, we can write H̃k (X) ∼=
Zβk ⊕ Tk, where Tk is a finite abelian group (the torsion subgroup of H̃k (X)). Then,

we have for all k ≥ −1

H̃k (X) ∼= Zβk ⊕ Tk−1.

Let X be a simplicial complex on vertex set V . Let

XV = {σ ⊂ V : V \ σ /∈ X}.

Note that XV is also a simplicial complex. XV is called the Alexander dual of X.

It is easy to check that the maximal faces of XV are the complements of the missing

faces of X. Similarly, the missing faces of XV are the complements of the maximal

faces of X.

The homology of X is related to the cohomology of its dual by the following result:

Theorem 2.2.10 (Alexander duality). Let X be a simplicial complex on vertex set V .

If V /∈ X, then for all −1 ≤ k ≤ |V | − 2, we have

H̃k (X;R) ∼= H̃ |V |−k−3(XV ;R).

In particular, if R = F is a field, we obtain from Theorem 2.2.8:

Corollary 2.2.11. Let X be a simplicial complex on vertex set V . If V /∈ X, then for

all −1 ≤ k ≤ |V | − 2, we have

H̃k (X;F) ∼= H̃|V |−k−3

(
XV ;F

)
.

Let X be a simplicial complex, and let M be the set of missing faces of X. Let

Γ(X) =

{
N ⊂M :

⋃
τ∈N

τ 6= V

}
.

Note that Γ(X) is a simplicial complex on vertex set M. The homology groups of X

and Γ(X) are related as follows:

24



Theorem 2.2.12 (Björner, Butler, Matveev [BBM97, Theorem 2]). Let X be a sim-

plicial complex on vertex set V . If X is not the complete complex on V , then for all

−1 ≤ k ≤ |V | − 2,

H̃k (X;F) ∼= H̃|V |−k−3 (Γ(X);F) .

Proof. Note that Γ(X) = N(XV ). Therefore, the claim follows from Corollary 2.2.11

and Corollary 2.2.5.

2.2.4 Leray numbers

Let X be a simplicial complex on vertex set V , and let F be a field. We say that X is

d-Leray if

H̃k (X[U ];F) = 0

for all U ⊂ V and k ≥ d.

The Leray number of X, denoted by L(X), is the minimal d such that X is d-Leray.

The following result on the Leray numbers of union of complexes will be of use later:

Theorem 2.2.13 (Kalai, Meshulam ([KM06]). Let X = ∪mi=1Xi. Then

L(X) ≤

(
m∑
i=1

(L(Xi) + 1)

)
− 1.

2.2.5 Weighted Laplacians

Let X be a simplicial complex on vertex set V . Given an ordered k-simplex σ =

[v0, . . . , vk] and a vertex v ∈ lk(X,σ), denote by vσ the ordered simplex [v, v0, . . . , vk].

For ordered simplices σ, τ in X such that τ ⊂ σ and σ \ τ = {v} for some vertex v ∈ V ,

let (σ : τ) be the sign of the permutation mapping σ to vτ . For ordered simplices σ, τ

such that σ = τ as sets, let (σ : τ) be the sign of the permutation mapping σ to τ .

We will consider the simplices in X(k) as ordered simplices, each given an arbitrary

fixed order.

We can write the coboundary operator dk : Ck(X;R)→ Ck+1(X;R) as

dk(φ)(σ) =
∑
τ∈σ(k)

(σ : τ)φ(τ),

for any k-cochain φ and ordered k-simplex σ, where σ(k) ⊂ X(k) is the set of k-

dimensional faces contained in the (k + 1)-dimensional simplex σ.

Let w : X → R+ be a weight function on the simplices. We define an inner product

on the vector space Ck(X;R) by

〈φ, ψ〉 =
∑

σ∈X(k)

w(σ)φ(σ)ψ(σ).

Let d∗k be the operator adjoint to dk with respect to this inner product. Then, we have
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Lemma 2.2.14.

d∗k(ψ)(τ) =
∑

v∈lk(X,τ)

w(vτ)

w(τ)
ψ(vτ).

Proof. Let φ ∈ Ck(X;R) and ψ ∈ Ck+1(X;R). Then,

〈dkφ, ψ〉 =
∑

σ∈X(k+1)

w(σ)dkφ(σ)ψ(σ) =
∑

σ∈X(k+1)

∑
τ∈σ(k)

w(σ)(σ : τ)φ(τ)ψ(σ)

=
∑

τ∈X(k)

∑
σ∈X(k+1), τ⊂σ

w(σ)(σ : τ)φ(τ)ψ(σ) =
∑

τ∈X(k)

∑
v∈lk(X,τ)

w(vτ)(vτ : τ)φ(τ)ψ(vτ)

=
∑

τ∈X(k)

w(τ)φ(τ)

 ∑
v∈lk(X,τ)

w(vτ)

w(τ)
ψ(vτ)

 ,

where we used the facts that, since ψ is a cochain, we have (σ : τ)ψ(σ) = (vτ : τ)ψ(vτ),

and that (vτ : τ) = 1. Thus, we obtain

d∗k(ψ)(τ) =
∑

v∈lk(X,τ)

w(vτ)

w(τ)
ψ(vτ),

as wanted.

We define the weighted upper k-Laplacian L+
k : Ck(X;R)→ Ck(X;R) by

L+
k = d∗kdk.

Let k ≥ 0 and σ ∈ X(k). We define the k-cochain 1σ by

1σ(τ) =

(σ : τ) if σ = τ (as sets),

0 otherwise.

The set {1σ}σ∈X(k) forms a basis of the space Ck(X;R), that we will call the standard

basis.

We will identify the operator L+
k with its matrix representation in the standard

basis. For σ, τ ∈ X(k), we will denote by L+
k (σ, τ) the matrix element at row indexed

by 1σ and column indexed by 1τ . That is, L+
k (σ, τ) = L+

k 1τ (σ).

Lemma 2.2.15. Let σ, τ ∈ X(k). Then,

L+
k (σ, τ) =


∑

v∈lk(X,σ)
w(vσ)
w(σ) if σ = τ,

−w(σ∪τ)
w(σ) (σ : σ ∩ τ)(τ : σ ∩ τ) if |σ ∩ τ | = k, σ ∪ τ ∈ X(k + 1),

0 otherwise.
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Proof. Let φ ∈ Ck(X;R) and σ ∈ X(k). Then, we have

L+
k φ(σ) = d∗kdkφ(σ) =

∑
v∈lk(X,σ)

w(vσ)

w(σ)
dkφ(vσ) =

∑
v∈lk(X,σ)

∑
θ∈X(k),
θ⊂vσ

w(vσ)

w(σ)
(vσ : θ)φ(θ)

=
∑

v∈lk(X,σ)

(vσ : σ)
w(vσ)

w(σ)
φ(σ) +

∑
η∈σ(k−1)

w(vσ)

w(σ)
(vσ : vη)φ(vη)

 .

Using the fact that (vσ : σ) = 1 and (vσ : vη) = −(σ : η), we obtain

L+
k φ(σ) =

∑
v∈lk(X,σ)

w(vσ)

w(σ)
φ(σ)−

∑
v∈lk(X,σ)

∑
η∈σ(k−1)

w(vσ)

w(σ)
(σ : η)φ(vη)

=
∑

v∈lk(X,σ)

w(vσ)

w(σ)
φ(σ)−

∑
θ∈X(k),
|σ∩θ|=k,
σ∪θ∈X

w(σ ∪ θ)
w(σ)

(σ : σ ∩ θ)(θ : σ ∩ θ)φ(θ),

where we used the fact that, since φ is a k-cochain, we have, for σ ∈ X(k), v ∈ lk(X,σ),

η ∈ σ(k − 1) and θ = η ∪ {v},

(σ : η)φ(vη) = (σ : η)(θ : vη)φ(θ) = (σ : η)(θ : η)φ(θ)

= (σ : σ ∩ θ)(σ ∩ θ : η)(θ : σ ∩ θ)(σ ∩ θ : η)φ(θ) = (σ : σ ∩ θ)(θ : σ ∩ θ)φ(θ).

Finally, setting φ = 1τ for τ ∈ X(k), we obtain

L+
k (σ, τ) = L+

k 1τ (σ)

=


∑

v∈lk(X,σ)
w(vσ)
w(σ) if σ = τ,

−w(σ∪τ)
w(σ) (σ : σ ∩ τ)(τ : σ ∩ τ) if |σ ∩ τ | = k, σ ∪ τ ∈ X(k + 1),

0 otherwise.

�

In particular, for k = 0, we obtain:

Corollary 2.2.16. Let u, u′ ∈ V . Then,

L+
0 (u, u′) =


∑

v∈V : {u,v}∈X(1)
w(uv)
w(u) if u = u′,

−w({u,u′})
w(u) if {u, u′} ∈ X(1),

0 otherwise.
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2.3 Collapsibility

Let X be a finite simplicial complex. Let η be a simplex of X of size at most d that is

contained in a unique maximal face τ ∈ X. We say that the complex

X ′ = X \ {σ ∈ X : η ⊂ σ ⊂ τ}

is obtained from X by an elementary d-collapse, and we write X
η−→ X ′.

The complex X is called d-collapsible if there exists a sequence of elementary

d-collapses from X to the void complex ∅. The sequence

X = X0
η1−→ X1

η2−→ · · · ηm−−→ Xm = ∅

is called a d-collapsing sequence for X. The collapsibility of X (or collapsibility number),

denoted by C(X), is the minimal d such that X is d-collapsible.

The notion of d-collapsibility was introduced by Wegner in [Weg75]. He proved the

following simple properties of collapsibility:

Lemma 2.3.1 (Wegner [Weg75]). Let X be a simplicial complex on vertex set V and

U ⊂ V . Then,

C(X[U ]) ≤ C(X).

Lemma 2.3.2 (Wegner [Weg75]). Let X be a d-collapsible complex. Then, X is homo-

topy equivalent to a complex of dimension at most d− 1. In particular, H̃k (X) = 0 for

k ≥ d.

Most importantly, he showed the following relation between collapsibility and

representability:

Let F = {F1, . . . , Fm} be a familiy of sets. We define the nerve of F to be the

simplicial complex

N(F) = {I ⊂ [m] : ∩i∈IFi 6= ∅}.

If X = N(C), where C is a family of convex sets in Rd, X is called d-representable.

The representability of X, denoted by rep(X), is the minimal d such that X is d-

representable.

Theorem 2.3.3 (Wegner [Weg75]). Let X be a d-representable complex. Then, X is

d-collapsible.

From Lemma 2.3.1, Lemma 2.3.2 and Theorem 2.3.3, we obtain that for any complex

X,

rep(X) ≤ C(X) ≤ L(X).

It will be convenient to extend the notion of d-collapsibility from complexes to

general families of sets:
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Let V be a finite set. An interval in 2V is a family of sets

[σ, τ ] = {η ⊂ V : σ ⊂ η ⊂ τ},

for some σ ⊂ τ ⊂ V .

Let F ⊂ 2V be a family of sets. Let σ ∈ F such that

• |σ| ≤ d,

• σ is contained in a unique maximal set τ ∈ F , and

• [σ, τ ] ⊂ F .

Then, we say that the family

F ′ = F \ [σ, τ ]

is obtained from F by an elementary d-collapse. The family F is called d-collapsible if

there is a sequence of elementary d-collapses from F to the void family ∅. Let C(F) be

the minimal d such that F is d-collapsible.

The following equivalent definition of d-collapsibility will be useful to us:

Lemma 2.3.4. The family F is d-collapsible if and only if it can be written as a union

of intervals F = ∪mi=1[σi, τi], such that

• |σi| ≤ d for all 1 ≤ i ≤ m,

• σi 6⊂ τj for 1 ≤ i < j ≤ m.

We will call such a partition F = ∪mi=1[σi, τi] a d-collapsing partition of F . Note

that this is indeed a partition of F : For 1 ≤ i < j ≤ m, [σi, τi] ∩ [σj , τj ] = ∅ (otherwise,

we would obtain σi ⊂ τj , a contradiction).

Proof of Lemma 2.3.4. Assume F is d-collapsible. Let

F = F0 → F1 → · · · Fm = ∅

be a d-collapsing sequence for F , where for each 1 ≤ i ≤ m, Fi = Fi−1 \ [σi, τi].

We have F = ∪mi=1[σi, τi] and |σi| ≤ d for all 1 ≤ i ≤ m. Let 1 ≤ i < j ≤ m. Then,

we have σi, τj ∈ Fi−1. The set σi is contained in the unique maximal set τi in Fi−1;

therefore, if σi ⊂ τj , then τj ∈ [σi, τi]. But then, τj /∈ Fi, a contradiction to the fact

that τj ∈ Fj−1.

The other direction is similar: Given a d-collapsing partition F = ∪mi=1[σi, τi], we

obtain a d-collapsing sequence

F = F0 → F1 → · · · → Fm = ∅,

where

Fi = ∪mj=i+1[σj , τj ] = Fi−1 \ [σi, τi]

29



for all 1 ≤ i ≤ m.

Indeed, we have, for all 1 ≤ i ≤ m, |σi| ≤ d and [σi, τi] ⊂ Fi−1. It is left to show

that for each 1 ≤ i ≤ m, τi is the unique maximal set of Fi−1 containing σi: Assume

for contradiction that σi ⊂ τ for some τ ∈ Fi−1 such that τ 6⊂ τi. Then, we must have

τ ⊂ τj for some j > i. But then we obtain σi ⊂ τ ⊂ τj , a contradiction.

Remark. In [Mat09], a similar approach was applied for studying (≥ d)-collapsibility, a

variant of d-collapsibility (See [Mat09, Lemma 4.2]).

2.3.1 Basic properties

Next, we present several useful properties of d-collapsible families. Most of these results

were previously known (in the context of simplicial complexes), but we present here

new short proofs, based on Lemma 2.3.4.

Lemma 2.3.5. Let F ⊂ 2V . Then,

C(F) ≤ max{|σ| : σ ∈ F}.

Proof. Let d = max{|σ| : σ ∈ F}. Let σ1, . . . , σm be the sets in F , ordered by decreasing

size. In particular, σi 6⊂ σj for i < j. Thus, F = ∪mi=1[σi, σi] is a d-collapsing partition

for F , as wanted.

In particular, for a simplicial complex X, we obtain C(X) ≤ dim(X) + 1.

Let F ⊂ 2V , and let U ⊂ V . Let

F [U ] = {σ ⊂ U : σ ∈ F}

be the subfamily of F induced by U .

Lemma 2.3.6 (Wegner [Weg75]). Let F ⊂ 2V , and let U ⊂ V . Then,

C(F [U ]) ≤ C(F).

Proof. Let F = ∪mi=1[σi, τi] be a d-collapsing partition of F . Then, we can write

F [U ] =
⋃
i∈[m]:
σi⊂U

[σi, τi ∩ U ].

Let 1 ≤ i < j ≤ m. Then σi 6⊂ τj ; therefore, σi 6⊂ τj∩U . Hence, we obtain a d-collapsing

partition of F [U ].

Lemma 2.3.7 (Khmelnitsky [Khm18]). Let F ,G ⊂ 2V . Then

C(F ∩ G) ≤ C(F) + C(G).
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Proof. Let F = ∪mi=1[σi, τi] be a C(F)-collapsing partition for F , and G = ∪tj=1[ηj , θj ]

be a C(G)-collapsing partition for G.

Let I = {(i, j) : σi ∪ ηj ⊂ τi ∩ θj}. For (i, j), (r, s) ∈ I, we say that (i, j) < (r, s) if

i < r or i = r and j < s.

We can write

F ∩ G =
⋃

(i,j)∈I

[σi ∪ ηj , τi ∩ θj ].

Now, let (i, j) < (r, s). If i < r, then σi 6⊂ τr; hence, σi ∪ ηj 6⊂ τr ∩ θs. If i = r and

j < s, then ηj 6⊂ θs; therefore, σi ∪ ηj 6⊂ τr ∩ θs. So, this is a (C(F) + C(G))-collapsing

partition for F ∩ G, as wanted.

Remark. Note that Lemma 2.3.6 (and its proof) is a special case of Lemma 2.3.7 (where

G = 2U ).

Let V,W be disjoint finite sets. Let F ⊂ 2V and G ⊂ 2W . The join of F and G is

the family

F ∗ G = {σ ∪ τ : σ ∈ F , τ ∈ G}.

Note that, if F and G are simplicial complexes, this corresponds to the definition of join

stated in Section 2.1.

Lemma 2.3.8. Let V,W be disjoint finite sets. Let F ⊂ 2V . Then,

C(F ∗ 2W ) = C(F).

Proof. Since F = (F ∗ 2W )[V ], we have by Lemma 2.3.6,

C(F) ≤ C(F ∗ 2W ).

Now, let F = ∪mi=1[σi, τi] be a d-collapsing partition of F . Then,

F ∗ 2W = ∪mi=1[σi, τi ∪ {W}]

is a d-collapsing partition of F ∗ 2W . Thus,

C(F) ≥ C(F ∗ 2W ),

as wanted.

A useful special case of Lemma 2.3.8 is the following:

Lemma 2.3.9 (Tancer [Tan11, Prop. 3.1]). Let X be a simplicial complex on vertex

set V , and let v ∈ V such that X is a cone over v. Then,

C(X) = C(X \ v).
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Lemma 2.3.10 (Khmelnitsky [Khm18]). Let V,W be disjoint finite sets. Let F ⊂ 2V

and G ⊂ 2W . Then,

C(F ∗ G) ≤ C(F) + C(G).

Proof. We can write

F ∗ G = (F ∗ 2W ) ∩ (G ∗ 2V ).

By Lemma 2.3.8 and Lemma 2.3.7,

C(F ∗ G) ≤ C(F) + C(G),

as wanted.

Another useful special case is the following:

Lemma 2.3.11. Let V,W be disjoint finite sets. Let F ⊂ 2V . Then,

C(F ∗ {W}) = C(F) + |W |.

Proof. Let d ≥ 0. It is easy to check that F = ∪mi=1[σi, τi] is a d-collapsing partition for

F if and only if F ∗ {W} = ∪mi=1[σi ∪W, τi ∪W ] is a (d+ |W |)-collapsing partition for

F ∗ {W}.

Lemma 2.3.12. Let F ⊂ 2V and let (P,≤) be a poset. Let p : F → P that satisfies

σ ⊂ σ′ =⇒ p(σ) ≤ p(σ′).

Assume that for each x ∈ P the family p−1(x) is d-collapsible. Then, F is d-collapsible.

Proof. We argue by induction on |P |. If |P | = 1, then P = {x} and F = p−1(x);

therefore, F is d-collapsible.

Assume |P | > 1. Let x be a maximal element in P . By Lemma 2.3.4, we can write

p−1(x) = ∪mi=1[σi, τi],

where |σi| ≤ d for all 1 ≤ i ≤ m, and σi 6⊂ τj for 1 ≤ i < j ≤ m.

By the induction hypothesis, p−1(P \ {x}) is also d-collapsible; hence, we can write

p−1(P \ {x}) = ∪ti=m+1[σi, τi],

where |σi| ≤ d for all m+ 1 ≤ i ≤ t, and σi 6⊂ τj for m+ 1 ≤ i < j ≤ t.
Thus, we can write

F = p−1(x) ∪ p−1(P \ {x}) = ∪ti=1[σi, τi].
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For all 1 ≤ i ≤ t, we have |σi| ≤ d. If 1 ≤ i < j ≤ m or m + 1 ≤ i < j ≤ t, then

σi 6⊂ τj . Let 1 ≤ i ≤ m and m+ 1 ≤ j ≤ t, and assume for contradiction that σi ⊂ τj .
Then, p(σi) ≤ p(τj). But p(σi) = x, and x is maximal in P ; therefore, p(τj) = x. But

this is a contradiction to τj ∈ p−1(P \ {x}).
Therefore, σi 6⊂ τj for all 1 ≤ i < j ≤ t; so, by Lemma 2.3.4, F is d-collapsible.

Remark. Lemma 2.3.12 can be seen as an analogue of the “Cluster Lemma” from

discrete Morse theory (see [Jon08, Lemma 4.2]).

Let F ⊂ 2V . For σ ∈ F , define

lk(F , σ) = {τ \ σ : τ ∈ F , σ ⊂ τ}

= {η ⊂ V : σ ∩ η = ∅, σ ∪ η ∈ F}

and

cost(F , σ) = {η ∈ F : σ 6⊂ η}.

Note that, if F is a simplicial complex, these definitions coincide with the definitions of

the link and costar of a simplex presented in Section 2.1.

Lemma 2.3.13. Let F ⊂ 2V and let σ ∈ F . Then,

C(F) ≤ max{C(cost(F , σ)), C(lk(F , σ)) + |σ|}.

Proof. Let P = {0, 1}, and let p : F → P be defined by

p(η) =

0 if σ 6⊂ η,

1 if σ ⊂ η.

for all η ∈ F .

Now let η, τ ∈ F such that η ⊂ τ . If σ 6⊂ η then p(η) = 0, therefore p(η) ≤ p(τ). If

σ ⊂ η, then σ ⊂ τ , therefore p(η) = p(τ) = 1. In all cases, p(η) ≤ p(τ). Moreover, we

have

p−1(0) = cost(F , σ)

and

p−1(1) = {η ∈ F : σ ⊂ η} = lk(F , σ) ∗ {σ}.

By Lemma 2.3.11,

C(lk(F , σ) ∗ {σ}) = C(lk(F , σ)) + |σ|.

Therefore, by Lemma 2.3.12, we obtain

C(F) ≤ max{C(cost(F , σ)), C(lk(F , σ)) + |σ|}.
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For v ∈ V , we write lk(F , v) = lk(F , {v}) and F \ v = cost(F , {v}) = F [V \ {v}].
As an immediate consequence of Lemma 2.3.13, we obtain

Lemma 2.3.14 (Tancer [Tan11, Prop 1.2]). Let F ⊂ 2V and let v ∈ V . Then,

C(F) ≤ max{C(F \ v), C(lk(F , v)) + 1}.

Another useful relation between the collapsibility of a family of sets and that of

their links is the following result:

Lemma 2.3.15 (Khmelnitsky [Khm18]). Let F ⊂ 2V , and let σ ∈ F . Then,

C(lk(F , σ)) ≤ C(F).

Proof. Let d = C(F). Let F = ∪mi=1[σi, τi] be a d-collapsing partition of F . Then, we

have

lk(F , σ) =
⋃
i∈[m]
σ⊂τi

[σi \ σ, τi \ σ].

Indeed, let η ∈ lk(F , σ). Then, η ∩ σ = ∅ and η ∪ σ ∈ F . Let [σi, τi] be the interval

containing η ∪ σ. Note that σ ⊂ τi. Then, η ∈ [σi \ σ, τi \ σ]. Hence,

lk(F , σ) ⊂
⋃
i∈[m]
σ⊂τi

[σi \ σ, τi \ σ].

On the other direction, let η ∈ [σi \ σ, τi \ σ] for some i ∈ [m] such that σ ⊂ τi. Then,

η ∩ σ = ∅ and η ∪ σ ∈ [σi, τi] ⊂ F . Therefore, η ∈ lk(F , σ). Thus,

lk(F , σ) ⊃
⋃
i∈[m]
σ⊂τi

[σi \ σ, τi \ σ].

It is left to show that lk(F , σ) =
⋃
i∈[m]
σ⊂τi

[σi \ σ, τi \ σ] is indeed a d-collapsing partition.

First, note that |σi \ σ| ≤ |σi| ≤ d for all i ∈ [m]. Now, let 1 ≤ i < j ≤ m such that

σ ⊂ τi and σ ⊂ τj . We have to show that σi \ σ 6⊂ τj \ σ. Assume for contradiction that

σi \ σ ⊂ τj \ σ.

Then, we obtain

σi ⊂ (σi \ σ) ∪ σ ⊂ (τj \ σ) ∪ σ = τj ,

a contradiction to the fact that F = ∪mi=1[σi, τi] is a d-collapsing partition.

Thus, C(lk(F , σ)) ≤ d.

Let V be a finite set, and let F ⊂ 2V . Let

F (≥d) = {σ ∈ F : |σ| ≥ d}.
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Lemma 2.3.16. Let V be a finite set. Then, the family (2V )(≥d) is d-collapsible.

Proof. We argue by induction on |V |. If |V | = 0 the claim holds trivially for all d.

Assume |V | > 0. Let u ∈ V . Note that

lk((2V )(≥d), u) = (2V \{u})(≥d−1),

and

(2V )(≥d) \ u = (2V \{u})(≥d).

So, by the induction hypothesis,

C(lk((2V )(≥d), u)) ≤ d− 1

and

C((2V )(≥d) \ u) ≤ d.

Therefore, by Lemma 2.3.14, we obtain C((2V )(≥d)) ≤ d.

Proposition 2.3.17. Let F ⊂ 2V . Then, F is d-collapsible if and only if F (≥d) is

d-collapsible.

Proof. Assume that F is d-collapsible. Let F = ∪mi=1[σi, τi] be a d-collapsing partition

of F . Then, we can write

F (≥d) =

m⋃
i=1

[σi, τi]
(≥d)

For each σ ∈ F (≥d), let p(σ) = m−i, where i is the unique index such that σ ∈ [σi, τi]
(≥d).

Let σ, σ′ ∈ F (≥d) such that σ ⊂ σ′. Note that if p(σ) = m − i, then σ ∈ [σi, τi],

and therefore σ′ /∈ [σj , τj ] for j > i (otherwise we would obtain σi ⊂ σ ⊂ σ′ ⊂ τj , a

contradiction). That is, σ′ ∈ [σj , τj ] for some j ≤ i. Hence, p(σ′) ≥ m− i = p(σ).

For each 1 ≤ i ≤ m, we have

[σi, τi]
(≥d) = ({σi} ∗ 2τi\σi)(≥d) = {σi} ∗ (2τi\σi)(≥d−|σi|)

By Lemma 2.3.11 and Lemma 2.3.16, we have

C([σi, τi]
(≥d)) = C({σi} ∗ (2τi\σi)(≥d−|σi|))

= C((2τi\σi)(≥d−|σi|)) + |σi| = (d− |σi|) + |σi| = d.

So, by Lemma 2.3.12, C(F (≥d)) ≤ d.

On the other direction, assume that F (≥d) is d-collapsible. Let p : F → {0, 1} be

defined by

p(η) =

0 if |η| ≤ d− 1,

1 if |η| ≥ d.
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Note that for any η, τ ∈ F such that η ⊂ τ , we have p(η) ≤ p(τ). Also, we have

p−1(0) = {η ∈ F : |η| ≤ d− 1}

and

p−1(1) = F (≥d).

By Lemma 2.3.5, p−1(0) is (d − 1)-collapsible. Therefore, by Lemma 2.3.12, F is

d-collapsible.

As a consequence of Proposition 2.3.17, we obtain the following equivalent definition

for d-collapsibility. For simplicity, we state the result only for simplicial complexes:

Lemma 2.3.18 (Tancer [Tan10a, Lemma 5.2]). Let X be a simplicial complex. Then,

X is d-collapsible if and only if one of the following holds:

• dim(X) < d, or

• There exists some σ ∈ X such that |σ| = d, σ is contained in a unique maximal

face τ 6= σ of X, and cost(X,σ) is d-collapsible.

Proof. If dim(X) < d, then X is d-collapsible by Lemma 2.3.5. If there is some σ ∈ X
such that |σ| = d, σ is contained in a unique maximal face of X, and cost(X,σ) is

d-collapsible, then X is d-collapsible by definition.

On the other direction, assume that X is d-collapsible. If dim(X) < d, we are done.

Otherwise, assume that dim(X) ≥ d. By Proposition 2.3.17, X(≥d) is d-collapsible.

Let X(≥d) = ∪mi=1[σi, τi] be a d-collapsing partition. Note that, for any i ∈ [m], since

σi ∈ X(≥d), we have |σi| = d. Let i be the minimal index in [m] such that σi 6= τi (there

is such an index i since dim(X) ≥ d).

Note that cost(X(≥d), σi) = ∪j 6=i[σj , τj ]. Indeed, we have

cost(X(≥d), σi) ⊂ X(≥d) \ [σi, τi] = ∪j 6=i[σj , τj ].

On the other direction, note that for j > i, since ∪mk=1[σk, τk] is a d-collapsing partition,

we have σi 6⊂ τj ; hence [σj , τj ] ⊂ cost(X(≥d), σi). For i < j, we have σj = τj , and

therefore σi 6⊂ τj (since |σi| = |τj | but σi 6= τj). So, [σj , τj ] ⊂ cost(X(≥d), σi).

In particular, cost(X(≥d), σi) = cost(X,σi)
(≥d) is d-collapsible. So, by Proposition

2.3.17, cost(X,σi) is d-collapsible, as wanted. Finally, since σi 6⊂ τj for j 6= i, τi is the

unique maximal face in X(≥d) containing σi, and therefore it is the unique maximal

face in X containing σi.

Lemma 2.3.19 (see e.g. [AHJ19, Prop. 2.1]). Let F ⊂ 2V be a family of sets. Let Ṽ

be a finite set, and let π : Ṽ → V be surjective. Let

π−1(F) = {σ ⊂ Ṽ : π(σ) ∈ F}.

36



Then, C(π−1(F)) = C(F).

Proof. Note that F is isomorphic to an induced subfamily of π−1(F); therefore,

C(π−1(F)) ≥ C(F).

On the other direction, assume that F is d-collapsible, and let F = ∪mi=1[σi, τi] be a

d-collapsing partition. Then, we can write

π−1(F) = ∪mi=1π
−1([σi, τi]).

For σ ∈ π−1(F), let p(σ) = m− i, where i is the unique index such that σ ∈ π−1([σi, τi]).

Let σ, σ′ ∈ π−1(F) such that σ ⊂ σ′. If p(σ) = m− i, then π(σ) ∈ [σi, τi], and therefore

π(σ′) /∈ [σj , τj ] for j > i (otherwise, σi ⊂ π(σ) ⊂ π(σ′) ⊂ τj , a contradiction). Thus,

π(σ′) ∈ [σj , τj ] for some j ≤ i. So, p(σ′) ≥ m− i = p(σ).

Let 1 ≤ i ≤ m. Let σi = {v1, . . . , vk} (for some k ≤ d). Then,

π−1([σi, τi]) = (2π
−1(v1))(≥1) ∗ (2π

−1(v2))(≥1) ∗ · · · ∗ (2π
−1(vk))(≥1) ∗ 2π

−1(τi\σi)

By Lemma 2.3.10 and Lemma 2.3.16,

C(π−1([σi, τi])) ≤ k · 1 + 0 = k ≤ d.

Thus, by Lemma 2.3.12,

C(π−1(F)) ≤ d.

Therefore, C(π−1(F)) = C(F).

2.4 Helly-type theorems

The well known Helly Theorem states that for any family of convex sets in Rd, if any

d + 1 of the sets have non-empty intersection, then the whole family has non-empty

intersection.

Recall that a missing face of a complex X is a set τ ⊂ V such that τ /∈ X but σ ∈ X
for any σ ( τ , and h(X) is the maximal dimension of a missing face of X.

Helly’s Theorem may be stated in terms of simplicial complexes as follows:

Theorem 2.4.1 (Helly’s Theorem). Let X be d-representable. Then, h(X) ≤ d.

Helly’s Theorem holds also for the larger classes of d-collapsible and d-Leray com-

plexes:

Theorem 2.4.2 (Topological Helly’s Theorem). Let X be d-Leray. Then, h(X) ≤ d.

The following “colorful” extension of Helly’s Theorem was proved by Lovász (see

[Bár82]):
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Theorem 2.4.3 (Colorful Helly Theorem (Lovász)). Let C1, . . . , Cd+1 be non-empty fam-

ilies of compact convex sets in Rd, and suppose that for any C1 ∈ C1, . . . , Cd+1 ∈ Cd+1,

the intersection ∩d+1
i=1Ci is not empty. Then there there is some i ∈ [d+ 1] such that the

intersection of all the sets in Ci is not empty.

In [KM05], the following generalization of Lovász’s theorem was presented:

Theorem 2.4.4 (Kalai-Meshulam [KM05]). Let X be a d-collapsible complex on vertex

set V . Let M be a matroid on vertex set V with rank function ρ. If M ⊂ X then there

exists a simplex τ ∈ X such that ρ(τ) = ρ(V ) and ρ(V \ τ) ≤ d.

For d-Leray complexes, a slightly weaker result was proved:

Theorem 2.4.5 (Kalai-Meshulam [KM05]). Let X be a d-Leray complex on vertex set

V . Let M be a matroid on vertex set V with rank function ρ. If M ⊂ X then there

exists a simplex τ ∈ X such that ρ(V \ τ) ≤ d.

We will need the following version of the Colorful Helly Theorem for d-collapsible

complexes:

Theorem 1.2.1 (Kalai-Meshulam [KM05], see also [AHJ19]). Let X be a d-collapsible

simplicial complex on vertex set V . Let V1, . . . , Vd+1 ⊂ V such that Vi /∈ X for

all i ∈ [d + 1]. Then, there exists distinct vertices v1 ∈ Vi1 , . . . , vk ∈ Vik , where

1 ≤ i1 < i2 < · · · < ik ≤ d+ 1, such that {v1, . . . , vk} /∈ X.

Proof. Let U = V1 ∪ · · · ∪ Vd+1 and let X ′ = X[U ]. By Lemma 2.3.6, X ′ is d-collapsible.

Let

Ũ = {(v, i) : i ∈ [d+ 1], v ∈ Vi}

and let π : Ũ → U be defined by

π((v, i)) = v

for all (v, i) ∈ Ũ . By Lemma 2.3.19, π−1(X ′) is also d-collapsible.

For i ∈ [d+ 1], let Ũi = {(v, i) : v ∈ Vi}. We define a matroid M on vertex set Ũ by

M = (2Ũ1)(0) ∗ · · · ∗ (2Ũd+1)(0).

That is, M consists of all the sets of the form {(v1, i1), . . . , (vk, ik)}, where ij 6= is for all

1 ≤ j < s ≤ k. Let ρ be the rank function of M . Note that for any set σ ⊂ Ũ , we have

ρ(Ũ \ σ) = d+ 1− |{i ∈ [d+ 1] : Ũi ⊂ σ}|.

Now, assume for contradiction that for any choice of distinct vertices v1 ∈ Vi1 , . . . , vk ∈
Vik , where 1 ≤ i1 < i2 < · · · < ik ≤ d + 1 , we have {v1, . . . , vk} ∈ X. Then, we have

M ⊂ π−1(X ′). So, by Theorem 2.4.4, there is a simplex τ ∈ π−1(X ′) such that
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ρ(Ũ \ τ) ≤ d. So, there is some i ∈ [d+ 1] such that Ũi ⊂ τ . In particular, we obtain

Ũi ∈ π−1(X ′), and therefore Vi = π(Ũi) ∈ X ′. But this contradicts the assumption that

Vi /∈ X for all i ∈ [d+ 1].
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2.A Nerve theorems from double complexes

In this section we present a proof of the Nerve Theorem (Theorem 2.2.4). In fact, we

prove the following stronger versions of the theorem:

Theorem 2.A.1. Let X1, . . . , Xm be non-empty simplicial complexes, and let X =

∪mi=1Xi. Then, there exists an homomorphism h : H̃k (X;R)→ H̃k (N({X1, . . . , Xm});R)

such that

• If, for all I ⊂ [m] of size 1 ≤ |I| ≤ k, H̃k−|I| (∩i∈IXi;R) = 0, then h is surjective.

• If, for all I ⊂ [m] of size 1 ≤ |I| ≤ k + 1, H̃k+1−|I| (∩i∈IXi;R) = 0, then h is

injective.

Theorem 2.A.1 was proved, in a slightly different form, by Meshulam in [Mes01]. A

version of this theorem more similar to the one presented here is proved in [Mon17].

Theorem 2.A.2. Let X1, . . . , Xm be non-empty simplicial complexes, and let X =

∪mi=1Xi. Let N = N({X1, . . . , Xm}). Assume that, for all I ⊂ [m] of size at least 2,

∩i∈IXi is either empty or acyclic. Then, the following sequence is exact:

· · · → H̃k+1 (N ;R)→
m⊕
i=1

H̃k (Xi;R)→ H̃k (X;R)→ H̃k (N ;R)→ · · ·

The proofs presented here are based on the proof of Theorem 2.2.4 appearing in

[BT82, Section 8], and on ideas from [HS10].

Let R be a commutative ring with unit element. A chain complex is a sequence of

R-modules C = {Ck}∞k=−∞ together with a family of homomorphisms ∂k : Ck → Ck−1

satisfying ∂k∂k+1 = 0 for all k. The operator ∂k is called the boundary operator. We

define the homology groups of C by

Hk (C) =
Ker ∂k
Im∂k+1

.

For example, if X is a simplicial complex, then, for C = {Ck(X;R)}∞k=−∞ (taking

Ck(X;R) = 0 whenever X(k) = ∅), we obtain Hk (C) = H̃k (X;R).

Let (C, ∂) and (D, ∂′) be two chain complexes. A chain map f = {fk}∞k=−∞ is a

family of homomorphisms fk : Ck → Dk satisfying fk−1∂k = ∂′kfk for all k.

Given a chain map f : C → D, we define the mapping cone of f to be the chain

complex

Cone(f)k = Ck−1 ⊕Dk,

with boundary operator

∂cone
k (c, d) = (−∂k−1c,−fk−1c+ ∂′kd)
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for any (c, d) ∈ Cone(f)k = Ck−1 ⊕Dk. It is easy to check that ∂cone
k ∂cone

k+1 = 0 for all k,

so Cone(f) is indeed a chain complex.

The homology of the mapping cone is related to the homology of the complexes C
and D by the following result:

Theorem 2.A.3. Let f : C → D be a chain map. Then, the following sequence is

exact:

· · · → Hk (C)→ Hk (D)→ Hk (Cone(f))→ Hk−1 (C)→ · · ·

A double complex is a family of R-modules C = {Ci,j}∞i,j=−∞ with commuting

boundary operators

∂hi,j : Ci,j → Ci−1,j

and

∂vi,j : Ci,j → Ci,j−1

for all i, j. That is, for all i, j, we have

∂hi,j∂
h
i+1,j = 0,

∂vi,j∂
v
i,j+1 = 0

and

∂hi,j−1∂
v
i,j = ∂vi−1,j∂

h
i,j .

For any i, {Ci,j}∞j=−∞ is a chain complex with boundary operator ∂vi,j . Denote by

Hv
i,j(C) the j-th homology group of this complex. Moreover, for any j, {Hv

i,j(C)}∞i=−∞
is a chain complex with boundary operator ∂h. Denote by Hh

i,jH
v(C) the i-th homology

group of this complex.

The total complex of the double complex C is the chain complex

Tot(C)k =
⊕
i,j:

i+j=k

Ci,j

with boundary operator

∂tot
k : Tot(C)k → Tot(C)k−1

defined by

∂tot
k z = ∂hi,jz + (−1)i∂vi,jz

for any i, j such that i + j = k and z ∈ Ci,j ⊂ Tot(C)k. It is easy to check that

({Tot(C)k}∞k=−∞, ∂
tot) is indeed a chain complex. Let Htot

k (C) be the k-th homology

group of the total complex Tot(C).
From now on, we will assume that Ci,j = 0 whenever i < 0 or j < 0.

Lemma 2.A.4. Let k ≥ 1. Assume that Hv
i,k−i(C) = 0 for all ≤ i ≤ k − 1. Let

z = z0 + · · ·+ zk−1 ∈ Ker(∂totk ), where zi ∈ Ci,k−i for all 0 ≤ i ≤ k − 1. Then, there is
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some y = y0 + · · ·+ yk−1 ∈ Tot(C)k+1, where yi ∈ Ci,k+1−i for all 0 ≤ i ≤ k − 1, such

that z = ∂totk+1y.

Proof. Let n ∈ {−1, 0, . . . , k − 1} be the minimal index such that zi = 0 for all i > n.

We argue by induction on n. If n = −1, then z = 0, and we can take y = 0 ∈ Tot(C)k+1.

Assume n ≥ 0. Since ∂tot
k z = 0 and zi = 0 for i > n, we must have ∂vn,k−nzn = 0.

Since Hv
n,k−n = 0, there is some x ∈ Cn,k−n+1 such that zn = ∂vn,k−n+1x.

Let z′ = z + (−1)n+1∂tot
k+1x. Write z′ = z′0 + · · · + z′k−1, where z′0 ∈ Ci,k−i for all

0 ≤ i ≤ k − 1. Then, we have z′i = zi for i ≤ n− 2, z′n−1 = zn−1 + (−1)n+1∂hn,k−n+1x

and z′i = 0 for i > n − 1. So, since ∂tot
k z′ = ∂tot

k z = 0, by the induction hypothesis

there is some y′ ∈ Tot(C)k+1 such that z′ = ∂tot
k+1y

′. Setting y = y′ + (−1)nx, we obtain

z = ∂tot
k+1y. Moreover, by the induction hypothesis we can write y′ = y′0 + · · ·+ y′k−1,

where y′i ∈ Ci,k+1−i for 0 ≤ i ≤ k − 1. Hence, we can write y = y0 + · · ·+ yk−1, where

yi = y′i ∈ Ci,k+1−i for i 6= n, and yn = y′n + (−1)nx ∈ Cn,k−n+1.

Lemma 2.A.5. Let k ≥ 0. Then, there is a homomorphism h : H tot
k (C)→ Hh

k,0H
v(C)

such that:

• If Hv
i,k−1−i(C) = 0 for all 0 ≤ i ≤ k − 2, then h is surjective.

• If Hv
i,k−i(C) = 0 for all 0 ≤ i ≤ k − 1, then h is injective.

Proof. Let z = z0 + · · ·+ zk ∈ Ker(∂tot
k ), where zi ∈ Ci,k−i for all 0 ≤ i ≤ k.

Note that ∂vk,0zk = 0 and ∂hk,0zk = ∂vk−1,1((−1)kzk−1). Therefore, zk represents an

homology class [zk] ∈ Hh
k,0H

v(C), and we can define h : Htot
k (C)→ Hh

k,0H
v(C) by

h([z]) = [zk].

Note that h is well defined: Let y = y0 + · · · + yk+1, where yi ∈ Ci,k+1−i for all

0 ≤ i ≤ k + 1. Then, we have

h([z + ∂tot
k+1y]) = [zk + ∂hk+1,0yk+1 + (−1)k∂vk,1yk] = [zk] ∈ Hh

k,0H
v(C),

since [∂vk,1yk] = 0 ∈ Hv
k,0(C) and [∂hk+1,0yk+1] = 0 ∈ Hh

k,0H
v(C). So, h([z + ∂tot

k+1y]) =

h([z]).

Now, assume that Hv
i,k−1−i(C) = 0 for all 0 ≤ i ≤ k−2. Let [zk] ∈ Hh

k,0H
v(C). Then,

we have ∂hk,0zk = ∂vk−1,1x for some x ∈ Ck−1,1.

Let z′ = ∂hk−1,1x. Note that ∂hk−2,1z
′ = 0 and

∂vk−2,1z
′ = ∂vk−2,1∂

h
k−1,1x = ∂hk−1,0∂

v
k−1,1x = ∂hk−1,0∂

h
k,0zk = 0.

So, z′ ∈ Ker(∂tot
k−1). Therefore, by Lemma 2.A.4, there is some y′ = y′0 + · · ·+ y′k−2 ∈

Tot(C)k, where y′i ∈ Ci,k−i for all 0 ≤ i ≤ k − 2, such that z′ = ∂tot
k y′.
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Let z = zk + (−1)k(x− y′). Then, we have

∂tot
k z = ∂hk,0zk + (−1)k(∂hk−1,1x+ (−1)k−1∂vk−1,1x− ∂hk−1,1x) = 0.

So, z ∈ Ker(∂tot
k ) and h([z]) = zk. Thus, h is surjective.

Finally, assume that Hv
i,k−i(C) = 0 for all 0 ≤ i ≤ k − 1. Let z = z0 + · · · + zk ∈

Ker(∂tot
k ), where zi ∈ Ci,k−i for all 0 ≤ i ≤ k, such that h([z]) = [zk] = 0 ∈ Hh

k,0H
v(C).

That is, there exist x ∈ Ck+1,0 and w ∈ Ck,1 such that ∂hk+1,0x = zk + ∂vk,1w.

Let z′ = z + ∂tot
k+1((−1)kw − x). We have

z′ = z0 + · · ·+ zk + (−1)k∂hk,1w + ∂vk,1w − ∂hk+1,0x

= z0 + · · ·+ zk−2 +
(
zk−1 + (−1)k∂hk,1w

)
.

Since ∂tot
k z′ = ∂tot

k z = 0, then, by Lemma 2.A.4, there is some y ∈ Tot(C)k+1 such that

z′ = ∂tot
k+1y. So, we have

z = z′ − ∂tot
k+1((−1)kw − x) = ∂tot

k+1(y + (−1)k+1w + x).

That is, [z] = 0 ∈ Htot
k (C). Hence, h is injective.

The following special case of Lemma 2.A.5 will be useful:

Corollary 2.A.6. If Hv
i,j(C) = 0 for all i and all j ≥ 1, then H tot

k (C) ∼= Hh
k,0H

v(C) for

all k.

For a ∈ Z, let C≤a = {C≤ai,j }∞i,j=−∞ be the double complex

C≤ai,j =

Ci,j if i ≤ a,

0 otherwise,

with vertical boundary operators ∂vi,j for i ≤ a and 0 for i > a, and horizontal boundary

operators ∂hi,j for i ≤ a and 0 for i > a.

Similarly, let C≥a = {C≥ai,j }∞i,j=−∞ be the double complex

C≥ai,j =

Ci,j if i ≥ a,

0 otherwise,

with vertical boundary operators −∂vi,j for i ≥ a and 0 for i < a, and horizontal boundary

operators −∂hi,j for i > a and 0 for i ≤ a.

The following Lemma relates between the total homology groups of the complexes

C≤a, C≥a+1 and C:

Lemma 2.A.7. The following sequence is exact

· · · → H tot
k (C≤a)→ H tot

k (C)→ H tot
k (C≥a+1)→ H tot

k−1(C≤a)→ · · ·
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Proof. For k ∈ Z, we define a map fk : Totk+1(C≥a+1) → Totk(C≤a) as follows: For

z ∈ Totk+1(C≥a+1), let

fk(z) = −∂ha+1,k−az
′,

where z′ is the component of z in Ca+1,k−a.

It is easy to check that f = {fk}k∈Z is a chain map between the complexes

Tot∗+1(C≥a+1) and Tot∗(C≤a). We have

Cone(f)k = Totk(C≥a+1)⊕ Totk(C≤a) = Totk(C).

Moreover, for z ∈ Totk(C), write z = z1+z2, where z1 ∈ Totk(C≥a+1) and z2 ∈ Totk(C≤a).
Let z′ be the component of z1 in Ca+1,k−a−1. Then, we have

∂cone
k (z) = (∂tot

k (z1)− ∂ha+1,k−a−1(z′)) + (−fk−1(z1) + ∂tot
k (z2)) = ∂tot

k (z).

So, Hk (Cone(f)) ∼= Htot
k (C). Thus, by Theorem 2.A.3, we obtain the long exact

sequence

· · · → Htot
k+1(C≥a+1)→ Htot

k (C≤a)→ Htot
k (C)→ Htot

k (C≥a+1)→ · · ·

as wanted.

Remark. In [AY21], some variants of Lemma 2.A.7 are applied to the study of double

complexes arising from problems in combinatorial commutative algebra.

2.A.1 A double complex from a partition

Let K be a simplicial complex on vertex set V . Let V = A ·∪ B be a partition of V .

Following [HS10], we define a double complex as follows:

For any i, j, let

K(i, j) = {σ ∈ K : |σ ∩A| = i, |σ ∩B| = j}.

Let Ki,j be the free R-module generated by the ordered (i+ j−1)-dimensional simplices

of the form [v0, . . . , vi+j−1], where {v0, . . . , vi+j−1} ∈ K(i, j), under the relations

[v0, . . . , vi+j−1] = sgn(π)[vπ(0), . . . , vπ(i+j−1)],

for every simplex {v0, . . . , vi+j−1} ∈ K(i, j) and permutation π : {0, . . . , i+ j − 1} →
{0, . . . , i+ j − 1}.

Let K = {Ki,j}∞i,j=−∞. Let σ = [v0, . . . , vi−1, u0, . . . , uj−1] be an ordered simplex in

K such that v0, . . . , vi−1 ∈ A and u0, . . . , uj−1 ∈ B. We define boundary operators

∂hi,jσ =

i−1∑
k=0

(−1)k[v0, . . . , vk−1, vk+1, . . . , vi−1, u0, . . . , uj−1]
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and

∂vi,jσ =

j−1∑
k=0

(−1)k[v0, . . . , vi−1, u0, . . . , uk−1, uk+1, . . . , uj−1].

It is easy to check that these are indeed boundary operators and that they commute.

For any k, we have

Tot(K)k =
⊕
i+j=k

Ki,j = Ck−1(K;R).

Moreover, it is easy to check that ∂tot
k is exactly the boundary operator ∂k−1 of the

complex K. That is, we have for all k,

Htot
k (K) = H̃k−1 (K;R) .

Lemma 2.A.8. For all i, j, we have

Hv
i,j(K) ∼=

⊕
η∈K(i−1),

η⊂A

H̃j−1 (lk(K, η)[B];R) .

Proof. For any i, j, define

f : Ki,j →
⊕

η∈K(i−1),
η⊂A

Cj−1(lk(K, η)[B];R)

by

f([v0, . . . , vi−1, u0, . . . , uj−1]) = [u0, . . . , uj−1] ∈ Cj−1(lk(K, {v0, . . . , vi−1});R)

for any {v0, . . . , vi−1, u0, . . . , uj−1} ∈ K, where {v0, . . . , vi−1} ⊂ A and {u0, . . . , uj−1} ⊂
B. It is easy to check that f is a chain map (where we take the boundary operator

of Ki,j to be ∂vi,j and the boundary operator of
⊕

η∈K(i−1)
η⊂A

Cj−1(lk(K, η)[B];R) to be

the direct sum of the boundary operators of its summands), and that f is bijective.

Therefore, we obtain

Hv
i,j(K) ∼=

⊕
η∈K(i−1),

η⊂A

H̃j−1 (lk(K, η)[B];R)

as wanted.

Let

NA(K) = {η ∈ K[A] : lk(K, η)[B] 6= {∅}}.

Note that NA(K) is a subcomplex of K[A].
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Lemma 2.A.9. For all i, we have

Hv
i,0(K) ∼= Ci−1(K[A], NA(K);R)

and

Hh
i,0H

v(K) ∼= Hi−1 (K[A], NA(K);R) .

Proof. By Lemma 2.A.8, there is an isomorphism f∗ : Hv
i,0 →

⊕
η∈K(i−1),

η⊂A
H̃−1 (lk(K, η)[B];R)

defined by

f∗([σ]) = [∅] ∈ H̃−1 (lk(K,σ)[B];R)

for all σ ∈ K[A](i− 1).

Note that, for any complexX, we have H̃−1 (X;R) = 0 ifX 6= {∅}, and H̃−1 (X;R) ∼=
R if X = {∅}. Hence, we have⊕

η∈K(i−1),
η⊂A

H̃−1 (lk(K, η)[B];R) ∼=
⊕

η∈K[A](i−1),
η /∈NA(K)

R ∼= Ci−1(K[A], NA(K);R).

Thus , we obtain an isomorphism

f̃ : Hv
i,0(K)→ Ci−1(K[A], NA(K);R)

defined by

f̃([σ]) =

σ if σ /∈ NA(K),

0 if σ ∈ NA(K)

for any σ ∈ K[A](i−1). It is easy to check that f̃ is a chain map between ({Hv
i,0(K)}∞i=−∞, ∂h)

and ({Ci−1(K[A], NA(K);R)}∞i=−∞, ∂); therefore, we obtain

Hh
i,0H

v(K) ∼= Hi−1 (K[A], NA(K);R) ,

as wanted.

Lemma 2.A.10. Assume that A ∈ K. Then, for all i, we have

Hh
i,0H

v(K) ∼= H̃i−2 (NA(K);R) .

Proof. Since A ∈ K, we have K[A] = 2A. In particular, K[A] is acyclic. Hence, by

Lemma 2.A.9 and Theorem 2.2.6, we obtain

Hh
i,0H

v(K) ∼= Hi−1

(
2A, NA(K);R

) ∼= H̃i−2 (NA(K);R) ,

as wanted.

By applying Lemma 2.A.5 to the double complex K, we obtain the following result:
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Theorem 2.A.11. Let K be a simplicial complex on vertex set V = A ·∪B. Assume

that A ∈ K. Then, there is a homomorphism h : H̃k (K;R)→ H̃k−1 (NA(K);R) such

that

• If, for all 0 ≤ i ≤ k − 1, H̃k−1−i (lk(K,σ)[B];R) = 0 for all σ ⊂ A of size i, then

h is surjective.

• If, for all 0 ≤ i ≤ k, H̃k−i (lk(K,σ)[B];R) = 0 for all σ ⊂ A of size i, then h is

injective.

Proof. For all k we have Htot
k+1(K) ∼= H̃k (K;R), and, by Lemma 2.A.10, Hh

k+1,0H
v(K) ∼=

H̃k−1 (NA(K);R). By Lemma 2.A.8, we have for all i and j

Hv
i,j(K) ∼=

⊕
σ⊂A
|σ|=i

H̃j−1 (lk(K,σ)[B];R) .

Thus, the claim follows immediately from Lemma 2.A.5.

As an immediate consequence, we obtain:

Corollary 2.A.12. Let K be a simplicial complex on vertex set V = A ·∪B. Assume

that A ∈ K. If

H̃k (lk(K,σ)[B];R) = 0

for all σ ⊂ A and all k ≥ 0, then H̃k (K;R) ∼= H̃k−1 (NA(K);R) for all k.

Theorem 2.A.13. Let K be a simplicial complex on vertex set V = A ·∪B. Assume

that A,B ∈ K and that, for any v ∈ A, lk(K, v)[B] 6= {∅}. If, for all σ ⊂ A of size

|σ| ≥ 2 and all k ≥ 0 we have

H̃k (lk(K,σ)[B];R) = 0,

then the following sequence is exact

· · · → H̃k+1 (NA(K);R)→
⊕
v∈A

H̃k (lk(K, v)[B];R)→ H̃k+1 (K;R)→ H̃k (NA(K);R)→ · · ·

Proof. Let C = K≤1. Since B ∈ K, we have K[B] = 2B. In particular, H̃k (K[B];R) = 0

for all k. Since C≤0 consists of only one non-zero column, we have, using Lemma 2.A.8,

Htot
k (C≤0) = Hv

0,k(C≤0) = Hv
0,k(K) ∼= H̃k−1 (K[B];R) = 0

for all k. By Lemma 2.A.7, we have an exact sequence

· · · → Htot
k (C≤0)→ Htot

k (C)→ Htot
k (C≥1)→ Htot

k−1(C≤0)→ · · ·
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Therefore,

Htot
k (K≤1) = Htot

k (C) ∼= Htot
k (C≥1)

for all k. Since C≥1 consists of only one non-zero column, we obtain

Htot
k (K≤1) ∼= Htot

k (C≥1) = Hv
1,k−1(C≥1) = Hv

1,k−1(K) ∼=
⊕
v∈A

H̃k−2 (lk(K, v)[B];R)

for all k (where the last isomorphism follows from Lemma 2.A.8).

By Lemma 2.A.10, we have for i ≥ 3

Hh
i,0H

v(K≥2) = Hh
i,0H

v(K) ∼= H̃i−2 (NA(K);R) .

Moreover, since lk(K, v)[B] 6= {∅} for all v ∈ A, we have v ∈ NA(K) for all v ∈ A.

Therefore, by Lemma 2.A.9,

Hv
1,0(K) ∼= C0(2A, NA(K);R) = 0 = Hv

1,0(K≥2).

So,

Hh
2,0H

v(K≥2) = Hh
2,0H

v(K) ∼= H̃0 (NA(K);R) .

Since for i < 2 we have Hh
i,0H

v(K≥2) = 0 = H̃i−2 (NA(K);R), we obtain

Hh
i,0H

v(K≥2) ∼= H̃i−2 (NA(K);R)

for all i. By Lemma 2.A.8, we have for all i ≥ 2 and j ≥ 1

Hv
i,j(K≥2) = Hv

i,j(K) ∼=
⊕
σ⊂A
|σ|=i

H̃j−1 (lk(K,σ)[B];R) = 0.

Moreover, by definition of K≥2, we have Hv
i,j(K≥2) = 0 for i < 2 and all j. Hence, by

Corollary 2.A.6, we obtain

Htot
k (K≥2) ∼= Hh

k,0H
v(K≥2) ∼= H̃k−2 (NA(K);R)

for all k. Recall that Htot
k (K) ∼= H̃k−1 (K;R) for all k. Therefore, by Lemma 2.A.7, the

sequence

· · · → H̃k+1 (NA(K);R)→
⊕
v∈A

H̃k (lk(K, v)[B];R)→ H̃k+1 (K;R)→ H̃k (NA(K);R)→ · · ·

is exact.
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2.A.2 The Mayer-Vietoris double complex

Let X1, . . . , Xm be non-empty simplicial complexes on vertex set V , and let X = ∪mi=1Xi.

Let K be the simplicial complex on vertex set V ·∪ [m] whose simplices are the sets of the

form σ ∪ I, where I ⊂ [m] and σ ∈ ∩i∈IXi (where, for I = ∅, we define ∩i∈IXi = 2V ).

Let A = V and B = [m]. Note that V ∈ K. For any σ ∈ K[V ] = 2V , we have

lk(K,σ)[B] = {I ⊂ [m] : σ ∈ ∩i∈IXi} = 2{i∈[m]:σ∈Xi}.

Thus, lk(K,σ)[B] = {∅} if σ /∈ X and lk(K,σ)[B] is a complete complex if σ ∈ X.

Therefore, NA(K) = X. Moreover, we have H̃k (lk(K,σ)[B];R) = 0 for all k ≥ 0 and

σ ⊂ V . Hence, by Corollary 2.A.12, we have

H̃k (X;R) ∼= H̃k+1 (K;R)

for all k.

Now, let A = [m] and B = V . Note that [m] ∈ K (since ∅ ∈ ∩i∈[m]Xi). For any

I ⊂ A = [m], we have

lk(K, I)[B] = {σ ⊂ V : σ ∈ ∩i∈IXi} = ∩i∈IXi

and

NA(K) = {I ⊂ [m] : ∩i∈IXi 6= {∅}} = N({X1, . . . , Xm}).

Now we can complete the proofs of Theorems 2.A.1 and 2.A.2:

Proof of Theorem 2.A.1. Let A = [m] ∈ K and B = V . For ∅ 6= I ⊂ [m], we have

lk(K, I)[V ] = ∩i∈IXi.

Moreover, for I = ∅ we have

lk(K, ∅)[V ] = K[V ] = 2V .

In particular, lk(K, ∅)[V ] is acyclic. Since H̃k+1 (K;R) ∼= H̃k (X;R) and NA(K) =

N({X1, . . . , Xm}), the claim follows from Theorem 2.A.11.

Proof of Theorem 2.A.2. Let A = [m] ∈ K and B = V ∈ K. For all i ∈ A = [m], we

have

lk(K, i)[V ] = Xi 6= {∅}.

For I ⊂ [m] of size |I| ≥ 2 ,

lk(K, I)[V ] = ∩i∈IXi
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is either empty or acyclic. So, by Theorem 2.A.13, the sequence

· · · → H̃k+1 (NA(K);R)→
⊕
i∈[m]

H̃k (lk(K, i)[V ];R)→ H̃k+1 (K;R)→ H̃k (NA(K);R)→ · · ·

is exact. Since NA(K) = N and H̃k (X;R) ∼= H̃k+1 (K;R) for all k, we obtain the long

exact sequence

· · · → H̃k+1 (N ;R)→
⊕
i∈[m]

H̃k (Xi;R)→ H̃k (X;R)→ H̃k (N ;R)→ · · · ,

as wanted.
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Chapter 3

Minimal exclusion sequences and

collapsibility of complexes of

hypergraphs

This chapter is organized as follows. In Section 3.1 we present our generalization of

Matoušek and Tancer’s bound on the collapsibility of a simplicial complex, and we

prove Theorem 1.1.3. In Section 3.2 we present some results on the collapsibility of

independence complexes of graphs. In Section 3.3 we prove our main results on the

collapsibility of complexes of hypergraphs. Section 3.4 contains some generalizations of

Theorems 1.1.1 and 1.1.2, which are obtained by applying different known variants of

the Frankl-Kalai Lemma (Lemma 1.1.4). Section 3.5 contains more applications of the

minimal exclusion sequence method. In particular, we prove Theorem 1.1.5 about the

collapsibility of complexes of matrices with bounded maximal rank. We also present

some conjectures about the collapsibility of the complexes MA,r for different classes of

matrices.

3.1 A bound on the collapsibility of a complex

Let X be a (non-void) simplicial complex on vertex set V . Fix a linear order < on V .

Let A = (σ1, . . . , σm) be a sequence of faces of X such that, for any σ ∈ X, σ ⊂ σi for

some i ∈ [m]. For example, we may take σ1, . . . , σm to be the set of maximal faces of X

(given some fixed ordering).

For a simplex σ ∈ X, let mX,A,<(σ) = min{i ∈ [m] : σ ⊂ σi}. Let i ∈ [m] and

σ ∈ X such that mX,A,<(σ) = i. We define the minimal exclusion sequence

mesX,A,<(σ) = (v1, . . . , vi−1)

as follows: If i = 1 then mesX,A,<(σ) is the empty sequence. If i > 1 we define the

sequence recursively as follows:
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Since i > 1, we must have σ 6⊂ σ1; hence, there is some v ∈ σ such that v /∈ σ1. Let

v1 be the minimal such vertex (with respect to the order <).

Let 1 < j < i and assume that we already defined v1, . . . , vj−1. Since i > j, we must

have σ 6⊂ σj ; hence, there exists some v ∈ σ such that v /∈ σj .

• If there is a vertex vk ∈ {v1, . . . , vj−1} such that vk /∈ σj , let vj be such a vertex

of minimal index k. In this case we call vj old at j.

• If vk ∈ σj for all k < j, let vj be the minimal vertex v ∈ σ (with respect to the

order <) such that v /∈ σj . In this case we call vj new at j.

Let MX,A,<(σ) ⊂ σ be the simplex consisting of all the vertices appearing in the

sequence mesX,A,<(σ). Let

d(X,A, <) = max{|MX,A,<(σ)| : σ ∈ X}.

The following result was stated and proved in [MT09, Prop. 1.3] in the special case

where X is the nerve of a finite family of sets (in our notation, X = CovH,1 for some

hypergraph H).

Theorem 3.1.1. The simplicial complex X is d(X,A, <)-collapsible.

The proof given in [MT09] can be easily modified to hold in this more general setting.

Here we present a different proof, based on the application of Lemma 2.3.14.

Proof of Theorem 3.1.1. First, we deal with the case where X is a complete complex

(i.e. a simplex). Then X is 0-collapsible; therefore, the claim holds.

For a general complex X, we argue by induction on the number of vertices of X. If

|V | = 0, then X = {∅}. In particular, it is a complete complex; hence, the claim holds.

Let |V | > 0, and assume that the claim holds for any complex with less than |V |
vertices. If σ1 = V , then X is the complete complex on vertex set V , and the claim

holds. Otherwise, let v be the minimal vertex (with respect to <) in V \ σ1.

In order to apply Lemma 2.3.14, we will need the following two claims:

Claim 3.1.2. The complex X \ v is d(X,A, <)-collapsible.

Proof. For every i ∈ [m], let σ′i = σi \ {v}, and let A′ = (σ′1, . . . , σ
′
m). Let σ ∈ X \ v.

Since v /∈ σ, then, for any i ∈ [m], σ ⊂ σi if and only if σ ⊂ σ′i. Hence, every simplex

σ ∈ X \ v is contained in σ′i for some i ∈ [m] (since, by the definition of A, σ ⊂ σi for

some i ∈ [m]). So, by the induction hypothesis, X \ v is d(X \ v,A′, <)-collapsible.

Let σ ∈ X \ v. We will show that mesX,A,<(σ) = mesX\v,A′,<(σ). Since for any

i ∈ [m], σ ⊂ σi if and only if σ ⊂ σ′i, then the two sequences are of the same length. Let

mesX,A,<(σ) = (v1, . . . , vk)
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and

mesX\v,A′,<(σ) = (v′1, . . . , v
′
k).

We will show that vi = v′i for all i ∈ [k]. We argue by induction on i. Let i ∈ [k], and

assume that vj = v′j for all j < i. Since v /∈ σ, then σ \ σi = σ \ σ′i. Therefore, for any

j < i, vj ∈ σ \ σi if and only if v′j = vj ∈ σ \ σ′i. Hence, vi is old at i if and only if v′i
is old at i, and if vi and v′i are both old at i, then vi = v′i. Otherwise, both vi and v′i
are new at i. Then, vi is the minimal vertex in σ \ σi, and v′i is the minimal vertex in

σ \ σ′i = σ \ σi. Thus, vi = v′i.

Therefore, |MX\v,A′,<(σ)| = |MX,A,<(σ)| for any σ ∈ X \ v; hence,

d(X \ v,A′, <) ≤ d(X,A, <).

So, X \ v is d(X,A, <)-collapsible.

Claim 3.1.3. The complex lk(X, v) is (d(X,A, <)− 1)-collapsible.

Proof. Let I = {i ∈ [m] : v ∈ σi}. For every i ∈ I, let σ′′i = σi \ {v}. Write

I = {i1, . . . , ir}, where i1 < · · · < ir, and let A′′ = (σ′′i1 , . . . , σ
′′
ir

).

For any σ ∈ lk(X, v), the simplex σ ∪ {v} belongs to X; hence, there exists some

i ∈ [m] such that σ ∪ {v} ⊂ σi. Since v ∈ σ ∪ {v}, we must have i ∈ I, and therefore

σ ⊂ σ′′i = σi \ {v}. So, by the induction hypothesis, lk(X, v) is d(lk(X, v),A′′, <)-

collapsible.

Let σ ∈ lk(X, v). We will show that

MX,A,<(σ ∪ {v}) = Mlk(X,v),A′′,<(σ) ∪ {v}.

Let

mesX,A,<(σ ∪ {v}) = (v1, . . . , vn),

and

meslk(X,v),A′′,<(σ) = (u1, . . . , ut).

For any j ∈ [r], σ ⊂ σ′′ij if and only if σ ∪ {v} ⊂ σij . Also, for i /∈ I, σ ∪ {v} 6⊂ σi (since

v /∈ σi). Therefore, n = it+1 − 1.

The vertex v is the minimal vertex in V \ σ1, therefore it is the minimal vertex in

(σ∪{v})\σ1. Hence, we have v1 = v. Now, let i > 1 such that i /∈ I. Then, v1 = v is the

vertex of minimal index in the sequence (v1, . . . , vi−1) that is contained in (σ ∪ {v}) \ σi.
Therefore, vi = v.

Finally, we will show that vij = uj for all j ∈ [t]. We argue by induction on j. Let

j ∈ [t], and assume that vi` = u` for all ` < j.

For any k < ij , either vk = v (if k /∈ I) or vk = u` for some ` < j (if k = i` ∈ I). Also,

since v ∈ σij , we have (σ ∪ {v}) \ σij = σ \ σ′′ij . So, for any k < ij , vk ∈ (σ ∪ {v}) \ σij
if and only if k = i` for some ` < j such that u` ∈ σ \ σ′′ij . Therefore, vij is old at ij
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if and only if uj is old at j, and if vij and uj are both old, then vij = uj . Otherwise,

assume that vij is new at ij and uj is new at j. Then, vij is the minimal vertex in

(σ ∪ {v}) \ σij , and uj is the minimal vertex in σ \ σ′′ij = (σ ∪ {v}) \ σij . Thus, vij = uj .

So, for any σ ∈ lk(X, v) we obtain

|Mlk(X,v),A′′,<(σ)| = |MX,A,<(σ ∪ {v})| − 1.

Hence,

d(lk(X, v),A′′, <) ≤ d(X,A, <)− 1.

So, lk(X, v) is (d(X,A, <)− 1)-collapsible.

By Claim 3.1.2, Claim 3.1.3 and Lemma 2.3.14, X is d(X,A, <)-collapsible.

For our applications, we will use the following simplified version of Theorem 3.1.1:

Theorem 1.1.3. Let X be a simplicial complex on vertex set V . Let S(X) be the

collection of all sets {v1, . . . , vk} ⊂ V satisfying the following condition:

There exist maximal faces σ1, σ2, . . . , σk+1 of X such that:

• vi /∈ σi for all i ∈ [k],

• vi ∈ σj for all 1 ≤ i < j ≤ k + 1.

Let d′(X) be the maximum size of a set in S(X). Then X is d′(X)-collapsible.

Proof. Let < be some linear order on the vertex set V , and let A = (σ1, . . . , σm) be the

sequence of maximal faces of X (ordered in any way).

Let i ∈ [m] and let σ ∈ X with mX,A,<(σ) = i. Let mesX,A,<(σ) = (v1, . . . , vi−1).

Then MX,A,<(σ) = {vi1 , . . . , vik} for some i1 < · · · < ik ∈ [i − 1] (these are exactly

the indices ij such that vij is new at ij). For each j ∈ [k] we have vij /∈ σij . In

addition, since vij is new at ij , we have vi` ∈ σij for all ` < j. Let ik+1 = i. Since

mX,A,<(σ) = i = ik+1, we have σ ⊂ σik+1
. In particular, vi` ∈ σik+1

for all ` < k + 1.

Therefore, MX,A,<(σ) ∈ S(X). Thus, d(X,A, <) ≤ d′(X), and by Theorem 3.1.1,

X is d′(X)-collapsible.

3.2 Collapsibility of independence complexes

Let G = (V,E) be a graph. The independence complex I(G) is the simplicial complex

on vertex set V whose simplices are the independent sets in G.

Definition 3.2.1. Let k(G) be the maximal size of a set {v1, . . . , vk} ⊂ V that satisfies:

• {vi, vj} /∈ E for all i 6= j ∈ [k],

• There exist u1, . . . , uk ∈ V such that
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– {vi, ui} ∈ E for all i ∈ [k],

– {vi, uj} /∈ E for all 1 ≤ i < j ≤ k.

Proposition 3.2.2. k(G) = d′(I(G)).

Proof. Let A = {v1, . . . , vk} ∈ S(I(G)). Then, there exist maximal faces σ1, . . . , σk+1

of I(G) such that:

• vi /∈ σi for all i ∈ [k],

• vi ∈ σj for all 1 ≤ i < j ≤ k + 1.

Let i ∈ [k]. Since σi is a maximal independent set in G and vi /∈ σi, there exists some

ui ∈ σi such that {vi, ui} ∈ E.

Let 1 ≤ i < j ≤ k. Since vi and uj are both contained in the independent set σj , we

have {vi, uj} /∈ E. Furthermore, since A ⊂ σk+1, A is an independent set in G. That is,

{vi, vj} /∈ E for all i 6= j ∈ [k]. So, A satisfies the conditions of Definition 3.2.1. Hence,

|A| ≤ k(G); therefore, d′(I(G)) ≤ k(G).

Now, let k = k(G), and let v1, . . . , vk, u1, . . . , uk ∈ V such that

• {vi, vj} /∈ E for all i 6= j ∈ [k],

• {vi, ui} ∈ E for all i ∈ [k],

• {vi, uj} /∈ E for all 1 ≤ i < j ≤ k.

Let i ∈ [k], and let Vi = {vj : 1 ≤ j < i}. Note that Vi ∪ {ui} forms an independent set

in G; therefore, it is a simplex in I(G). Let σi be a maximal face of I(G) containing

Vi ∪ {ui}. Since {vi, ui} ∈ E, we have vi /∈ σi.
The set {v1, . . . , vk} is also an independent set in G. Therefore, there is a maximal

face σk+1 ∈ I(G) that contains it.

By the definition of σ1, . . . , σk+1, we have vi ∈ σj for 1 ≤ i < j ≤ k + 1. Therefore,

{v1, . . . , vk} ∈ S(I(G)); so, k(G) = k ≤ d′(I(G)).

Hence, k(G) = d′(I(G)), as wanted.

As an immediate consequence of Proposition 3.2.2 and Theorem 1.1.3, we obtain:

Proposition 3.2.3. The complex I(G) is k(G)-collapsible.

3.3 Complexes of hypergraphs

In this section we prove our main results, Theorems 1.1.1 and 1.1.2.

Theorem 1.1.1. Let H be a hypergraph of rank r. Then CovH,p is
((
r+p
r

)
− 1
)
-

collapsible.
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Proof. Let H be a hypergraph of rank r on vertex set [n], and let

{A1, . . . , Ak} ∈ S(CovH,p).

Then, there exist maximal faces F1, . . . ,Fk+1 ∈ CovH,p such that

• Ai /∈ Fi for all i ∈ [k],

• Ai ∈ Fj for all 1 ≤ i < j ≤ k + 1.

For any i ∈ [k + 1], there is some Ci ⊂ [n] of size at most p that covers Fi. Since Fi is

maximal, then, for any A ∈ H, A ∈ Fi if and only if A ∩ Ci 6= ∅. Therefore, we obtain

• Ai ∩ Ci = ∅ for all i ∈ [k],

• Ai ∩ Cj 6= ∅ for all 1 ≤ i < j ≤ k + 1.

Hence, the pair of families

{A1, . . . Ak, ∅}

and

{C1, . . . , Ck, Ck+1}

satisfies the conditions of Lemma 1.1.4; thus, k + 1 ≤
(
r+p
r

)
. Therefore,

d′(CovH,p) ≤
(
r + p

r

)
− 1,

and by Theorem 1.1.3, CovH,p is
((
r+p
r

)
− 1
)
-collapsible.

Theorem 1.1.2. Let H be a hypergraph of rank r. Then IntH is 1
2

(
2r
r

)
-collapsible.

Proof. Let H be a hypergraph of rank r and let G be the graph on vertex set H whose

edges are the pairs {A,B} ⊂ H such that A ∩B = ∅. Then IntH = I(G).

Let k = k(G) and let {A1, . . . , Ak} ⊂ H that satisfies the conditions of Definition

3.2.1. That is,

• Ai ∩Aj 6= ∅ for all i 6= j ∈ [k],

• There exist B1, . . . , Bk ∈ H such that

– Ai ∩Bi = ∅ for all i ∈ [k],

– Ai ∩Bj 6= ∅ for all 1 ≤ i < j ≤ k.

Then, the pair of families

{A1, . . . , Ak, Bk, . . . , B1}
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and

{B1, . . . , Bk, Ak, . . . , A1}

satisfies the conditions of Lemma 1.1.4; therefore, 2k ≤
(

2r
r

)
. Thus, by Proposition 3.2.3,

IntH = I(G) is 1
2

(
2r
r

)
-collapsible.

3.4 More complexes of hypergraphs

Let H be a hypergraph. A set C is a t-transversal of H if |A ∩ C| ≥ t for all A ∈ H.

Let τt(H) be the minimal size of a t-transversal of H. The hypergraph H is pairwise

t-intersecting if |A ∩B| ≥ t for all A,B ∈ H. Let

CovtH,p = {F ⊂ H : τt(F) ≤ p}

and

InttH = {F ⊂ H : F is pairwise t-intersecting}.

The following generalization of Lemma 1.1.4 was proved by Füredi in [Für84].

Lemma 3.4.1 (Füredi [Für84]). Let {A1, . . . , Ak} and {B1, . . . , Bk} be families of sets

such that:

• |Ai| ≤ r, |Bi| ≤ p for all i ∈ [k],

• |Ai ∩Bi| ≤ t for all i ∈ [k],

• |Ai ∩Bj | > t for all 1 ≤ i < j ≤ k.

Then

k ≤
(
r + p− 2t

r − t

)
.

We obtain the following:

Theorem 3.4.2. Let H be a hypergraph of rank r and let t ≤ min{r, p} − 1. Then

Covt+1
H,p is

((
r+p−2t
r−t

)
− 1
)

-collapsible.

Theorem 3.4.3. Let H be a hypergraph of rank r and let t ≤ r − 1. Then Intt+1
H is

1
2

(
2(r−t)
r−t

)
-collapsible.

Note that by setting t = 0 we recover Theorems 1.1.1 and 1.1.2. The proofs are

essentially the same as the proofs of Theorems 1.1.1 and 1.1.2, except for the use of

Lemma 3.4.1 instead of Lemma 1.1.4. The extremal examples are also similar: Let

H1 =

{
A ∪ [t] : A ∈

(
[r + p− t] \ [t]

r − t

)}
and

H2 =

{
A ∪ [t] : A ∈

(
[2r − t] \ [t]

r − t

)}
.
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The complex Covt+1
H1

is the boundary of the
((

r+p−2t
r−t

)
− 1
)

-dimensional simplex, hence

it is not
((

r+p−2t
r−t

)
− 2
)

-collapsible, and the complex Intt+1
H2

is the boundary of the

1
2

(
2(r−t)
r−t

)
-dimensional cross-polytope, hence it is not

(
1
2

(
2(r−t)
r−t

)
− 1
)

-collapsible.

Restricting ourselves to special classes of hypergraphs we may obtain better bounds

on the collapsibility of their associated complexes. For example, we may look at r-partite

r-uniform hypergraphs (that is, hypergraphs H on vertex set V = V1 ·∪V2 ·∪ · · · ·∪Vr such

that |A ∩ Vi| = 1 for all A ∈ H and i ∈ [r]). In this case we have the following result:

Theorem 3.4.4. Let H be an r-partite r-uniform hypergraph. Then IntH is 2r−1-

collapsible.

The next example shows that the bound on the collapsibility of IntH in Theorem

3.4.4 is tight: Let H be the complete r-partite r-uniform hypergraph with all sides

of size 2. It has 2r edges, and any edge A ∈ H intersects all the edges of H except

its complement. Therefore the complex IntH is the boundary of the 2r−1-dimensional

cross-polytope, so it is homeomorphic to a (2r−1 − 1)-dimensional sphere. Hence, IntH

is not (2r−1 − 1)-collapsible.

For the proof we need the following Lemma, due to Lovász, Nešetřil and Pultr.

Lemma 3.4.5 (Lovász, Nešetřil, Pultr [LNP80, Prop. 5.3]). Let V = V1 ·∪V2 ·∪ · · · ·∪Vr
be a finite set, and let {A1, . . . , Ak} and {B1, . . . , Bk} be families of subsets of V such

that:

• |Ai ∩ Vj | = 1, |Bi ∩ Vj | = 1 for all i ∈ [k] and j ∈ [r],

• Ai ∩Bi = ∅ for all i ∈ [k],

• Ai ∩Bj 6= ∅ for all 1 ≤ i < j ≤ k.

Then

k ≤ 2r.

A common generalization of Lemma 1.1.4 and Lemma 3.4.5 was proved by Alon in

[Alo85].

The proof of Theorem 3.4.4 is the same as the proof of Theorem 1.1.2, except that

we replace Lemma 1.1.4 by Lemma 3.4.5. A similar argument was also used by Aharoni

and Berger ([AB09, Theorem 5.1]) in order to prove a related result about rainbow

matchings in r-partite r-uniform hypergraphs.

3.5 More applications of minimal exclusion sequences

In this section we present further applications of Theorem 1.1.3. We will need the

following simple lemma:
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Lemma 3.5.1. Let F be a field, and let V be a vector space over F. Let F be a family

of linear subspaces of V . Denote by r(F) the maximal dimension of a subspace in F .

Let v1, . . . , vk ∈ V and U1, . . . , Uk+1 ∈ F such that

• vi /∈ Ui for all i ∈ [k],

• vi ∈ Uj for all 1 ≤ i < j ≤ k + 1.

Then k ≤ r(F).

Proof. Let i ∈ [k]. We have vi /∈ Ui, but vi ∈ Uj for all i + 1 ≤ j ≤ k + 1. Hence,

∩k+1
j=i Uj ( ∩

k+1
j=i+1Uj . So, we have a flag

Uk+1 ) Uk+1 ∩ Uk ) Uk+1 ∩ Uk ∩ Uk−1 ) · · · ) ∩k+1
i=1 Ui

of length k + 1. In particular, we must have dim(Uk+1) ≥ k. Thus, r(F) ≥ k.

3.5.1 Complexes from projective varieties

Let F be a field, and let V be a vector space over F. Let F be a family of linear

subspaces of V . Let A ⊂ V be a finite set. We define the simplicial complex

XF [A] = {σ ⊂ A : σ ⊂ U for some U ∈ F}.

Proposition 3.5.2. The complex XF [A] is r(F)-collapsible.

Proof. Let {v1, . . . , vk} ∈ S(XF [A]). Then, there exist maximal faces σ1, . . . , σk+1 of

XF [A] such that vi /∈ σi for all i ∈ [k] and vi ∈ σj for 1 ≤ i < j ≤ k + 1. For every

i ∈ [k + 1], there is some subspace Ui ∈ F such that σi ⊂ Ui.
We have vi ∈ Uj for all 1 ≤ i < j ≤ k + 1, and vi /∈ Ui for i ∈ [k] (otherwise,

{vi} ∪ σi ⊂ Ui, but then {vi} ∪ σi ∈ XF [A], a contradiction to the maximality of σi).

So, by Lemma 3.5.1, we have k ≤ r(F). Thus, by Theorem 1.1.3, C(XF [A]) ≤ r(F).

Remark. A different proof of the fact that XF [A] is r(F)-Leray goes as follows:

First, since, for any A′ ⊂ A, XF [A][A′] = XF [A′], it is enough to show that

H̃k (XF [A]) = 0 for all k ≥ r(F). Furthermore, we may assume that 0 /∈ A, since

otherwise XF [A] is a cone over 0, and in particular H̃k (XF [A]) = 0 for all k.

Let

F̃ = {∩U∈F ′U : ∅ 6= F ′ ⊂ F}

be the set of all subspaces of V obtained as intersections of subspaces in F . Let X

be the simplicial complex whose vertex set is F̃ , and whose simplices are the sets

{U1, . . . , Uk} ⊂ F̃ forming a flag U1 ( U2 ( · · · ( Uk.

For u ∈ A, let Xu = X[Fu], where Fu = {U ∈ F̃ : u ∈ U}.
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We have

N({Xu}u∈A) = {σ ⊂ A : σ ⊂ U for some U ∈ F̃}

= {σ ⊂ A : σ ⊂ U for some U ∈ F} = XF [A].

Moreover, for any σ ∈ N({Xu}u∈A), let

Uσ =
⋂
U∈F :
σ⊂U

U

be the minimal subspace in F̃ containing σ. Then, ∩u∈σXu is a cone over the vertex Uσ.

In particular, H̃k (∩u∈σXu) = 0 for all k. So, by the Nerve Theorem (Theorem 2.2.4),

we have

H̃k (XF [A]) ∼= H̃k (∪u∈AXu)

for all k. Since the trivial subspace {0} is not a vertex of ∪u∈AXu, and dim(U) ≤ r(F)

for all U ∈ F̃ , we have dim(∪u∈AXu) ≤ r(F)− 1. Hence,

H̃k (XF [A]) ∼= H̃k (∪u∈AXu) = 0

for k ≥ r(F).

Let Pn be the n-dimensional projective space over F. That is, Pn is the set of the

lines through the origin in Fn+1, or equivalently, the set (Fn+1 \ {0})/ ∼, where x ∼ y
if x = λy for some λ ∈ F \ {0}.

Let p : Fn+1 \ {0} → Pn be the map that sends any vector v 6= 0 to the line through

the origin containing v. A set W ⊂ Pn is called a projective subspace if W = p(U) for

some linear subspace U ⊂ Fn. The dimension of W is defined by dim(W ) = dim(U)− 1.

For a set A ⊂ Pn, let span(A) be the minimal projective subspace containing A.

Let f1, . . . , ft ∈ F[x0, . . . , xn] be homogeneous polynomials. Let

V = V (f1, . . . , ft) = {x ∈ Pn : fi(x) = 0 for all i ∈ [t]} ⊂ Pn.

Let A be a finite subset of V . Define the simplicial complex

KV [A] = {σ ⊂ A : span(σ) ⊂ V }.

Proposition 3.5.3. Let d be the maximal dimension of a projective subspace contained

in V . Then, the complex KV [A] is (d+ 1)-collapsible.

Proof. Let Ã = p−1(A) ⊂ Fn+1. Let W1, . . . ,Wk ⊂ Pn be the maximal projective

subspaces contained in V . For each i ∈ [k], there is some subspace Ui ⊂ Fn+1 such that

Wi = p(Ui) and dim(Ui) = dim(Wi) + 1 ≤ d+ 1. Let F = {U1, . . . , Uk}.
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For τ ⊂ Ã and i ∈ [k], we have τ ⊂ Ui if and only if p(τ) ⊂ Wi. So, τ ∈ XF [Ã] if

and only if p(τ) ∈ KV [A]. Thus, we have

XF [Ã] = p−1(KV [A]).

Therefore, by (the easy direction of) Lemma 2.3.19 and Proposition 3.5.2, we obtain

C(KV [A]) ≤ C(XF [Ã]) ≤ d+ 1,

as wanted.

Example 3.5.4. Let F = Fq. Let n be even and let f(x1, . . . , xn) = x1x2 + x3x4 + · · ·+
xn−1xn. Let V = V (f). It is well known that the maximum dimension of a subspace

of Pn−1 contained in V is n
2 − 1 (see e.g. [VLW01, Theorem 26.6]). Therefore, by

Proposition 3.5.3, for any U ⊂ V , the complex KV [U ] is n
2 -collapsible.

On the other hand, if U consists of the (equivalence classes of the) points e1 =

(1, 0, . . . , 0), . . . , en = (0, . . . , 0, 1), then the complex KV [U ] is the boundary of a n
2 -

dimensional cross-polytope (its missing faces are the edges {e1, e2}, {e2, e3}, . . . , {en−1, en}).
So, KV [U ] is homeomorphic to an

(
n
2 − 1

)
-dimensional sphere. In particular, KV [U ] is

not
(
n
2 − 1

)
-collapsible.

3.5.2 Matrices with bounded maximal rank

Let F be a field. Let A be a finite set of matrices in Fm×n. For r ∈ N, we defined the

complex

MA,r = {B ⊂ A : ρ(B) ≤ r},

where ρ(B) is the maximal rank of a matrix in the span of B.

Theorem 1.1.5. Assume that F is infinite. Then, the complex MA,r is r(r + 1)-

collapsible.

For the proof we will need the following result by Dieudonné (later extended by

Flanders [Fla62] and Meshulam [Mes85]):

Theorem 3.5.5 (Dieudonné [Die48]). Let F be a field, and let r ∈ N. Let U be a linear

subspace of F(r+1)×(r+1) satisfying ρ(U) ≤ r. Then, dim(U) ≤ r(r + 1).

We will also need the following lemma:

Lemma 3.5.6. Let F be an infinite field, and let r ∈ N. Let B1, . . . , Bk ∈ Fm×n such

that r(Bi) > r for all i ∈ [k]. Then, there exist P ∈ F(r+1)×m and Q ∈ Fn×(r+1) such

that r(PBiQ) = r + 1 for all i ∈ [k].

Proof. For each i ∈ [k], let pi(P,Q) = det(PBiQ). We consider pi as a polynomial in

(r + 1)(m+ n) variables.
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Note that, since r(Bi) ≥ r + 1, pi is not identically zero: indeed, let e1, . . . , er+1 be

a basis of Fr+1, and let v1, . . . , vr+1 be r + 1 linearly independent columns of Bi. Let

P̃ ∈ F(r+1)×m be a linear transformation that, for each j ∈ [r + 1], maps the vector vj

to the basis vector ej . Then, since the columns {P̃ v1, . . . , P̃ vr+1} = {e1, . . . , er+1} of

P̃Bi are linearly independent, P̃Bi is of rank r + 1. Hence, the rows w1, . . . , wr+1 of

P̃Bi are also linearly independent. Let Q̃ ∈ F(r+1)×n be a linear transformation that

maps each wj to the basis vector ej . Then, the rows of P̃BiQ̃
t are exactly the vectors

e1, . . . , er+1. So, r(P̃BiQ̃
t) = r + 1, and therefore pi(P̃ , Q̃

t) = det(P̃BiQ̃
t) 6= 0.

Now, since F is a field and none of the polynomials pi is the zero polynomial,

then the polynomial
∏k
i=1 pi is also not the zero polynomial. Therefore, since F is

infinite, it is not identically zero. Hence, there exist P ∈ F(r+1)×m and Q ∈ Fn×(r+1)

such that
∏k
i=1 pi(P,Q) 6= 0. So, pi(P,Q) = det(PBiQ) 6= 0 for all i ∈ [k]. That is,

r(PBiQ) = r + 1 for all i ∈ [k], as wanted.

Proof of Theorem 1.1.5. Let {A1, . . . , Ak} ∈ S(MA,r). Then, there exists maximal

faces B1, . . . ,Bk+1 of MA,r such that Ai /∈ Bi for all i ∈ [k], and Ai ∈ Bj for all

1 ≤ i < j ≤ k + 1.

For i ∈ [k + 1], let Ui = span(Bi). So, for all 1 ≤ i < j ≤ k + 1, we have Ai ∈ Uj .
Moreover, for all i ∈ [k], since Ai /∈ Bi, we must have ρ(Bi ∪ {Ai}) > r (otherwise,

we have ρ(Bi ∪ {Ai}) ≤ r, and therefore Bi ∪ {Ai} ∈ MA,r, in contradiction to the

maximality of Bi). Therefore, there exists a matrix Bi ∈ span(Bi ∪ {Ai}) such that

r(Bi) > r. Moreover, since ρ(Bi) ≤ r, we have Ai /∈ Ui for all i ∈ [k].

By Lemma 3.5.6, there exist P ∈ F(r+1)×m and Q ∈ Fn×(r+1) such that r(PBiQ) =

r + 1 for all i ∈ [k].

For i ∈ [k], let A′i = PAiQ, and for i ∈ [k + 1], let U ′i = {PBQ : B ∈ Ui}. For

1 ≤ i < j ≤ k + 1, we have Ai ∈ Uj , and thus A′i ∈ U ′j . Note that, for any B ∈ Ui, we

have r(B) ≤ r, and therefore

r(PBQ) ≤ r(B) ≤ r.

Thus, ρ(U ′i) ≤ r for all i ∈ [k + 1]. Since r(PBiQ) = r + 1, we must have PBiQ /∈ U ′i .
Hence, since PBiQ ∈ span({A′i}) + U ′i , we must have A′i /∈ U ′i for all i ∈ [k].

By Theorem 3.5.5, dim(U ′i) ≤ r(r + 1) for all i ∈ [k + 1]. So, by Lemma 3.5.1, we

have k ≤ r(r + 1). Therefore, by Theorem 1.1.3, MA,r is r(r + 1)-collapsible.

3.5.3 Complexes of graphs with bounded matching number and some

conjectures

Let H be a hypergraph. A matching in H is a set of edges that are pairwise disjoint.

Let ν(H) be the maximal size of a matching in H. For ν ∈ N let

MatH,ν = {F ⊂ H : ν(H) ≤ ν}.
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Note that, for ν = 1, we obtain

MatH,1 = IntH .

The case when H is a graph has been previously studied: Let Kn be the complete

graph on n vertices, and let Kr,s be the complete bipartite graph with parts of sizes r

and s. The homotopy type of the complexes MatKn,ν and MatKr,s,ν was determined by

Linusson, Shareshian and Welker in [LSW08]:

Theorem 3.5.7 (Linusson, Shareshian, Welker [LSW08]). The complex MatKn,ν is ho-

motopy equivalent to a wedge of spheres of dimension 3ν − 1. The number of spheres in

the wedge is ∑
{A1,A2,...,An−2ν−1}∈Π

(
n−2ν−1∏
i=1

(|Ai| − 2)!!

)2

,

where Π is the set of all partitions of [n− 1] into n− 2ν− 1 subsets A1, A2, . . . , An−2ν−1

of odd size.

Theorem 3.5.8 (Linusson, Shareshian, Welker [LSW08]). The complex MatKr,s,ν is

homotopy equivalent to a wedge of spheres of dimension 2ν − 1. The number of spheres

in the wedge is (
r − 1

ν

)(
s− 1

ν

)
.

In particular, these results imply that C(MatKn , ν) ≥ 3ν and C(MatKr,s,ν) ≥ 2ν.

The bipartite case was solved by Aharoni, Holzman and Jiang in [AHJ19], where

it was shown that C(MatKr,s,ν) = 2ν. In [HL20], Holmsen and Lee showed that

L(MatKn,ν) = 3ν.

The complexes MA,r are related to the complexes MatG,ν by the following results

(see also [Lov89]).

Theorem 3.5.9 (Edmonds [Edm67]). Let G be a bipartite graph on vertex set A ·∪B,

where A = {a1, a2, . . . , an} and B = {b1, b2, . . . , bn}.
Let FG be the n× n matrix defined by

FG(i, j) =

xi,j if {ai, bj} ∈ G,

0 otherwise,

where xi,j are variables. Then, the maximal rank of the matrix FG (over all possible

substitutions of the variables) is equal to ν(G).

Theorem 3.5.10 (Tutte [Tut47]). Let G be a graph on vertex set [n]. Let TG be the
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n× n matrix defined by

TG(i, j) =


xi,j if {i, j} ∈ G and i < j,

−xi,j if {i, j} ∈ G and i > j,

0 otherwise,

where xi,j are variables. Then, the maximal rank of the matrix TG (over all possible

substitutions of the variables) is equal to 2ν(G).

As a consequence, we obtain:

Proposition 3.5.11. Let Let {ei,j}ni,j=1 be the matrices in the standard basis of Fn×n.

1. Let G be a bipartite graph on vertex set A ·∪ B, where A = {a1, a2, . . . , an} and

B = {b1, b2, . . . , bn}. Let AG = {ei,j : {ai, bj} ∈ G}. Then

MAG,k = MatG,k .

2. Let G be a graph on vertex set [n]. Let AG = {eij − eji : {i, j} ∈ G}. Then

MAG,2k = MatG,k .

In [BK19], Briggs and Kim obtained the following generalization of Aharoni, Holzman

and Jiang’s result:

Theorem 3.5.12 (Briggs, Kim [BK19]). Let r ≥ 1. Let A ⊂ Fn×m be a finite family

of rank one matrices. Then, MA,r is 2r-collapsible.

In fact, Theorem 3.5.12 is a special case of [BK19, Theorem 8], that bounds the

collapsibility of complexes associated to fractional matchings in a family of matroids.

Based on Proposition 3.5.11 and the results in [HL20], we conjecture the following:

Conjecture 3.5.13. Let r ≥ 2 be an even integer. Let A be a finite family of rank two

skew-symmetric matrices in Fn×n. Then, MA,r is 3
2r-collapsible.

Note that, since C(MAKn ,r) = C(MatKn ,
r
2) ≥ 3r

2 , the bound in the conjecture is tight.

We also conjecture:

Conjecture 3.5.14. Let r ≥ 1. Let A be a finite family of rank two symmetric matrices

in Fn×n. Then, MA,r is r-collapsible.

We believe that the condition on the size of the field F in the statement of Theorem

1.1.5 is a byproduct of our proof and is not actually necessary. Moreover, we don’t

expect the bound r(r + 1) to be tight. In fact, the following may be true:
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Conjecture 3.5.15. Let A be a finite family of matrices in Fm×n, and let r ≥ 1. Then,

MA,r is 2r-collapsible.

That is, the bound from Theorem 3.5.12 for rank one matrices may hold also for general

families of matrices.
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Chapter 4

Complexes of graphs with

bounded independence number

This chapter is organized as follows. In Section 4.1 we introduce some basic definitions

and facts about graphs that we will use throughout the chapter. In Section 4.2 we

present several tools for bounding the collapsibility numbers of a general simplicial

complex. Section 4.3 contains the proof of Theorem 1.2.5, dealing with the case of

chordal graphs. Section 4.4 focuses on the class of graphs with bounded maximum

degree. It contains the proofs of Theorems 1.2.6, 1.2.7, 1.2.8, and 1.2.9. Section 4.5 deals

with the Leray numbers of the complexes In(G). In particular, it presents extremal

examples determining the tightness of our main results (Theorems 1.2.7, 1.2.8 and 1.2.9),

and examples of 3-regular graphs for which the complexes In(G) do not satisfy the

bound in Question 1.2.4 (for various values of n).

This chapter is based on joint work with Minki Kim.

4.1 Preliminaries on graphs

Let G = (V,E) be a simple graph. For a set U ⊂ V , the subgraph of G induced by U is

the graph

G[U ] = (U, {e ∈ E : e ⊂ U}) .

A set U ⊂ V is called a clique in G if the induced subgraph G[U ] is the complete graph

on vertex set U .

For any vertex v ∈ V , we define the deletion of v in G to be the induced subgraph

G \ v = G[V \ {v}].

For each v ∈ V , we define the open neighborhood of v in G as the vertex subset

NG(v) = {u ∈ V : u is adjacent to v},
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and we define the closed neighborhood of v in G as

NG[v] = {v} ∪NG(v).

For a set A ⊂ V , let

NG(A) =
⋃
u∈A

NG(u).

A vertex v ∈ V is called a simplicial vertex if NG[v] is a clique. The degree of v in G is

the number degG(v) = |NG(v)|.
We say G is k-colorable (or k-partite) if we can partition the vertex set V into k

parts so that each part is independent in G. The following is a classical result in graph

theory that states a relation between the maximum degree and the k-colorability of G.

Theorem 4.1.1 (Brooks [Bro41]). Let G be a connected graph with maximum degree

k. Then G is k-colorable unless G is the complete graph Kk+1 or an odd cycle.

The complete bipartite graph K1,3 is called a claw. A graph is said to be claw-free

if it does not have a claw as an induced subgraph.

We say a graph is chordal if it does not contain a cycle of length at least 4 as an

induced subgraph. Chordal graphs satisfy the following special property:

Theorem 4.1.2 (Lekkerkerker, Boland [LB63]). Every chordal graph contains a sim-

plicial vertex.

4.2 Upper bounds for collapsibility numbers

In this section we present our main technical tools for proving d-collapsibility of a

simplicial complex.

Lemma 4.2.1. Let X be a simplicial complex, and let σ = {v1, . . . , vk} ∈ X. For every

0 ≤ i ≤ k, define σi = {vj : 1 ≤ j ≤ i}. Let d ≥ k. If for all 0 ≤ i ≤ k − 1,

C(lk(X \ vi+1, σi)) ≤ d− i,

and

C(lk(X,σk)) ≤ d− k,

then C(X) ≤ d.

Proof. We will show that, for any i ∈ {0, . . . , k},

C(lk(X,σi)) ≤ d− i.

We argue by backwards induction on i. For i = k, C(lk(X,σk)) ≤ d− k by assumption.
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Let i < k. By Lemma 2.3.14, we have

C(lk(X,σi)) ≤ max{C(lk(X \ vi+1, σi)), C(lk(X,σi+1)) + 1}.

But C(lk(X \ vi+1, σi)) ≤ d− i by assumption, and C(lk(X,σi+1)) ≤ d− i− 1 by the

induction hypothesis. Therefore,

C(lk(X,σi)) ≤ d− i.

Setting i = 0, we obtain (since σ0 = ∅),

C(X) = C(lk(X,σ0)) ≤ d− 0 = d.

As a consequence of Lemma 4.2.1, we obtain:

Proposition 4.2.2. Let X be a simplicial complex on vertex set V . If all the missing

faces of X are of dimension at most d, then

C(X) ≤
⌊
d|V |
d+ 1

⌋
.

Moreover, equality C(X) = d|V |
d+1 is obtained if and only if X is the join of r = |V |

d+1

disjoint copies of the boundary of a d-dimensional simplex (or equivalently, if the set of

missing faces of X consists of r disjoint sets of size d+ 1).

Proof. We argue by induction on |V |. If |V | = 0, then X is 0-collapsible, and the

inequality holds. Assume |V | > 0. If X is a complete complex, then it is 0-collapsible,

and the inequality holds. Otherwise, let σ = {v1, . . . , vk+1} ⊂ V be a missing face of X.

Since all the missing faces of X are of dimension at most d, we have k ≤ d. For each

0 ≤ i ≤ k, let σi = {vj : 1 ≤ j ≤ i} ∈ X. Let Vi be the vertex set of lk(X \ vi+1, σi).

Note that for every 0 ≤ i ≤ k,

Vi ⊂ V \ σi+1.

Therefore, by the induction hypothesis,

C(lk(X \ vi+1, σi)) ≤
d

d+ 1
|Vi| ≤

d

d+ 1
(|V | − i− 1).

Since i ≤ k ≤ d, we obtain

C(lk(X \ vi+1, σi)) ≤
d

d+ 1
|V | − i

i+ 1
(i+ 1) =

d

d+ 1
|V | − i.

Also, since σ is a missing face, we have

lk(X,σk) = lk(X \ vk+1, σk),
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and in particular C(lk(X,σk)) ≤ d
d+1 |V | − k. Therefore, by Lemma 4.2.1, we obtain

C(X) ≤ d

d+ 1
|V |.

Since C(X) is an integer, we obtain C(X) ≤
⌊
d|V |
d+1

⌋
.

Now, assume C(X) = d
d+1 |V |. Note that, since C(X) is an integer and gcd(d, d+1) =

1, then d+ 1 must divide |V |.
Then, there exists some 0 ≤ i ≤ k such that

C(lk(X \ vi+1, σi)) =
d

d+ 1
(|V | − i− 1)

(otherwise, by the same argument as above, we could prove that C(X) < d
d+1 |V |). Since

d + 1 divides |V |, it must also divide i + 1. Hence, we must have i = k = d. By the

induction hypothesis, the missing faces of

lk(X,σd) = lk(X \ vd+1, σd)

form a set of r − 1 disjoint sets of size d+ 1. Therefore, the set of missing faces of X

consists of r disjoint sets of size d+ 1 plus, possibly, some additional faces of the form

τ ∪ {vd+1}, where τ ∈ V \ σ. But the choice of the order v1, . . . , vd+1 on the vertices of

σ was arbitrary. Thus, repeating the same argument with a different order (e.g. v′i = vi

for i ≤ d−1, v′d = vd+1, v′d+1 = vd), we obtain that the set of missing faces of X consists

exactly of r disjoint sets of size d+ 1.

Remark. An analogous bound in terms of Leray numbers was proved in [Ada14, Prop.

5.4].

Lemma 4.2.3. Let X be a complex on vertex set V , and let B ⊂ V . Let < be a linear

order on the vertices of B. Let P = P(X,B) be the family of partitions (B1, B2) of B

satisfying:

• B2 ∈ X.

• For any v ∈ B2, the complex

lk(X[V \ {u ∈ B1 : u < v}], {u ∈ B2 : u < v})

is not a cone over v.

If for every (B1, B2) ∈ P,

C(lk(X[V \B1], B2)) ≤ d− |B2|,

then C(X) ≤ d.
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Proof. We argue by induction on |B|. If |B| = 0 there is nothing to prove. So, assume

|B| > 0, and let v be the minimal vertex in B (with respect to the order <). Let

X ′ = X \ v, and let V ′ = V \ {v} be its vertex set. Let B′ = B \ {v}, and let

(B′1, B
′
2) ∈ P(X ′, B′). Define B1 = B′1 ∪ {v} and B2 = B′2. Then, B2 ∈ X \ v ⊂ X, and

for any u ∈ B2, the complex

lk(X[V \ {w ∈ B1 : w < u}], {w ∈ B2 : w < u})

= lk(X ′[V ′ \ {w ∈ B′1 : w < u}], {w ∈ B′2 : w < u})

is not a cone over u (since (B′1, B
′
2) ∈ P(X ′, B′)). Therefore (B1, B2) ∈ P(X,B). So,

C(lk(X ′[V ′ \B′1], B′2)) = C(lk(X[V \B1], B2)) ≤ d− |B2| = d− |B′2|.

Hence, by the induction hypothesis, C(X \ v) = C(X ′) ≤ d.

If X is a cone over v then, by Lemma 2.3.9, C(X) = C(X \ v) ≤ d, as wanted.

Otherwise, let X ′′ = lk(X, v), and let V ′′ ⊂ V \ {v} be its vertex set. Let B′′ = B ∩ V ′′,
and let (B′′1 , B

′′
2 ) ∈ P(X ′′, B′′). Let B2 = B′′2 ∪ {v} and B1 = B \B2.

Since B′′2 ∈ X ′′ = lk(X, v), we have B2 = B′′2 ∪ {v} ∈ X. Let u ∈ B2. If u = v, then

lk(X[V \ {w ∈ B1 : w < u}], {w ∈ B2 : w < u}) = X

is not a cone over u = v. If u > v, then

lk(X[V \ {w ∈ B1 : w < u}], {w ∈ B2 : w < u})

= lk(X ′′[V ′′ \ {w ∈ B′′1 : w < u}], {w ∈ B′′2 : w < u})

is not a cone over u (since (B′′1 , B
′′
2 ) ∈ P(X ′′, B′′)). Therefore, (B1, B2) ∈ P(X,B). So,

C(lk(X ′′[V ′′ \B′′1 ], B′′2 )) = C(lk(X[V \B1], B2)) ≤ d− |B2| = (d− 1)− |B′′2 |.

Thus, by the induction hypothesis, C(lk(X, v)) = C(X ′′) ≤ d− 1. Hence, by Lemma

2.3.14, C(X) ≤ d.

4.3 Chordal graphs

In this section we prove Theorem 1.2.5, which bounds the collapsibility of In(G) in the

case that G is a chordal graph. The proof relies on the next result.

Lemma 4.3.1. Let G = (V,E) be a graph, and let v ∈ V be a simplicial vertex in G.

Then, for any n ≥ 2,

C(In(G)) ≤ max{C(In(G \ v)), C(In−1(G[V \NG[v]])) + 1}.
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Proof. Let W ⊂ V \ {v}. Then, W belongs to lk(In(G), v) if and only if W \NG(v) ∈
In−1(G). Indeed, assume that W \NG(v) /∈ In−1(G); that is, G[W \NG(v)] contains

an independent set A of size n− 1. Then, A ∪ {v} is an independent set of size n in G,

and therefore W /∈ lk(In(G), v). For the opposite direction, suppose W /∈ lk(In(G), v).

Then, W ∪ {v} contains an independent set A of size n in G. Since NG[v] is a clique

in G, A contains at most one vertex from NG[v]. Thus, A \NG[v] ⊂W \NG(v) is an

independent set of size at least n− 1. So, W \NG(v) /∈ In−1(G).

It follows that lk(In(G), v) = 2NG(v) ∗ In−1(G[V \NG[v]]). By Lemma 2.3.8, we have

C(lk(In(G), v)) = C(In−1(G[V \NG[v]])).

So, by Lemma 2.3.14, we obtain

C(In(G)) ≤ max{C(In(G \ v)), C(lk(In(G), v)) + 1}

= max{C(In(G \ v)), C(In−1(G[V \NG[v]])) + 1}.

Theorem 1.2.5. Let G = (V,E) be a chordal graph and n ≥ 1 an integer. Then,

C(In(G)) ≤ n− 1.

Moreover, if α(G) ≥ n, then C(In(G)) = n− 1.

Proof. We argue by induction on |V |. For |V | = 0 the statement is obvious. Suppose

|V | > 0. For n = 1, C(I1(G)) = C({∅}) = 0, so the claim holds. Let n ≥ 2. Since G is

a chordal graph, there exists a simplicial vertex v in G. By the induction hypothesis,

C(In(G− v)) ≤ n− 1

and

C(In−1(G[V \NG[v]])) ≤ n− 2.

Hence, by Lemma 4.3.1,

C(In(G)) ≤ max{C(In(G \ v)), C(In−1(G[V \NG[v]])) + 1} ≤ n− 1.

Now, let G be a graph with α(G) ≥ n, and let A be an independent set of size n in

G. Then In(G)[A] is the boundary of an (n− 1)-dimensional simplex, and in particular

H̃n−2(In(G)[A];F) 6= 0. Hence, C(In(G)) ≥ L(In(G)) ≥ n− 1. So, any chordal graph

G with α(G) ≥ n satisfies C(In(G)) = n− 1.
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4.4 Graphs with bounded maximum degree

In this section we prove our main results about graphs with bounded maximum degree,

Theorems 1.2.6, 1.2.7, 1.2.8, and 1.2.9.

We begin with the following related problem: Let X (k) be the class of all k-colorable

graphs. In [ABKK19] it was observed that fX (k)(n) = k(n − 1) + 1. The following

proposition (combined with Proposition 1.2.2) offers an alternative proof for this result.

Proposition 4.4.1. Let G be a k-colorable graph and n ≥ 1 an integer. Then,

C(In(G)) ≤ k(n− 1).

Proof. Take a proper vertex-coloring of G with k colors. Note that each color class

forms an independent set in G. Let σ ∈ In(G). Since σ contains no independent set

of size n in G, it contains at most n− 1 vertices from each color class. It follows that

|σ| ≤ k(n− 1). Hence, by Lemma 2.3.5,

C(In(G)) ≤ dim(In(G)) + 1 ≤ k(n− 1).

Next, we present the proof of Theorem 1.2.6. We deal with the case ∆ = 2 separately:

Theorem 4.4.2. Let G = (V,E) be a graph with maximum degree at most 2 and n ≥ 1

an integer. Then In(G) is 2(n− 1)-collapsible.

Recall that a graph with maximum degree bounded by 2 is a disjoint union of cycles

and paths. In other to apply an inductive argument, we state the following more general

claim:

Proposition 4.4.3. Let G = (V,E) be a graph with maximum degree at most 2. Let A

be an independent set in G of size at most n− 1 that is contained in the union of all

the components of G that are paths. Then,

C(lk(In(G), A)) ≤ 2(n− 1)− |A|.

Proof. We argue by induction on the number of cycles c in G.

If c = 0, then G is a disjoint union of paths. In particular, it is a chordal graph, and

by Theorem 1.2.5, C(In(G)) ≤ n− 1. By Lemma 2.3.15, we obtain

C(lk(In(G), A)) ≤ C(In(G)) ≤ n− 1 ≤ 2(n− 1)− |A|.

Let c ≥ 1, and assume that the claim holds for all graphs with less than c cycles.

Let C = {v1, . . . , vk} be the vertex set of a cycle in G (such that {vi, vi+1} ∈ E for all

i ∈ [k], where the indices are taken modulo k). Let

r = min

{⌊
k

2

⌋
, n− |A| − 1

}
,
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and let

U = {v2i−1 : 1 ≤ i ≤ r}.

So, U is an independent set in G of size r.

For each 0 ≤ i ≤ r, let Ui = {v2j−1 : 1 ≤ j ≤ i}. Let 0 ≤ i ≤ r − 1. The

graph G \ v2i+1 has c− 1 cycles, and the set A ∪ Ui is an independent set contained in

components of G \ v2i+1 that are paths. Therefore, by the induction hypothesis,

C(lk(In(G \ v2i+1), A ∪ Ui)) ≤ 2(n− 1)− |A| − i.

Next, we divide into two cases. First, assume r = n− |A| − 1 <
⌊
k
2

⌋
. Then 2r + 1 ≤ k,

and, by the same argument as before, we obtain

C(lk(In(G \ v2r+1), A ∪ Ur)) ≤ 2(n− 1)− |A| − r.

Since r = n − |A| − 1, the set A ∪ Ur ∪ {v2r+1} is an independent set of size n in G;

therefore, v2r+1 /∈ lk(In(G), A ∪ Ur). Hence,

lk(In(G), A ∪ Ur) = lk(In(G \ v2r+1), A ∪ Ur).

So,

C(lk(In(G), A ∪ Ur)) ≤ 2(n− 1)− |A| − r.

Now, assume r =
⌊
k
2

⌋
. Then, Ur is a maximum independent set in G[C], and we have

lk(In(G), A ∪ Ur) = 2C\Ur ∗ lk(In−r(G[V \ C]), A).

Therefore, by Lemma 2.3.8, we obtain

C(lk(In(G), A ∪ Ur)) = C(lk(In−r(G[V \ C]), A)) ≤ 2(n− r − 1)− |A|

= 2(n− 1)− |A| − 2r ≤ 2(n− 1)− |A| − r,

where the first inequality follows by the induction hypothesis (since the number of cycles

in G[V \ C] is c− 1).

In both cases we obtained

C(lk(In(G), A ∪ Ur)) ≤ 2(n− 1)− |A| − r.

So, by Lemma 4.2.1, we obtain

C(lk(In(G), A)) ≤ 2(n− 1)− |A|,

as wanted.

Theorem 4.4.2 follows from Proposition 4.4.3 by setting A = ∅.
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Now we can prove the general case of Theorem 1.2.6:

Theorem 1.2.6. Let G = (V,E) be a graph with maximum degree at most ∆ and n ≥ 1

an integer. Then,

C(In(G)) ≤ ∆(n− 1).

Proof. We argue by induction on n. For n = 1 the claim is trivial. Assume n ≥ 2.

If ∆ = 1 then the edges of G are pairwise disjoint. In particular, G is a chordal

graph; therefore, the claim follows from Theorem 1.2.5. If ∆ = 2, the claim follows

from Theorem 4.4.2. Assume ∆ ≥ 3, and let G be a graph with maximum degree

at most ∆. We will show that C(In(G)) ≤ ∆(n − 1). Let c(G) be the number of

connected components of G that are isomorphic to the complete graph K∆+1. We argue

by induction on c(G).

If c(G) = 0, then by Brooks’ Theorem (Theorem 4.1.1) G is ∆-colorable. Then, by

Proposition 4.4.1, In(G) is ∆(n− 1)-collapsible, as wanted.

Otherwise, assume there exists a component of G that is isomorphic to K∆+1, and

let v be a vertex in that component. Note that v is a simplicial vertex in G. Since

c(G \ v) = c(G)− 1, we obtain by the induction hypothesis

C(In(G \ v)) ≤ ∆(n− 1).

Also, by the (first) induction hypothesis, we have

C(In−1(G[V \NG[v]])) ≤ ∆(n− 2) ≤ ∆(n− 1)− 1.

So, by Lemma 4.3.1, we obtain

C(In(G)) ≤ max{C(In(G \ v)), C(In−1(G[V \NG[v]])) + 1} ≤ ∆(n− 1),

as wanted.

4.4.1 The n ≤ 3 case and claw-free graphs

Next, we prove Theorems 1.2.7 and 1.2.8, which give tight upper bounds on the

collapsibility of In(G) for graphs G with bounded maximum degree, for n ≤ 3. We also

prove Proposition 4.4.5, bounding the collapsibility of certain subcomplexes of In(G),

in the case where G is a bounded degree claw-free graph.

Theorem 1.2.7. Let G = (V,E) be a graph with maximum degree at most ∆. Then,

C(I2(G)) ≤
⌈

∆ + 1

2

⌉
.
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Proof. We argue by induction on |V |. For |V | = 0 the bound holds trivially. Assume

|V | > 0, and let v ∈ V . By Lemma 2.3.14, we have

C(I2(G)) ≤ max{C(I2(G \ v)), C(lk(I2(G), v)) + 1}. (4.1)

Note that lk(I2(G), v) is a flag complex on vertex set NG(v). Thus, by Proposition 4.2.2,

we have

C(lk(I2(G), v)) ≤
⌊
|NG(v)|

2

⌋
≤
⌊

∆

2

⌋
=

⌈
∆ + 1

2

⌉
− 1.

Also, by the induction hypothesis,

C(I2(G \ v)) ≤
⌈

∆ + 1

2

⌉
.

Hence, by (4.1), we obtain

C(I2(G)) ≤
⌈

∆ + 1

2

⌉
.

Lemma 4.4.4. Let G = (V,E) be a graph and n ≥ 2 an integer. Let A be an indepen-

dent set of size n − 1 in G, such that any vertex in V \ A is adjacent to at most two

vertices in A. Let

B =
⋃

{u,v}∈(A2)

NG(u) ∩NG(v).

Assume that A∪B does not contain an independent set of size n (that is, A∪B ∈ In(G)).

Then, lk(In(G), A ∪B) is a flag complex.

Proof. Let X = lk(In(G), A ∪B), and let τ be a missing face of X. Then, there exists

an independent set I of G of size n, such that τ ⊂ I ⊂ τ ∪ A ∪ B. We may choose I

such that |A∩ I| is maximal. Each vertex in A \ I is adjacent to at least two vertices in

I \A: otherwise, assume there exists a ∈ A \ I that is adjacent to at most one vertex in

I \A. We divide into two cases:

• If a is not adjacent to any vertex in I \A, let τ ′ = τ \ {u} for any vertex u ∈ τ .

• If a is adjacent to a single vertex u ∈ I \A, observe that u should be contained

in τ . If not, we can take an independent set I ′ = I \ {u} ∪ {a} of size n in G

such that τ ⊂ I ′ ⊂ τ ∪ A ∪ B. Since |A ∩ I ′| = |A ∩ I|+ 1, this contradicts the

maximality assumption of |A ∩ I|. Hence, u ∈ τ . Now, let τ ′ = τ \ {u}.

In both cases, I \{u}∪{a} is an independent set of size n satisfying τ ′ ⊂ I \{u}∪{a} ⊂
τ ′ ∪A ∪B. It follows that τ ′ /∈ X, which is a contradiction to τ being a missing face.

Let |τ | = k and |A∩I| = t. Then, |A\I| = n− t−1; so, there are at least 2(n− t−1)

edges between A and I \A.

By assumption, each vertex v ∈ I \ (A ∪ τ) is adjacent to at most 2 vertices in A.

Therefore, since |I\(A∪τ)| = n−t−k, there are at least 2(n−t−1)−2(n−t−k) = 2k−2
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edges between A and τ . But, since τ ⊂ V \B, each vertex in τ is adjacent to at most

one vertex in A. Therefore, we must have 2k− 2 ≤ k; that is, |τ | = k ≤ 2. Thus, X is a

flag complex.

Proposition 4.4.5. Let G = (V,E) be a claw-free graph with maximum degree at most

∆, and let n ≥ 1 be an integer. Let A be an independent set of size n− 1 in G. Then,

C(lk(In(G), A)) ≤
⌊

(n− 1)∆

2

⌋
.

Proof. For n = 1 the claim holds trivially. Assume n ≥ 2.

Let v ∈ V \ (A∪NG(A)). Then, A∪ {v} is an independent set of size n in G; hence,

v /∈ lk(In(G), A). So, we may assume without loss of generality that V = NG(A) ∪A.

Let

B =
⋃

{u,v}∈(A2)

NG(u) ∩NG(v)

and U = NG(A) \B. Since G is claw-free, each vertex is adjacent to at most 2 vertices

in A. Hence, we have

|NG(A)| =
∑
v∈A
|NG(v)| −

∑
{u,v}∈(A2)

|NG(u) ∩NG(v)| =
∑
v∈A
|NG(v)| − |B|.

So, since the maximum degree in G is at most ∆, we obtain

|U | ≤ (n− 1)∆− 2|B|.

Let X = lk(In(G), A). We will use Lemma 4.2.3 in order to show that C(X) ≤⌊
(n−1)∆

2

⌋
:

Let (B1, B2) be a partition ofB such thatB2 ∈ X = lk(In(G), A). LetG′ = G[V \B1],

and let

Y = lk(X[V \B1], B2) = lk(In(G)[V \B1], A ∪B2) = lk(In(G′), A ∪B2).

Note that

B2 =
⋃

{u,v}∈(A2)

NG′(u) ∩NG′(v)

Also, since G′ is claw-free and A is independent in G′, then every vertex in V \B1 is

adjacent to at most 2 vertices in A. Therefore, by Lemma 4.4.4, Y is a flag complex.

The vertex set of Y is contained in U = NG(A) \B. Thus, by Proposition 4.2.2, we

obtain

C(Y ) ≤
⌊
|U |
2

⌋
≤
⌊

(n− 1)∆− 2|B|
2

⌋
≤
⌊

(n− 1)∆

2

⌋
− |B2|.
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Therefore, by Lemma 4.2.3,

C(lk(In(G), A)) ≤
⌊

(n− 1)∆

2

⌋
.

Now we are ready to prove Theorem 1.2.9.

Theorem 1.2.9. Let G be a claw-free graph with maximum degree at most ∆, and let

n ≥ 1 be an integer. Then,

fG(n) ≤
⌊(

∆

2
+ 1

)
(n− 1)

⌋
+ 1.

Proof. We argue by induction on n. The case n = 1 is trivial. Now, assume n > 1. Let

t =
⌊(

∆
2 + 1

)
(n− 1)

⌋
+ 1 and let J1, . . . , Jt be independent sets of size n in G. Since

t ≥
⌊(

∆
2 + 1

)
(n− 2)

⌋
+ 1, then, by the induction hypothesis, there exists a rainbow

independent set A of size n − 1. Without loss of generality, we may assume that

A = {v1, . . . , vn−1}, where vi ∈ Ji for all i ∈ [n− 1].

Let X = lk(In(G), A). By Proposition 4.4.5, X is
⌊

∆
2 (n− 1)

⌋
-collapsible.

The family {Ji}n≤i≤t consists of
⌊

∆
2 (n− 1)

⌋
+ 1 sets not belonging to X. Thus, by

Theorem 1.2.1, there exists a set R = {vn, . . . , vt}, where vi ∈ Ji for all n ≤ i ≤ t, such

that R /∈ X. Therefore, the set A ∪R contains a set I of size n that is independent in

G. I is a rainbow independent set of size n in G, as wanted.

Proposition 4.4.6. Let G = (V,E) be a graph with maximum degree at most ∆.

Let A = {a1, a2} be an independent set of size 2 in G. Assume that there exists an

independent set in G of the form {a1, w, w
′}, where w,w′ ∈ NG(a2), or there exists an

independent set of the form {a2, v, v
′}, where v, v′ ∈ NG(a1). Then,

C(lk(I3(G), A)) ≤

∆ if ∆ is even,

∆− 1 if ∆ is odd.

Proof. Let v ∈ V \(NG(A)∪A). Then A∪{v} is an independent set of size 3 in G; hence,

v /∈ lk(I3(G), A). So, we may assume without loss of generality that V = NG(A) ∪A.

Let B = NG(a1) ∩ NG(a2) and U = NG(A) \ B. Since the maximum degree of a

vertex in G is at most ∆, we have

|NG(A)| = |NG(a1)|+ |NG(a2)| − |NG(a1) ∩NG(a2)| ≤ 2∆− |B|.

So, |U | ≤ 2∆− 2|B|.
Let X = lk(I3(G), A). We will use Lemma 4.2.3 in order to bound the collapsibility

number of X:

Write B = {u1, . . . , uk}. Let P = P(lk(I3(G), A), B) be the family of partitions

(B1, B2) of B satisfying:
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• B2 ∈ X = lk(I3(G), A).

• For any ui ∈ B2, the complex

lk(X[V \ {uj ∈ B1 : j < i}], {uj ∈ B2 : j < i})

= lk(I3(G)[V \ {uj ∈ B1 : j < i}], A ∪ {uj ∈ B2 : j < i})

is not a cone over ui.

Let (B1, B2) ∈ P. Let G′ = G[V \B1], and let

Y = lk(X[V \B1], B2) = lk(I3(G)[V \B1], A ∪B2) = lk(I3(G′), A ∪B2).

Note that B2 = NG′(a1)∩NG′(a2). Also, since A is of size 2, then every vertex in V \B1

is adjacent to at most 2 vertices in A. Therefore, by Lemma 4.4.4, Y is a flag complex.

The vertex set of Y is contained in U = NG(A) \ B. So, by Proposition 4.2.2, we

obtain

C(Y ) ≤ |U |
2
≤ 2∆− 2|B|

2
= ∆− |B| ≤ ∆− |B2|. (4.2)

Therefore, by Lemma 4.2.3,

C(lk(I3(G), A)) ≤ ∆.

Now, assume ∆ is odd. Again, let (B1, B2) ∈ P, and let

Y = lk(I3(G)[V \B1], A ∪B2).

If B2 6= B then, by (4.2),

C(Y ) ≤ ∆− |B| ≤ ∆− 1− |B2|.

Now, assume B2 = B. By the equality case of Proposition 4.2.2, we have C(Y ) ≤
∆− 1− |B| unless Y contains exactly 2∆− 2|B| vertices, and its set of missing faces

consists of ∆− |B| = ∆− k pairwise disjoint sets of size 2. We will show that this case

cannot in fact hold:

Assume for contradiction that the equality case holds. Then, Y is a simplicial complex

on vertex set U = U1 ∪ U2, where U1 = NG(a1) \NG(a2) and U2 = NG(a2) \NG(a1),

and |U1| = |U2| = ∆− k (see Figure 4.1).

Claim 4.4.7. Let J be an independent set of size 3 in G. Then J is of one of the

following forms:

• J = {a1, v, w}, where v, w ∈ U2,

• J = {a2, v, w}, where v, w ∈ U1, or

• J = {ui, v, w} for some i ∈ [k], where v, w ∈ U .
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A

U1

U2

U

B

N(A)

a1

a2

· · ·

· · ·

· · · · · ·

u1 uk

Figure 4.1: The sets A,B,U . The vertices in B are adjacent to both a1 and a2. The
vertices in U1 are adjacent to a1 but not to a2, while the vertices in U2 are adjacent to
a2 but not to a1.

Proof. Since B2 = B and (B1, B2) ∈ P, we have B ∈ lk(I3(G), A). Thus, any indepen-

dent set J of size 3 in G contains at least one vertex from U . Also, since Y is a flag

complex, at least one vertex in J must belong to A ∪B (otherwise J is a missing face

of size 3 in Y ).

Note that since U ⊂ NG(A), each independent set of size 3 contains at most one of

the vertices a1 or a2.

Assume that a1 ∈ J . Then, since all the vertices in B ∪ U1 are adjacent to a1, the

two vertices in J \ {a1} must belong to U2, as wanted. Similarly, if a2 ∈ J , then the

two vertices in J \ {a2} must belong to U1.

Now, assume that a1, a2 /∈ J . Then, there exists some i ∈ [k] such that ui ∈ J . For

all j ∈ [k] \ {i}, uj /∈ J , otherwise the unique vertex v in J \ {ui, uj} does not belong to

Y , a contradiction to the assumption that the vertex set of Y is the whole set U . So,

the two vertices in J \ {ui} must belong to U , as wanted.

U1

U2

U

B
u1 ukui0

· · · · · ·

· · · · · ·

v1 vi0 vk v
′

i0

w1 wi0
wk w

′

i0

· · · · · ·

u2

Figure 4.2: The pairs {vi, wi} (i = 1, . . . , k), and the additional pair {v′i0 , w
′
i0
}. For

each i ∈ [k], {ui, vi, wi} is independent in G. The set {ui0 , v′i0 , w
′
i0
, } is also independent.

On the other hand, {uj , vi, wi} is not independent for j < i.

Claim 4.4.8. There exist distinct vertices v1, . . . , vk ∈ U1 and w1, . . . , wk ∈ U2 such

that:

• For all i ∈ [k], {ui, vi, wi} is an independent set in G.
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• For all 1 ≤ j < i ≤ k, {uj , vi, wi} is not independent in G.

Proof. We define the vertices v1, . . . , vk, w1, . . . , wk recursively, as follows. Let i ∈ [k],

and assume that we already defined v1, . . . , vi−1 and w1, . . . , wi−1. Since (B1, B2) =

(∅, B) ∈ P, then the complex

Y ′ = lk(I3(G), A ∪ {uj ∈ B : j < i})

is not a cone over ui. Therefore, there exists a missing face τ of Y ′ containing ui. Since

τ is a missing face of Y ′, there exists an independent set J of size 3 in G containing τ .

By Claim 4.4.7, J is of the form J = {ui, vi, wi}, for some vi, wi ∈ U .

Note that actually J = τ . Otherwise, assume without loss of generality that

τ = {ui, vi}. Then wi /∈ Y ′. But then wi /∈ Y , a contradiction to the assumption that

the vertex set of Y is the whole set U .

If both vi and wi belong to U1, or both of them belong to U2, then {vi, wi} /∈ Y ′,
a contradiction to {ui, vi, wi} being a missing face. So, we may assume that vi ∈ U1

and wi ∈ U2. Moreover, for all j < i, {uj , vi, wi} is not independent in G, otherwise

{vi, wi} /∈ Y ′, a contradiction to {ui, vi, wi} being a missing face.

The pairs {{vi, wi}}i∈[k] are missing faces of the complex Y . Hence, they must be

pairwise disjoint. Thus, the vertices v1, . . . , vk, w1, . . . , wk are all distinct.

Claim 4.4.9. There exist some i0 ∈ [k] and vertices v′i0 ∈ U1 \ {v1, . . . , vk}, w′i0 ∈
U2 \ {w1, . . . , wk} such that {ui0 , v′i0 , w

′
i0
} is independent in G.

Proof. Recall that, by assumption, the missing faces of Y consist of ∆ − k pairwise

disjoint sets of size 2. In particular, each vertex v ∈ U belongs to exactly one missing

face of Y .

Assume for contradiction that the only missing faces of Y of the form {v, w}, where

v ∈ U1 and w ∈ U2, are the pairs {vi, wi}, i ∈ [k], from Claim 4.4.8.

Then, the ∆−2k remaining missing faces must be of the form {v, w}, where v, w ∈ U1

or v, w ∈ U2. In particular, the set U1 \ {v1, . . . , vk} must be of even size (otherwise,

there exists a vertex v ∈ U1 \ {v1, . . . , vk} that does not belong to any missing face of

Y , a contradiction). But

|U1 \ {v1 . . . , vk}| = ∆− 2k

is odd, since ∆ is odd.

Therefore, there exists some additional missing face of the form {v, w}, where v ∈ U1,

w ∈ U2. That is, there is some i0 ∈ [k] such that {ui0 , v, w} is independent in G. So,

we can choose v′i0 = v and w′i0 = w (see Figure 4.2).

Claim 4.4.10. ∆ ≥ 2k + 3.

Proof. By assumption, there exists in G either an independent set of the form {a1, w, w
′},

where w,w′ ∈ NG(a2), or an independent set of the form {a2, v, v
′}, where v, v′ ∈
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NG(a1). Assume without loss of generality that the first case holds: there exists an

independent set in G of the form {a1, w, w
′}, where w,w′ ∈ NG(a2). Then, the set

{w,w′} is a missing face in Y . Since the missing faces of Y are all disjoint, the vertices

w1, . . . , wk, w
′
i0
, w, w′ ∈ U2 must be all distinct. Therefore,

∆− k = |U2| ≥ k + 3.

Hence, ∆ ≥ 2k + 3.

Let

S = {j ∈ [k] \ {i0} : {vi0 , uj} /∈ E or {wi0 , uj} /∈ E}.

U1

U2

U

B
u1 ukui0

· · · · · ·

· · · · · ·

v1 vi0 vk v′
i0

w1 wi0
wk w′

i0

· · · · · ·

u2 ⇒ 2, k ∈ S

Figure 4.3: The set S consists of the indices j ∈ [k] \ {i0} such that uj is adjacent in
G to at most one of the vertices vi0 or wi0 . For example, in the picture presented here,
2 and k belong to S, but 1 does not.

U1

U2

U

B
u1 ukui0

· · · · · ·

· · · · · ·

v1 vi0 vk v′
i0

w1 wi0
wk w′

i0

· · · · · ·

u2

v2

w2
A

a1

a2

Figure 4.4: The bold purple vertices are the neighbours of vi0 in G. The vertex vi0 is
adjacent to a1, to w′i0 and to all the vertices in U1 other than itself. In addition, for
each i ∈ [k], it is adjacent to exactly one of the two vertices ui or wi. In particular, for
indices j 6= i0 that do not belong to S, vi0 is adjacent to uj (and not adjacent to wj);
see Claim 4.4.11.

Claim 4.4.11. There exists a set N1 consisting of exactly one vertex from each pair

{wj , uj}, for all j ∈ S, such that

NG(vi0) = {a1} ∪ {w′i0} ∪ (U1 \ {vi0}) ∪ {uj : j ∈ [k] \ (S ∪ {i0})} ∪N1.

In particular, |NG(vi0)| = ∆.
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Similarly, there exists a set N2 consisting of exactly one vertex from each pair

{vj , uj}, for all j ∈ S, such that

NG(wi0) = {a2} ∪ {v′i0} ∪ (U2 \ {wi0}) ∪ {uj : j ∈ [k] \ (S ∪ {i0})} ∪N2.

And, in particular, |NG(wi0)| = ∆.

Proof. We prove the claim for vi0 . The proof for wi0 is identical.

First, since vi0 ∈ U1, then a1 is adjacent to vi0 . Also, for every vi0 6= v ∈ U1, v is

adjacent to vi0 , since otherwise the set {a2, vi0 , v} is independent in G, but then the set

{v, vi0} is a missing face of Y that intersects the missing face {vi0 , wi0}, a contradiction

to the assumption that the missing faces are pairwise disjoint.

The vertex w′i0 must also be adjacent to vi0 , otherwise {ui0 , vi0 , w′i0} is an independent

set in G. But then, {vi0 , w′i0} is a missing face of Y intersecting the missing face {vi0 , wi0},
again a contradiction.

By the definition of S, vi0 is adjacent to uj for all j ∈ [k] \ (S ∪ {i0}).
Finally, let j ∈ S. If {vi0 , uj} /∈ E and {vi0 , wj} /∈ E, then {vi0 , uj , wj} is indepen-

dent in G; therefore, {vi0 , wj} is a missing face of Y , a contradiction. So, vi0 is adjacent

to either uj or wj . Let S′ = {j ∈ S : {uj , vi0} ∈ E}. Let

N1 = {uj : j ∈ S′} ∪ {wj : j ∈ S \ S′}.

Then, N1 ⊂ NG(vi0). Let

N = {a1} ∪ {w′i0} ∪ (U1 \ {vi0}) ∪ {uj : j ∈ [k] \ (S ∪ {i0})} ∪N1.

We showed that N ⊂ NG(vi0). Note that

|N | = 1 + 1 + (∆− k − 1) + (k − |S| − 1) + |S| = ∆.

Since the maximal degree of a vertex in G is at most ∆, then we must have NG(vi0) = N ,

as wanted.

Claim 4.4.12. For all j ∈ [k] \ {i0}, ui0 is adjacent in G to at least one of the vertices

vj or wj.

Proof. Let j 6= i0. Assume for contradiction that ui0 is not adjacent to any of the two

vertices vj and wj . Then {ui0 , vj , wj} is independent in G. So, by Claim 4.4.8, we must

have i0 > j. Moreover, either {vi0 , uj} ∈ E or {wi0 , uj} ∈ E (otherwise {uj , vi0 , wi0} is

independent in G, a contradiction to Claim 4.4.8). Assume without loss of generality

that {vi0 , uj} ∈ E. The vertex vi0 must be also adjacent to wj , since otherwise the

set {ui0 , vi0 , wj} is independent in G. But then {vi0 , wj} is a missing face of Y , a

contradiction to the assumption that the missing faces are pairwise disjoint.
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But, by Claim 4.4.11, the set of neighbors of vi0 in G, NG(vi0), contains at most

one of the vertices uj or wj , a contradiction.

So, ui0 must be adjacent in G to at least one of the vertices vj or wj .

Claim 4.4.13. There is some vertex

w ∈ U \ ({vj , wj : j ∈ S} ∪ {vi0 , wi0 , v′i0 , w
′
i0})

such that {ui0 , w} /∈ E.

Proof. Let U ′ = U \ ({vj , wj : j ∈ S} ∪ {vi0 , wi0 , v′i0 , w
′
i0
}). The vertex ui0 is adjacent

in G to both a1 and a2 (since ui0 ∈ B = NG(a1) ∩ NG(a2)). Also, by Claim 4.4.12,

it is adjacent to at least |S| vertices from the set {vj , wj : j ∈ S}. By the definition

of S, for each j ∈ S, uj is not adjacent to one of the vertices vi0 or wi0 . Thus ui0

must be adjacent in G to uj (otherwise, one of the sets {uj , ui0 , vi0} or {uj , ui0 , wi0} is

independent in G, in contradiction to Claim 4.4.7).

So, ui0 is adjacent to at least 2|S|+ 2 vertices outside of U ′. Since the degree of ui0

is at most ∆, ui0 is adjacent to at most ∆− 2− 2|S| vertices in U ′.

But |U ′| = |U | − 2|S| − 4 = 2∆− 2k − 2|S| − 4. So, ui0 is not adjacent to at least

∆− 2k − 2 vertices in U ′. By Claim 4.4.10, ∆ ≥ 2k + 3. Therefore, ui0 is not adjacent

to at least one vertex w ∈ U ′.

Assume without loss of generality that the vertex w from Claim 4.4.13 belongs to U2.

If {vi0 , w} /∈ E, then {ui0 , vi0 , w} is independent in G. But then, {vi0 , w} is a missing

face of Y intersecting {vi0 , wi0}, a contradiction to the assumption that all the missing

faces are disjoint. So, w ∈ NG(vi0). But this is a contradiction to Claim 4.4.11.

Therefore, C(Y ) ≤ (∆ − 1) − |B|; so, by Lemma 4.2.3, lk(I3(G), A) is (∆ − 1)-

collapsible.

Proposition 4.4.14. Let ∆ ≥ 2. Let G = (V,E) be a graph with maximum degree at

most ∆, and let a1 ∈ V . Then,

C(lk(I3(G), a1)) ≤

∆ + 1 if ∆ is even,

∆ if ∆ is odd.

Proof. Let d = ∆ + 2 if ∆ is even, and d = ∆ + 1 if ∆ is odd. Let V ′ be the vertex set

of lk(I3(G), a1). We argue by induction on |V ′|. If |V ′| ≤ ∆, then by Proposition 4.2.2,

C(lk(I3(G), a1)) ≤ 2|V ′|
3
≤ 2∆

3
≤ d− 1,

as wanted. Otherwise, let |V ′| > ∆. We will show that there exists a vertex a2 /∈ NG(a1)

such that C(lk(I3(G), {a1, a2})) ≤ d− 2. We divide into three different cases:
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Case 1: There exists an independent set in G of the form {u, v, a2}, where u, v ∈ NG(a1)

and a2 /∈ NG(a1). Then, by Proposition 4.4.6, we have

C(lk(I3(G), {a1, a2})) ≤ d− 2.

Case 2: There exists a triple {u, v, a2} ⊂ V ′ such that u, v, a2 /∈ NG(a1), {u, v} /∈ E,

{u, a2} ∈ E and {v, a2} ∈ E. Then, {a1, u, v} is an independent set in G, and

u, v ∈ NG(a2). Thus, by Proposition 4.4.6,

C(lk(I3(G), {a1, a2})) ≤ d− 2.

Case 3: Assume none of the two first cases holds. Since |V ′| > ∆, there exists a vertex

a2 ∈ lk(I3(G), a1) such that a2 /∈ NG(a1) (otherwise degG(a1) = |NG(a1)| > ∆, a

contradiction).

Note that the setNG(a2)\NG(a1) is contained in the vertex set of lk(I3(G), {a1, a2}).
We will show that there are no missing faces of lk(I3(G), {a1, a2}) contaning ver-

tices from NG(a2) \NG(a1):

Assume for contradiction that there exists a missing face τ of the complex

lk(I3(G), {a1, a2}) that contains a vertex w ∈ NG(a2) \ NG(a1). First, assume

that τ = {u, v, w} is an independent set of size 3. Then, both u and v must belong

to NG(a1). Otherwise, assume without loss of generality that v /∈ NG(a1). Then

{w, v, a1} is an independent set in G, and therefore {v, w} /∈ lk(I3(G), {a1, a2}), a

contradiction to τ being a missing face. But then, the existence of the independent

set {u, v, w} is a contradiction to the assumption that Case 1 does not hold.

Now, assume τ = {v, w} is of size 2. Then there exists an independent set J of size

3 such that τ ⊂ J ⊂ τ ∪ {a1, a2}. Since w ∈ NG(a2), we must have J = {a1, v, w}.
In particular v /∈ NG(a1). So, we must have v ∈ NG(a2). But then, the triple

{a2, v, w} satisfies a2, v, w /∈ NG(a1), {v, w} /∈ E, {a2, v} ∈ E and {a2, w} ∈ E.

This is a contradiction to the assumption that Case 2 does not hold.

Therefore, there are no missing faces of lk(I3(G), {a1, a2}) containing vertices in

NG(a2) \NG(a1). Let U = NG(a1) ∪ {a1, a2}. Then, we have

lk(I3(G), {a1, a2}) = 2NG(a2)\NG(a1) ∗ lk(I3(G[U ]), {a1, a2}).

So, by Lemma 2.3.8, we have

C(lk(I3(G), {a1, a2})) = C(lk(I3(G[U ]), {a1, a2})).

By Proposition 4.2.2, we obtain

C(lk(I3(G), {a1, a2})) ≤
2|NG(a1)|

3
≤ 2∆

3
.
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Note that 2∆
3 ≤ ∆, and 2∆

3 ≤ ∆− 1 for ∆ ≥ 3. Hence, we obtain

C(lk(I3(G), {a1, a2})) ≤
2∆

3
≤ d− 2

for all ∆ ≥ 2.

For any of the three cases we have C(lk(I3(G \ a2), a1)) ≤ d− 1 by the induction

hypothesis. Also, we showed that C(lk(I3(G), {a1, a2})) ≤ d− 2 in all three cases. So,

by Lemma 2.3.14,

C(lk(I3(G), a1)) ≤ max{C(lk(I3(G \ a2), a1)), C(lk(I3(G), {a1, a2})) + 1}

≤ d− 1,

as wanted.

Theorem 1.2.8. Let G = (V,E) be a graph with maximum degree ∆. Then,

C(I3(G)) ≤

∆ + 2 if ∆ is even,

∆ + 1 if ∆ is odd.

Proof. For ∆ = 1 the claim holds by Theorem 1.2.6. Assume ∆ ≥ 2.

Let d = ∆ + 2 if ∆ is even, and d = ∆ + 1 if ∆ is odd. We argue by induction

on |V |. If |V | = 0 the claim holds trivially. Otherwise, let a1 ∈ V . By the induction

hypothesis, C(I3(G \ a1)) ≤ d. Also, by Proposition 4.4.14, C(lk(I3(G), a1)) ≤ d − 1.

So, by Lemma 2.3.14,

C(I3(G)) ≤ max{C(I3(G \ a1)), C(lk(I3(G), a1)) + 1} ≤ d,

as wanted.

4.5 Lower bounds on Leray numbers

In this section we present some examples establishing the sharpness of our different

bounds on the collapsibility of In(G). Also, we present a family of counterexamples to

the conjectural bound presented in Question 1.2.4, in the case of graphs with maximum

degree at most 3.

4.5.1 Extremal examples

Let n be an integer, and k be an even integer. Let Gk,n be the graph obtained from a

cycle of length
(
k
2 + 1

)
n by adding all edges connecting any two vertices of distance at

most k
2 in the cycle. Note that Gk,n is a k-regular graph, i.e. every vertex has degree

exactly k. Moreover, Gk,n is claw-free.
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In [ABKK19] it is shown that fGk,n(n) ≥
(
k
2 + 1

)
(n−1)+1. In particular, this shows

the tightness of Theorem 1.2.9, in the case that k is even. Moreover, by Proposition

1.2.2, we obtain

C(In(Gk,n)) ≥ fGk,n(n)− 1 ≥
(
k

2
+ 1

)
(n− 1).

This shows that the bound in Question 1.2.4, whenever it holds, is tight. A different

way to show this is as follows.

Proposition 4.5.1.

H̃i(In(Gk,n);F) =

F if i =
(
k
2 + 1

)
(n− 1)− 1,

0 otherwise.

In particular, L(In(Gk,n)) ≥
(
k
2 + 1

)
(n− 1).

Proof. Let t = k
2 + 1. It is easy to check that there are precisely t independent sets of

size n in Gk,n, and they are pairwise disjoint. Therefore, In(Gk,n) can be described as

the join of t disjoint copies of the boundary of an (n− 1)-dimensional simplex. Since

the boundary of an (n− 1)-dimensional simplex is an (n− 2)-dimensional sphere, we

obtain by Theorem 2.2.3:

H̃i(In(Gk,n);F) =

F if i = t(n− 1)− 1,

0 otherwise.

Thus, L(In(G)) ≥ t(n− 1) =
(
k
2 + 1

)
(n− 1).

Therefore, we obtain

C(In(Gk,n)) ≥ L(In(Gk,n)) ≥
(
k

2
+ 1

)
(n− 1).

On the other hand, In(Gk,n) is a
((

k
2 + 1

)
(n− 1)− 1

)
-dimensional complex, and there-

fore it is
(
k
2 + 1

)
(n− 1)-collapsible. So,

C(In(Gk,n)) =

(
k

2
+ 1

)
(n− 1).

Proposition 4.5.1 also shows that the bound in Proposition 4.4.1 is tight, since

G2k−2,n is a k-partite graph with C(In(G2k−2,n)) = k(n− 1). Another such extremal

example is the complete k-partite graph Kn,...,n. In this case, it easy to see that

In(Kn,...,n) ∼= In(G2k−2,n).
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4.5.2 A negative answer to Question 1.2.4

Let G = (V,E) be the dodecahedral graph. It will be convenient to represent G as a

generalized Petersen graph (see [Wat69]), as follows:

V = {a1, . . . , a10, b1, . . . , b10}

and

E = {{ai, bi}, {ai, ai+1}, {bi, bi+2} : i = 1, 2, . . . , 10},

where the indices are taken modulo 10.

Every vertex in G is adjacent to exactly 3 vertices; that is, G is 3-regular. The

maximum independent sets in G are the sets

Ii = {ai, ai+2, ai+5, ai+7, bi−2, bi−1, bi+3, bi+4}

for i = 1, . . . , 5 (also here, the indices are to be taken modulo 10). In particular,

α(G) = 8.

Proposition 4.5.2. Let G = (V,E) be the dodecahedral graph. Then,

H̃i(I8(G);F) =

F4 if i = 15,

0 otherwise.

In particular, L(I8(G)) ≥ 16.

Proof. Let F = {V \ I1, V \ I2, . . . , V \ I5}. The family F is the set of maximal faces of

I8(G)V . So, by the Nerve Theorem (Corollary 2.2.5),

H̃i(N(F);F) ∼= H̃i(I8(G)V ;F)

for all i ≥ −1. So, by Alexander duality (Corollary 2.2.11),

H̃i(N(F);F) = H̃|V |−i−3(I8(G);F) = H̃17−i(I8(G);F) (4.3)

for all −1 ≤ i ≤ |V | − 2 = 18. We have

N(F) =

{
A ⊂ [5] :

⋂
i∈A

V \ Ii 6= ∅

}
=

{
A ⊂ [5] :

⋃
i∈A

Ii 6= V

}
.

It is easy to check that N(F) is the complete 2-dimensional complex on 5 vertices. So,

H̃i(N(F);F) =

F4 if i = 2,

0 otherwise.
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Thus, by (4.3),

H̃i(I8(G);F) =

F4 if i = 15,

0 otherwise,

as wanted.

We obtain C(I8(G)) ≥ L(I8(G)) ≥ 16 > 2 · (8 − 1) = 14. Therefore, I8(G) does

not satisfy the bound in Question 1.2.4. However, this is not a counterexample for

Conjecture 1.2.3. Indeed, it is not hard to check that fG(8) = 11.

4.5.3 Leray number of the disjoint union of graphs

The following result will help us in constructing more examples of complexes that do

not satisfy the bound in Question 1.2.4:

Theorem 4.5.3. Let G be the disjoint union of the graphs G1, . . . , Gm. For i ∈ [m],

let ti = α(Gi) and let `i = L(Iti(Gi)). Let t =
∑m

i=1 ti = α(G) and ` = L(It(G)). Then,

` =

m∑
i=1

`i +m− 1.

The proof relies on the following result.

Proposition 4.5.4. Let G be the disjoint union of the graphs G1, . . . , Gm. For i ∈ [m],

let ti = α(Gi). Let t =
∑m

i=1 ti = α(G). Then, H̃k(It(G);F) = 0 if and only if for every

choice of integers k1, . . . , km satisfying
∑m

i=1 ki = k − 2m+ 2, H̃ki(Iti(Gi);F) = 0 for

all i ∈ [m].

Proof. For all i ∈ [m], let Vi be the vertex set of Gi, and let V =
⋃m
i=1 Vi be the vertex

set of G. Let Ni = |Vi| for all i ∈ [m], and N = |V | =
∑m

i=1Ni.

A set U ⊂ V contains an independent set of size t in G if and only if U ∩Vi contains

an independent set of size ti in Gi for all i ∈ [m]. That is, U /∈ It(G) if and only if

U ∩ Vi /∈ Iti(Gi) for all i ∈ [m]. Equivalently, a set W ⊂ V belongs to It(G)V if and

only if W ∩ Vi ∈ Iti(Gi)V for all i ∈ [m]. Thus, we have

It(G)V = It1(G1)V ∗ · · · ∗ Itm(Gm)V .

Note that for every i ∈ [m], Vi /∈ Iti(Gi) (since Gi contains an independent set of size

ti = α(Gi)). Similarly, V /∈ It(G). So, by Alexander duality (Corollary 2.2.11), we have

H̃j(Iti(Gi)
V ;F) = H̃Ni−j−3(Iti(Gi);F)

for all i ∈ [m] and −1 ≤ j ≤ |Vi| − 2, and

H̃j(It(G)V ;F) = H̃N−j−3(It(G);F)
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for all −1 ≤ j ≤ |V | − 2.

Therefore, by Theorem 2.2.3, we obtain

H̃N−j−3(It(G);F) = H̃j(It(G)V ;F)

=
⊕

j1+···+jm=j−m+1

H̃j1(It1(G1)V ;F)⊗ · · · ⊗ H̃jm(Itm(Gm)V ;F)

=
⊕

j1+···+jm=j−m+1

H̃N1−j1−3(It1(G1);F)⊗ · · · ⊗ H̃Nm−jm−3(Itm(Gm);F).

Setting k = N − j − 3 and ki = Ni − ji − 3 for all i ∈ [m], we obtain

H̃k(It(G);F) =
⊕

k1+···+km=k−2m+2

H̃k1(It1(G1);F)⊗ · · · ⊗ H̃km(Itm(Gm);F).

In particular, H̃k(It(G);F) = 0 if and only if for every choice of k1, . . . , km satisfying∑m
i=1 ki = k − 2m+ 2, H̃ki(Iti(Gi);F) = 0 for all i ∈ [m].

Proof of Theorem 4.5.3. For all i ∈ [m], let Vi be the vertex set of Gi, and let V =⋃m
i=1 Vi be the vertex set of G.

Since L(It(G)) = `, there exists a set U ⊂ V such that

H̃`−1(It(G[U ]);F) 6= 0.

Let G′ = G[U ] and G′i = Gi[U ∩ Vi] for all i ∈ [m]. Note that It(G
′) is not the complete

complex, since it has non-trivial homology; hence, α(G′) = t. Since G′ is the disjoint

union of the graphs G′1, . . . , G
′
m, we must have α(G′i) = ti for all i ∈ [m]. By Proposition

4.5.4, there exists k1, . . . , km satisfying
∑m

i=1 ki = `− 2m+ 1 such that

H̃ki(Iti(G
′
i);F) 6= 0.

In particular, `i = L(Iti(Gi)) ≥ ki + 1. Summing over all i ∈ [m], we obtain

m∑
i=1

`i ≥
m∑
i=1

ki +m = `−m+ 1.

Now, let i ∈ [m]. Since `i = L(Iti(Gi)), there exists a set Ui ⊂ Vi such that

H̃`i−1(Iti(Gi[Ui]);F) 6= 0.

Let G′i = Gi[Ui]. Note that Iti(G
′
i) is not the complete complex, since it has non-trivial

homology. Therefore, α(G′i) = ti. Let U = U1 ∪ · · · ∪ Um, and let G′ = G[U ]. Then, G′

is the disjoint union of G′1, . . . , G
′
m. By Proposition 4.5.4, we have

H̃∑m
i=1(`i−1)+2m−2(It(G

′);F) = H̃∑m
i=1 `i+m−2(It(G

′);F) 6= 0.
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Thus, ` = L(It(G)) ≥
∑m

i=1 `i +m− 1.

Corollary 4.5.5. Let Gk be the union of k disjoint copies of the dodecahedral graph.

Then,

L(I8k(Gk)) ≥ 17k − 1.

Proof. Let H1, . . . ,Hk be k disjoint copies of the dodecahedral graph. Then, by Propo-

sitions 4.5.2 and 4.5.3, we obtain

L(I8k(Gk)) = L(I8k(H1 ∪H2 ∪ · · · ∪Hk))

=

k∑
i=1

L(I8(Hi)) + k − 1 ≥ 16k + k − 1 = 17k − 1.

Note that the graphs Gk are 3-regular, and

L(I8k(Gk))

8k − 1
≥ 17k − 1

8k − 1
> 2

1

8
> 2.

Thus, the complexes I8k(Gk) do not satisfy the bound in Question 1.2.4.

Note that the graphs Gk are not counterexamples for Conjecture 1.2.3. This can be

shown by the following observation.

Proposition 4.5.6. Let G be the disjoint union of two graphs G1 and G2 with α(G1) =

t1 and α(G2) = t2. Then,

fG(t1 + t2) ≤ max{fG1(t1), fG2(t2) + t1}.

Proof. Let V1 and V2 denote the vertex sets of G1 and G2 respectively. Let t =

max{fG1(t1), fG2(t2) + t1}.
Let A = {A1, . . . , At} be a family of independent sets of size t1 + t2 in G. Note that

any independent set of size t1 + t2 = α(G) in G has t1 vertices in V1 and t2 vertices in

V2.

Thus, A1 ∩ V1, A2 ∩ V1, . . . , At ∩ V1 is a family of t ≥ fG1(t1) independent sets of

size t1 in G1. Hence, it contains a rainbow independent set R1 of size t1. Without

loss of generality, we may assume that R1 = {at−t1+1, . . . , at}, where ai ∈ Ai for all

i ∈ {t− t1 + 1, . . . , t}.
The family A1∩V2, A2∩V2, . . . , At−t1 ∩V2 is a family of t− t1 ≥ fG2(t2) independent

sets of size t2 in G2; therefore, it contains a rainbow independent set R2 of size t2.

Then, the set R1 ∪R2 is a rainbow independent set of size t1 + t2 in G with respect

to A, as wanted.

Applying Proposition 4.5.6 repeatedly, we obtain that fGk(8k) ≤ 8k + 3 < 16k − 1.
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Chapter 5

Leray numbers of tolerance

complexes

This chapter is organized as follows. In Section 5.1 we present some auxiliary topological

results that we will use later. In Section 5.2 we prove our main result, Theorem 1.3.5. In

Section 5.3 we prove Theorem 1.3.6 about the Leray number of the 1-tolerance complex

of a 2-collapsible complex. In Section 5.4 we describe Montejano and Oliveros’ example

of a d-representable complex whose 1-tolerance complex is not
(⌊(

d+3
2

)2⌋− 2
)

-Leray.

This chapter is based on joint work with Minki Kim.

5.1 Some topological preliminaries

In this section we prove some auxiliary results that we will later need. Let F be a field.

Lemma 5.1.1. Let X be a simplicial complex on vertex set V , and Y ⊂ X a subcomplex.

Assume that there is some σ ∈ X and subcomplexes W ⊂ Z ⊂ X[V \ σ] such that

X \ Y = {η ∪ σ : η ∈ Z \W}.

Then,

Hk (X,Y ;F) ∼= Hk−|σ| (Z,W ;F)

for all k.

Proof. For all k, let φk : Ck(X,Y ;F)→ Ck−|σ|(Z,W ;F) be defined by

φk(η ∪ σ) = η

and extended linearly. Note that the maps φk are linear isomorphisms. Denote by ∂k

the boundary operator of Ck(X,Y ;F) and by ∂′k the boundary operator of Ck(Z,W ;F).

We are left to show that φ is a chain map. That is, for any η ∈ Z(k) \W (k), we want
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to show that

φk+|σ|−1(∂k+|σ|(η ∪ σ)) = ∂′k(φk+|σ|(η ∪ σ)).

Let η = {u0, . . . , uk}. For any i ∈ {0, . . . , k}, let ηi = {u0, . . . , ui−1, ui+1, . . . , uk}. Then,

since any subset of η ∪ σ belonging to X \ Y must contain σ, we have

∂k+|σ|(η ∪ σ) =
∑

i∈{0,...,k}:
ηi∪σ/∈Y

(−1)iηi ∪ σ =
∑

i∈{0,...,k}:
ηi /∈W

(−1)iηi ∪ σ.

Hence,

φk+|σ|−1(∂k+|σ|(σ ∪ η)) =
∑

i∈{0,...,k}:
ηi /∈W

(−1)iηi = ∂′k(η) = ∂′k(φk+|σ|(η ∪ σ)).

So Ck(X,Y ;F) and Ck−|σ|(Z,W ;F) are isomorphic as chain complexes, and in particular

have isomorphic homology groups.

Lemma 5.1.2. Let X1, . . . , Xm be simplicial complexes, and let X = ∪mi=1Xi. If for

all I ⊂ [m] of size at least 2, the complex ∩i∈IXi is non-empty and acyclic, then

H̃k (X;F) ∼=
m⊕
i=1

H̃k (Xi;F) .

for all k ≥ −1.

Proof. We argue by induction on m. For m = 1 the claim is trivial. Assume m > 1.

Since ∩i∈IXi is non-empty and acyclic for every I ⊂ [m−1], we obtain, by the induction

hypothesis,

H̃k

(
∪m−1
i=1 Xi;F

) ∼= m−1⊕
i=1

H̃k (Xi;F)

for all k ≥ −1.

Since X =
(
∪m−1
i=1 Xi

)
∪Xm, we have by Mayer-Vietoris (Theorem 2.2.1) a long exact

sequence

· · · → H̃k

(
∪m−1
i=1 (Xi ∩Xm);F

)
→

m⊕
i=1

H̃k (Xi;F)→

→ H̃k (X;F)→ H̃k−1

(
∪m−1
i=1 (Xi ∩Xm);F

)
→ · · ·

Hence, it is enough to show that

H̃k

(
∪m−1
i=1 (Xi ∩Xm);F

)
= 0

for all k ≥ −1.
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By the assumptions of this lemma, the nerve N = N({Xi∩Xm}m−1
i=1 ) is the complete

complex on vertex set [m− 1]. Moreover, for all I ⊂ [m− 1], the complex

∩i∈I(Xi ∩Xm) = ∩i∈I∪{m}Xi

is acyclic. Therefore, by the Nerve Theorem (Theorem 2.2.4), we obtain

H̃k

(
∪m−1
i=1 (Xi ∩Xm);F

) ∼= H̃k (N ;F) = 0

for all k ≥ −1. Thus,

H̃k (X;F) ∼=
m⊕
i=1

H̃k (Xi;F)

for all k ≥ −1, as wanted.

Remark. We can give a shorter proof of Lemma 5.1.2 by applying the stronger version

of the Nerve Theorem, Theorem 2.A.2: By the assumption of the Lemma, the nerve

N = N({X1, . . . , Xm}) is the complete complex on vertex set [m], and in particular is

acyclic. By Theorem 2.A.2, we have a long exact sequence

· · · → H̃k+1 (N ;F)→
m⊕
i=1

H̃k (Xi;F)→ H̃k (X;F)→ H̃k (N ;F)→ · · ·

Therefore, we obtain H̃k (X;F) ∼=
⊕m

i=1 H̃k (Xi;F) for all k ≥ −1.

5.2 Proof of Theorem 1.3.5

In this section we prove our main result, Theorem 1.3.5.

Note that the construction of the tolerance complexes depends on the vertex set of

the original complex. Let K be a complex on vertex set V . Let U ⊂ V and σ ∈ K. For

the construction of tolerance complexes, we will consider the vertex set of the induced

subcomplex K[U ] to be the set U , the vertex set of cost(K,σ) to be V , and the vertex

set of lk(K,σ) to be V \ σ.

Lemma 5.2.1. Let K be a simplicial complex on vertex set V , and let σ ∈ K. Then,

Tt (K) \Tt (cost(K,σ))

=

σ ∪ η : η ∈ Tt (lk(K,σ)) \

 ⋃
σ′⊂σ:

1≤|σ′|≤t

Tt−|σ′|
(
lk(K[V \ σ′], σ \ σ′)

)
 .

Proof. Let τ ∈ Tt (K) \ Tt (cost(K,σ)). Since τ ∈ Tt (K), we can write τ = τ ′ ∪ τ ′′,
where τ ′ ∈ K and |τ ′′| ≤ t. Moreover, we must have τ ′ ⊃ σ. Otherwise, τ ′ ∈ cost(K,σ),

a contradiction to τ /∈ Tt (cost(K,σ)).
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Let η = τ \ σ. Then, we can write η = (τ ′ \ σ) ∪ τ ′′. Since τ ′ \ σ ∈ lk(K,σ), we

obtain η ∈ Tt (lk(K,σ)). We claim that

η /∈
⋃
σ′⊂σ:

1≤|σ′|≤t

Tt−|σ′|
(
lk(K[V \ σ′], σ \ σ′)

)
.

Assume for contradiction that η ∈ Tt−|σ′| (lk(K[V \ σ′], σ \ σ′)) for some σ′ ⊂ σ, 1 ≤
|σ′| ≤ t. Then, we can write

η = η1 ∪ η2,

where η1 ∩ σ = ∅, η1 ∪ (σ \ σ′) ∈ K and |η2| ≤ t− |σ′|. Hence, we obtain

τ = σ ∪ η = (η1 ∪ (σ \ σ′)) ∪ (σ′ ∪ η2).

Since σ 6⊂ η1 ∪ (σ \ σ′) and |σ′ ∪ η2| ≤ t, we have τ ∈ Tt (cost(K,σ)), which is a

contradiction to the assumption τ ∈ Tt (K) \ Tt (cost(K,σ)).

For the opposite direction, let τ = σ ∪ η, where

η ∈ Tt (lk(K,σ)) \

 ⋃
σ′⊂σ:

1≤|σ′|≤t

Tt−|σ′|
(
lk(K[V \ σ′], σ \ σ′)

) .

We claim that τ ∈ Tt (K) \ Tt (cost(K,σ)). Since η ∈ Tt (lk(K,σ)), we can write

η = η1 ∪ η2, where η1 ∩ σ = ∅, η1 ∪ σ ∈ K and |η2| ≤ t. Therefore, τ = (η1 ∪ σ) ∪ η2 ∈
Tt (K). We are left to show that τ /∈ Tt (cost(K,σ)). Assume for contradiction that

τ ∈ Tt (cost(K,σ)). Then, we can write τ = τ1 ∪ τ2, where τ1 ∈ K, σ 6⊂ τ1 and |τ2| ≤ t.
Let σ′ = τ2 ∩ σ. Since σ 6⊂ τ1 and σ ⊂ τ , we must have σ′ 6= ∅. Then,

η = τ \ σ = (τ1 \ (σ \ σ′)) ∪ (τ2 \ σ′).

Since τ1 \ (σ \ σ′) ∈ lk(K[V \ σ′], σ \ σ′) and |τ2 \ σ′| ≤ t − |σ′|, we have η ∈
Tt−|σ′| (lk(K[V \ σ′], σ \ σ′)). But this is a contradiction to the assumption on η. This

completes the proof.

By Lemma 5.2.1 and Lemma 5.1.1, we obtain:

Corollary 5.2.2. Let K be a simplicial complex, and let σ ∈ K. Then, for all k, we

have

Hk (Tt (K) , Tt (cost(K,σ)) ;F)

∼= Hk−|σ|

Tt (lk(K,σ)) , Tt (lk(K,σ)) ∩

 ⋃
σ′⊂σ:

1≤|σ′|≤t

Tt−|σ′|
(
lk(K[V \ σ′], σ \ σ′)

) ;F

 .
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Proposition 5.2.3. Let K be a simplicial complex, and let σ ∈ K such that σ is

contained in a unique maximal simplex σ ∪ U ∈ K, where U 6= ∅. Then, for all k,

Hk (Tt (K) , Tt (cost(K,σ)) ;F)

∼=
⊕

W⊂V \(σ∪U):
|W |=t

H̃k−|σ|−1

 ⋃
σ′⊂σ:

1≤|σ′|≤t

Tt−|σ′|
(
lk(K,σ \ σ′)[U ∪W ]

)
;F

 .

Proof. Let

Y =
⋃
σ′⊂σ:

1≤|σ′|≤t

Tt−|σ′|
(
lk(K[V \ σ′], σ \ σ′)

)
.

By Corollary 5.2.2, we have

Hk (Tt (K) , Tt (cost(K,σ)) ;F) ∼= Hk−|σ| (Tt (lk(K,σ)) , Tt (lk(K,σ)) ∩ Y ;F) .

By Theorem 2.2.6, we have a long exact sequence

· · · → H̃k−|σ| (Tt (lk(K,σ)) ;F)→ Hk−|σ| (Tt (lk(K,σ)) , Tt (lk(K,σ)) ∩ Y ;F)→

→ H̃k−|σ|−1 (Tt (lk(K,σ)) ∩ Y ;F)→ H̃k−|σ|−1 (Tt (lk(K,σ)) ;F)→ · · ·

Note that lk(K,σ) = 2U ; therefore,

Tt (lk(K,σ)) = 2U ∗ {τ ⊂ V \ (U ∪ σ) : |τ | ≤ t}.

In particular, since U 6= ∅, Tt (lk(K,σ)) is contractible. Hence,

Hk−|σ| (Tt (lk(K,σ)) , Tt (lk(K,σ)) ∩ Y ;F) ∼= H̃k−|σ|−1 (Tt (lk(K,σ)) ∩ Y ;F) .

We can write

Tt (lk(K,σ)) ∩ Y =
⋃

W⊂V \(σ∪U):
|W |=t

2U∪W ∩ Y =
⋃

W⊂V \(σ∪U):
|W |=t

YW ,

where

YW = Y [U ∪W ] =
⋃
σ′⊂σ:

1≤|σ′|≤t

Tt−|σ′|
(
lk(K,σ \ σ′)[U ∪W ]

)
.

Let m > 1, and let W1, . . . ,Wm ⊂ V \ (σ ∪ U) be distinct sets, such that |Wi| = t for

all i ∈ [m]. Then,

m⋂
i=1

YWi =
⋃
σ′⊂σ:

1≤|σ′|≤t

Tt−|σ′|
(
lk(K,σ \ σ′)[U ∪ (∩mi=1Wi)]

)
.
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Since | ∩mi=1 Wi| ≤ t− 1, we have, for any v ∈ σ,

U ∪ (∩mi=1Wi) ∈ Tt−1 (lk(K,σ \ {v})[U ∪ (∩mi=1Wi)]) .

In particular,

U ∪ (∩mi=1Wi) ∈
m⋂
i=1

YWi ,

and hence, we conclude
m⋂
i=1

YWi = 2U∪(∩mi=1Wi).

Since U 6= ∅, the intersection
⋂m
i=1 YWi is non-empty and acyclic. Therefore, by Lemma

5.1.2,

H̃k−|σ|−1 (Tt (lk(K,σ)) ∩ Y ;F) ∼=
⊕

W⊂V \(σ∪U):
|W |=t

H̃k−|σ|−1 (YW ;F)

∼=
⊕

W⊂V \(σ∪U):
|W |=t

H̃k−|σ|−1

 ⋃
σ′⊂σ:

1≤|σ′|≤t

Tt−|σ′|
(
lk(K,σ \ σ′)[U ∪W ]

)
;F

 ,

as wanted.

Recall that h(t, d) is defined as follows: h(0, d) = d for all d ≥ 0, and for t > 0,

h(t, d) =

min{t,d}∑
s=1

(
d

s

)
(h(t− s, d) + 1)

+ d.

Lemma 5.2.4. For d = 1, we have

h(t, 1) = 2t+ 1.

For t = 1, we have

h(1, d) = d2 + 2d.

For fixed t, we have

h(t, d) = O(dt+1).

Proof. First, we show that h(t, 1) = 2t+ 1. We argue by induction on t. For t = 0 we

have h(0, 1) = 1 = 2t+ 1. Now, assume t > 0. Then, by the definition of h(t, d) and the

induction hypothesis, we obtain

h(t, 1) = h(t− 1, 1) + 1 + 1 = 2(t− 1) + 3 = 2t+ 1.
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Next, we show that h(1, d) = d2 + 2d. Indeed,

h(1, d) = d(h(0, d) + 1) + d = d2 + 2d,

as wanted.

Finally, we show that, for fixed t, h(t, d) = O(dt+1). We argue by induction on t.

For t = 0 we have h(0, d) = d = O(d). Let t > 1. We will show that there is some

constant Ct such that, for large enough d, h(t, d) ≤ Ctdt+1. By the definition of h(t, d)

and the induction hypothesis, we have,

h(t, d) =

(
t∑

s=1

(
d

s

)
(h(t− s, d) + 1)

)
+ d

≤

(
t∑

s=1

ds

s!
(Ct−sd

t−s+1 + 1)

)
+ d

=

(
t∑

s=1

Ct−s
s!

)
dt+1 +

(
t∑

s=1

ds

s!
+ d

)
≤ Ctdt+1

for Ct >
∑t

s=1
Ct−s
s! and large enough d. So, for fixed t, we have h(t, d) = O(dt+1).

Theorem 1.3.5. Let K be a d-collapsible complex on vertex set V and let t ≥ 0. Then,

Tt (K) is h(t, d)-Leray.

Proof. We will show that H̃k (Tt (K) ;F) = 0 for k ≥ h(t, d). This is sufficient to prove

the statement of the theorem, since Tt (K) [W ] = Tt (K[W ]) and, by Lemma 2.3.6, K[W ]

is d-collapsible for every W ⊂ V .

We argue by induction on t. If t = 0 the statement obviously holds, since every

d-collapsible complex is d-Leray.

Let t ≥ 1. We argue by induction on the size of K, that is, the number of simplices

in K. If dim(K) < d, then dim(Tt (K)) < d + t < h(t, d), so the statement holds.

Otherwise, by Lemma 2.3.18, there is some σ ∈ K such that |σ| = d, σ is contained in a

unique maximal face τ 6= σ of K, and cost(K,σ) is d-collapsible.

Let U = τ \ σ. By Theorem 2.2.6, the following sequence is exact:

· · · → H̃k (Tt (cost(K,σ)) ;F)→ H̃k ((Tt (K));F)→ Hk (Tt (K) , Tt (cost(K,σ)) ;F)→ · · ·

By the induction hypothesis, H̃k (Tt (cost(K,σ)) ;F) = 0 for k ≥ h(t, d). Therefore, it is

sufficient to show that Hk (Tt (K) , Tt (cost(K,σ)) ;F) = 0 for k ≥ h(t, d).

By Proposition 5.2.3, it is sufficient to show that, for every W ⊂ V \ (σ ∪ U) of size
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t, the homology group

H̃k

 ⋃
σ′⊂σ:

1≤|σ′|≤t

Tt−|σ′|
(
lk(K,σ \ σ′)[U ∪W ]

)
;F


is trivial for k ≥ h(t, d)−d−1. Note that, for any σ′ ⊂ σ, by Lemma 2.3.15 and Lemma

2.3.6, the complex lk(K,σ \ σ′)[U ∪W ] is also d-collapsible. Hence, by Theorem 2.2.13

and the induction hypothesis, the above homology group is trivial for

k ≥

 ∑
σ′⊂σ:

1≤|σ′|≤t

h(t− |σ′|, d) + 1

− 1 =

min{t,d}∑
s=1

(
d

s

)
(h(t− s, d) + 1)

− 1

= h(t, d)− d− 1,

as wanted.

5.3 Improved bound for d = 2, t = 1

By Theorem 1.3.5 and Lemma 5.2.4, for any d-collapsible complex K, the 1-tolerance

complex T1 (K) is (d2 + 2d)-Leray. This is of the same order of magnitude, but larger,

than the conjectural bound η(d + 1, 2) − 1 =
⌊(

d+3
2

)2⌋ − 1. In this section we prove

Theorem 1.3.6, which gives a tight bound for the Leray number of T1 (K), in the special

case that K is 2-collapsible.

For the proof we will need the following Lemma:

Lemma 5.3.1. Let K be a 2-collapsible complex on vertex set V . Let σ = {u, v} ∈ K
such that σ is contained in a unique maximal face σ∪U , where U 6= ∅ . Let w ∈ V \(U∪σ).

Then,

H̃k (lk(K, v)[U ∪ {w}] ∪ lk(K,u)[U ∪ {w}];F) = 0

for k ≥ 2.

Proof. Let A = lk(K, v)[U ∪ {w}] and B = lk(K,u)[U ∪ {w}]. By Mayer-Vietoris

(Theorem 2.2.1), we have a long exact sequence

· · · → H̃k (A;F)
⊕

H̃k (B;F)→ H̃k (A ∪B;F)→ H̃k−1 (A ∩B;F)→ · · ·

Since K is 2-collapsible, then, by Lemma 2.3.6 and Lemma 2.3.15, A and B are also

2-collapsible. In particular, H̃k (A;F) = H̃k (B;F) = 0 for k ≥ 2. Therefore, it is enough

to show that

H̃k(A ∩B) = 0
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for k ≥ 1. If w /∈ A ∩B, then

A ∩B = 2U ,

and the claim holds. Otherwise, assume w ∈ A ∩B. By Theorem 2.2.2, we have a long

exact sequence

· · · → H̃k ((A ∩B) \ w;F)→ H̃k (A ∩B;F)→ H̃k−1 (lk(A ∩B,w);F)→ · · · .

Note that (A∩B) \w = 2U ; hence, H̃k ((A ∩B) \ w;F) = 0 for all k. Thus, it is enough

to show that

H̃k (lk(A ∩B,w);F) = H̃k (lk(K, {v, w})[U ] ∩ lk(K, {u,w})[U ];F) = 0

for k ≥ 0. Let

Z = lk(K, {v, w})[U ] ∩ lk(K, {u,w})[U ].

We will show that Z is in fact a complete complex.

Note that a set τ ⊂ U is a missing face of Z if and only if it is either a missing

face of lk(K, {v, w})[U ] or a missing face of lk(K, {u,w})[U ]. Moreover, τ ⊂ U is a

missing face of lk(K, {v, w})[U ] if and only if there is some η ⊂ {v, w} such that τ ∪ η
is a missing face of K. Similarly, τ is a missing face of lk(K, {u,w}) if and only if there

is some η ⊂ {u,w} such that τ ∪ η is a missing face of K.

Assume for contradiction that Z contains a missing face τ ⊂ U of size at least two.

Recall that, since K is 2-collapsible, all the missing faces of K are of size at most 3.

Then, since U ∈ lk(K, {u, v}), τ must be of the form τ = {x, y}, where {x, y, w} is a

missing face of K.

Now, we look at the induced subcomplex L = K[{u, v, w, x, y}]. By Lemma 2.3.6, L

is 2-collapsible. The missing faces of L are exactly the two sets {u, v, w} and {x, y, w}. It

is easy to check (for example by applying Theorem 2.2.12) that H̃2 (L;F) 6= 0. Therefore,

L is not 2-Leray. This is a contradiction to L being 2-collapsible. So, Z is a complete

complex, and therefore H̃k (Z;F) = 0 for all k ≥ 0.

Theorem 1.3.6. Let K be a 2-collapsible complex. Then, T1 (K) is 5-Leray.

Proof. The proof is exactly the same as the t = 1 case of the proof of Theorem 1.3.5,

except that we replace the use of the Kalai-Meshulam bound (Theorem 2.2.13) by

Lemma 5.3.1.

5.4 Examples of 1-tolerance complexes

Let d ≥ 2. The following example was presented in [MO11, Theorem 3.2]: Let 1 ≤ n ≤
d− 1, and write Rd = Rn × Rd−n. Let x1, . . . , xn+1 ⊂ Rn be affinely independent. Let

y1, . . . , yd−n+1 ⊂ Rd−n be affinely independent, and let ∆ = conv({y1, . . . , yd−n+1}).
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For i ∈ [n+ 1], let

Ai = conv ({x1, . . . , xi−1, xi+1, . . . , xn+1})×∆.

For i ∈ [n+ 1] and j ∈ [d− n+ 1], let

Bi,j = conv({(xp, yq) : p ∈ [n+ 1], q ∈ [d− n+ 1], (p, q) 6= (i, j)})

Let C = {Ai}n+1
i=1 ∪ {Bi,j}(i,j)∈[n+1]×[d−n+1]. Note that |C| = (n+ 1)(d− n+ 2).

Let K = N(C). For i ∈ [n+ 1], we will denote the vertex of K corresponding to Ai

by vi, and for (i, j) ∈ [n+ 1]× [d− n+ 1], we will denote the vertex of K corresponding

to Bi,j by ui,j .

Lemma 5.4.1. The missing faces of K are the sets {v1, . . . , vn+1} and

{v1, . . . , vi−1, vi+1, . . . , vn+1, ui,1, . . . , ui,d−n+1}

for i ∈ [n+ 1].

Proof. First, note that ∩n+1
i=1 Ai = ∅. Therefore, {v1, . . . , vn+1} /∈ K.

For any i ∈ [n+ 1], we have ∩k 6=iAk = {xi} ×∆. Let (xi, y) ∈ {xi} ×∆ = ∩k 6=iAk.
Assume that

(xi, y) =
∑

(p,q)∈[n+1]×[d−n+1]

αp,q(xp, yq),

where αp,q ≥ 0 for all p, q and
∑

(p,q)∈[n+1]×[d−n+1] αp,q = 1. Then, since x1, . . . , xn+1

are affinely independent, we must have αp,q = 0 for p 6= i. So, we have

(xi, y) =

d−n+1∑
j=1

αi,j(xi, yj).

In particular, y =
∑d−n+1

j=1 αi,jyi. Since y1, . . . , yd−n+1 are affinely independent, this is

the unique way to write (xi, y) as a convex combination of the points {(xp, yq)}(p,q)∈[n+1]×[d−n+1].

We will show that (xi, y) /∈ ∩d−n+1
j=1 Bi,j . Indeed, if (xi, y) ∈ Bi,j for some j ∈

[d− n+ 1], we must have αi,j = 0. Hence, if (xi, y) ∈ ∩d−n+1
j=1 Bi,j , we obtain αi,j = 0

for all j, a contradiction to
∑d−n+1

j=1 αi,j = 1.

Therefore, (∩k 6=iAk) ∩
(
∩d−n+1
j=1 Bi,j

)
= ∅. That is,

{v1, . . . , vi−1, vi+1, . . . , vn+1, ui,1, . . . , ui,d−n+1} /∈ N(C) = K.

On the other hand, let B be a set that does not contain any of the sets {v1, . . . , vn+1}
or {v1, . . . , vi−1, vi+1, . . . , vn+1, ui,1, . . . , ui,d−n+1} for i ∈ [n+ 1]. Then, there must be

(i, j) ∈ [n+ 1]× [d− n+ 1] such that vi, ui,j /∈ B. Since

(xi, yj) ∈ (∩k 6=iAk) ∩
(
∩(p,q)6=(i,j)Bp,q

)
,
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we have B ∈ N(C) = K. Therefore, the missing faces of K are the sets {v1, . . . , vn+1}
and

{v1, . . . , vi−1, vi+1, . . . , vn+1, ui,1, . . . , ui,d−n+1}

for i ∈ [n+ 1].

Note that the set A = {vi}n+1
i=1 ∪ {ui,j}(i,j)∈[n+1]×[d−n+1] is not a simplex in T1 (K),

since even after removing any vertex from it, it contains a missing face. On the other

hand, for any i ∈ [n+ 1], the set A\{vi} belongs to T1 (K), since, for any j ∈ [d−n+ 1],

A \ {vi, ui,j} ∈ K. Similarly, for any (i, j) ∈ [n + 1] × [d − n + 1], the set A \ {ui,j}
belongs to T1 (K). Therefore T1 (K) is the boundary of a simplex on (n+ 1)(d− n+ 2)

vertices. That is, it is a ((n+ 1)(d− n+ 2)− 2)-dimensional sphere. Hence, it is not

((n+ 1)(d− n+ 2)− 2)-Leray.

Since

max{(n+ 1)(d− n+ 2) : 1 ≤ n ≤ d− 1} =

⌊(
d+ 3

2

)2
⌋
,

we obtain for suitable n a d-representable complex such that its 1-tolerance complex is

not
(⌊(

d+3
2

)2⌋− 2
)

-Leray.

For d = 2, we have the following additional example of a 2-representable complex

whose 1-tolerance complex is not 4-Leray:

Let T ⊂ R2 be a triangle. Let v1, v2, v3 be its vertices and e1, e2, e3 be its edges

(where for each i ∈ [3], vi is the vertex disjoint from ei). For each i ∈ [3], let pi be the

midpoint of the edge ei.

For each i ∈ [3], let Hi be a line parallel to ei separating vi from the quadrilateral

spanned by the four vertices {vj , pj}j 6=i, and let H+
i be the half-plane defined by Hi

that contains ei.

Let C = {e1, e2, e3, H
+
1 , H

+
2 , H

+
3 } and let K = N(C).

For i ∈ [3], let wi be the vertex of K that corresponds to ei and let ui be the vertex

that corresponds to H+
i It is easy to check that the missing faces of K are the sets

{w1, w2, w3}, {w1, w2, u3}, {w1, u2, w3}, {u1, w2, w3}.

Now, note that the set A = {w1, w2, w3, u1, u2, u3} does not belong to T1 (K), since

even after removing any vertex from it, it contains a missing face. On the other hand,

for any i ∈ [3], the set A \ {wi} belongs to T1 (K), since A \ {wi, ui} ∈ K. Similarly, the

set A \ {ui} belongs also to T1 (K). That is, T1 (K) is the boundary of a simplex on 6

vertices. In particular, it is a 4-dimensional sphere, and therefore it is not 4-Leray.
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Figure 5.1: A family of convex sets in the plane C = {e1, e2, e3, H
+
1 , H

+
2 , H

+
3 } such

that T1 (N(C)) is not 4-Leray.
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Chapter 6

Representability and boxicity of

simplicial complexes

This chapter is organized as follows. In Section 6.1 we prove some simple results about

the missing faces and the representability of intersections of complexes. Section 6.2

contains the proof of Theorem 1.4.3. In Section 6.3 we prove Theorem 1.4.4. In Section

6.4 we prove our main result, Theorem 1.4.2. In Section 6.5 we present some related

open problems.

6.1 Intersection of simplicial complexes

In this section we prove some basic results about the missing faces and the representability

of intersections of complexes.

Proposition 6.1.1. Let X1, . . . , Xk be simplicial complexes on vertex set V , and X =

∩ki=1Xi. For each i ∈ [k], let Mi be the set of missing faces of Xi, and let M be the set

of missing faces of X. Then, M is the set of inclusion minimal elements of ∪ki=1Mi.

As a consequence, we obtain

h(X) ≤ max
i∈[k]

h(Xi).

Proof. Let τ ∈M. Since τ /∈ X, then there exists some j ∈ [k] such that τ /∈ Xj . Let

σ ( τ . Since τ is a missing face of X, we have σ ∈ X = ∩ki=1Xi. In particular, σ ∈ Xj .

Hence, τ is a missing face of Xj . That is, τ ∈ Mj ⊂ ∪ki=1Mi. Moreover, τ does not

contain any other face of ∪ki=1Mi. Otherwise, there exists some r ∈ [k] and σ ∈ Mr

such that σ ( τ . Since σ /∈ Xr, then σ /∈ X. But this is a contradiction to τ being a

missing face of X.

Now, let τ be an inclusion minimal element of ∪ki=1Mi. Then τ ∈ Mj for some

j ∈ [k]. In particular, τ /∈ Xj , and therefore τ /∈ X. Now, let σ ( τ . Assume for

contradiction that σ /∈ X. Then, there exists some r ∈ [k] such that σ /∈ Xr. So, there

exists some η ∈Mr such that η ⊂ σ ( τ . This is a contradiction to τ being inclusion

minimal in ∪ki=1Mi. So, σ ∈ X. Therefore, τ is a missing face of X.
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Since M⊂ ∪ki=1Mi, we obtain h(X) ≤ maxi∈[k] h(Xi).

Lemma 6.1.2. Let X1, . . . , Xk be simplicial complexes on vertex set V . If Xi is di-

representable for each i ∈ [k], then ∩ki=1Xi is
(∑k

i=1 di

)
-representable.

Proof. For i ∈ [k], let {Civ}v∈V be a representation of Xi in Rdi . For v ∈ V , let

Cv = C1
v × C2

v × · · · × Ckv .

We will show that C = {Cv}v∈V is a representation of ∩ki=1Xi in Rd1 × · · · × Rdk ∼=
Rd1+···+dk .

Note that the sets Cv are convex, and for any σ ⊂ V ,

⋂
v∈σ

Cv =

(⋂
v∈σ

C1
v

)
× · · · ×

(⋂
v∈σ

Ckv

)
. (6.1)

Let σ ⊂ V . If σ ∈ ∩ki=1Xi, then σ ∈ Xi for all i ∈ [k]. Hence, ∩v∈σCiv 6= ∅ for all

i ∈ [k]. So, by Equation (6.1), ∩v∈σCv 6= ∅. If σ /∈ ∩ki=1Xi, then there exists some i ∈ [k]

such that σ /∈ Xi. Therefore, ∩v∈σCiv = ∅. Thus, by Equation (6.1), ∩v∈σCv = ∅. Hence,

C is a representation of ∩ki=1Xi in Rd1+···+dk .

6.2 Lower bounds on d-boxicity

In this section we prove Theorem 1.4.3. For the proof we will need the following simple

lemma, which is a generalization of [Wit80, Lemma 3]:

Lemma 6.2.1. Let A,B be two finite sets, such that |A| = |B| = d+1, and |A∩B| < d.

Let V = A ∪ B. Let X be a simplicial complex on vertex set V that has A and B as

missing faces, and such that for any other missing face τ of X, τ ∪A = V and τ ∪B = V .

Then, there exists some k ≥ d such that H̃k(X;F) 6= 0.

Proof. Let M be the set of missing faces of X. Let Γ(X) be the simplicial complex

Γ(X) =

{
N ⊂M :

⋃
τ∈N

τ 6= V

}
.

By assumption, A ∪B = V , and for any missing face τ ∈M \ {A,B}, A ∪ τ = V and

B ∪ τ = V . Therefore, both A and B are isolated vertices of the complex Γ(X). In

particular, Γ(X) is disconnected. That is,

H̃0(Γ(X);F) 6= 0.

By Theorem 2.2.12, we have

H̃|V |−3(X;F) = H̃0(Γ(X);F) 6= 0.
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Since |A ∩B| < d, we have

|V | − 3 = |A|+ |B| − |A ∩B| − 3 ≥ 2(d+ 1)− (d− 1)− 3 = d.

Hence, we have H̃k(X;F) 6= 0 for some k ≥ d.

Theorem 1.4.3. Let X be a complex whose set of missing faces is a partial Steiner

(d, d + 1, n)-system M. Then, X cannot be written as the intersection of less than

|M| d-Leray complexes. On the other hand, the d-boxicity of X is at most |M|. As a

consequence,

boxd(X) = |M|.

Proof. Assume we can write X as

X = ∩si=1Xi,

where, for all i ∈ [s], Xi is a d-Leray complex. For each i ∈ [s], let Mi be the set of

missing faces of Xi.

By Proposition 6.1.1, M is the set of inclusion minimal elements in ∪si=1Mi. Since

all the elements of M are of size d+ 1, and all the elements of Mi are of size at most

d+ 1 (since, by Theorem 2.4.2, the missing faces of a d-Leray complex are of dimension

at most d), we must in fact have

M = ∪si=1Mi.

(Otherwise, assume there exists some τ ∈ ∪si=1Mi \M. Then, there is some η ∈ M
such that η ( τ . But since all the elements ofM are of size d+ 1, we obtain |τ | > d+ 1,

a contradiction).

Assume for contradiction that s < |M|. Then, by the pigeonhole principle, there

exist two distinct sets τ1, τ2 ∈M such that τ1 and τ2 are both missing faces of Xi for

some i ∈ [s]. Let τ1 and τ2 be such a pair with intersection τ1 ∩ τ2 of maximal size.

Let us look at the induced subcomplex

Y = Xi[τ1 ∪ τ2].

We will show that Y satisfies the conditions of Lemma 6.2.1: Note that τ1 and τ2 are

missing faces of Y , the vertex set of Y is τ1 ∪ τ2 and |τ1| = |τ2| = d+ 1. Moreover, since

M is a partial Steiner (d, d+ 1, n)-system, we have |τ1 ∩ τ2| < d. It is left to show that

any other missing face τ of Y (if such a missing face exists) satisfies τ ∪ τ1 = τ1 ∪ τ2

and τ ∪ τ2 = τ1 ∪ τ2:

Let τ 6= τ1, τ2 be a missing face of Y . That is, τ is a missing face of Xi that is

contained in τ1 ∪ τ2. Let k = |τ1 ∩ τ2|, t = |τ1 ∩ τ2 ∩ τ |, t1 = |τ \ τ2| and t2 = |τ \ τ1|.
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Since τ ∈Mi ⊂M, we obtain, by the maximality of |τ1 ∩ τ2|,

t1 + t = |τ ∩ τ1| ≤ k

and

t2 + t = |τ ∩ τ2| ≤ k.

We obtain

d+ 1 = |τ | = t1 + t2 + t ≤ 2k − t.

That is,

t ≤ 2k − d− 1.

Hence,

|τ \ (τ1 ∩ τ2)| = t1 + t2 = d+ 1− t ≥ d+ 1− 2k + d+ 1 = 2(d+ 1− k).

So, τ \ (τ1 ∩ τ2) is a subset of size t1 + t2 ≥ 2(d+ 1− k) of the set (τ1 ∪ τ2) \ (τ1 ∩ τ2).

But |(τ1 ∪ τ2) \ (τ1 ∩ τ2)| = 2(d+ 1− k). Therefore, τ \ (τ1 ∩ τ2) = (τ1 ∪ τ2) \ (τ1 ∩ τ2).

Hence, we have

τ ∪ τ1 = (τ \ (τ1 ∩ τ2)) ∪ τ1 = ((τ1 ∪ τ2) \ (τ1 ∩ τ2)) ∪ τ1 = τ1 ∪ τ2,

and similarly

τ ∪ τ2 = (τ \ (τ1 ∩ τ2)) ∪ τ2 = ((τ1 ∪ τ2) \ (τ1 ∩ τ2)) ∪ τ2 = τ1 ∪ τ2.

So, by Lemma 6.2.1, H̃r(Y ;F) 6= 0 for some r ≥ d. But this is a contradiction to the

fact that Xi is d-Leray.

Since any d-representable complex is d-Leray, we obtain:

boxd(X) ≥ |M|.

On the other hand, it is easy to show that boxd(X) ≤ |M|: Let V be the vertex set

of X. For each τ ∈ M, let Xτ be the simplicial complex on vertex set V whose only

missing face is τ . It is easy to check that the complex Xτ is d-representable (for example,

we may assign to each vertex in τ one of the facets of a simplex P in Rd, and assign

to all of the vertices in V \ τ the simplex P itself). Since X = ∩τ∈MXτ , we obtain

boxd(X) ≤ |M|.

6.3 Upper bounds on representability

In this section we prove Theorem 1.4.4. We will need the following simple lemma:

Lemma 6.3.1. Let P ⊂ Rd be a convex polytope. Let F1, . . . , Fm be faces of P , and
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let p1, . . . , pk be points in P such that pi /∈ Fj for all i ∈ [k] and j ∈ [m]. Then, there

exists a convex polytope P ′ ⊂ P such that P ′ ∩ Fj = ∅ for all j ∈ [m], and pi ∈ P ′ for

all i ∈ [k].

Proof. Let P ′ = conv({p1, . . . , pk}). Let j ∈ [m], and let H be a hyperplane supporting

Fj . That is, H ∩P = Fj , and P is contained in one of the closed half-spaces H+ defined

by H.

Now, since the points p1, . . . , pk belong to P \ Fj , they must all lie in the interior of

H+. Therefore, their convex hull P ′ is also contained in the interior of H+. Since Fj

lies on the boundary H of H+, we have P ′ ∩ Fj = ∅, as wanted.

Theorem 6.3.2. Let X be a simplicial complex on vertex set V . Let U ⊂ V such that

U /∈ X and for any missing face τ of X, |τ \U | ≤ 1. Then, X is (|U |− 1)-representable.

Proof. Let d = |U | − 1. Let P be a simplex in Rd. Assign to each vertex u ∈ U a facet

Fu of P . For σ ⊂ U , let

Fσ = ∩u∈σFu

(where we understand that F∅ = P ). Note that, unless σ = U , Fσ is a non-empty face

of the simplex P . For σ ( U , let pσ be a point in the relative interior of Fσ. Then, for

any η ⊂ U and σ ( U , pσ ∈ Fη if and only if η ⊂ σ.

Now we build a representation {F ′v}v∈V of X in Rd, as follows:

We divide into two cases:

1. Let u ∈ U . Let η ⊂ U and σ ( U such that u ∈ σ ∩ η, η /∈ X and σ ∈ X. Note

that Fη is a face of Fu, and pσ ∈ Fu. Also, since X is a simplicial complex, we

must have η 6⊂ σ, and therefore pσ /∈ Fη. Hence, by Lemma 6.3.1, there exists a

convex polytope F ′u ⊂ Fu such that F ′u ∩Fη = ∅ for all η ⊂ U such that u ∈ η and

η /∈ X, and pσ ∈ F ′u for all σ ( U such that u ∈ σ and σ ∈ X.

2. Let v ∈ V \ U . Let η ⊂ U and σ ( U such that η ∪ {v} /∈ X and σ ∪ {v} ∈ X.

Since X is a simplicial complex, we must have η 6⊂ σ; hence, pσ /∈ Fη. Therefore,

by Lemma 6.3.1, there exists a convex polytope F ′v ⊂ P such that F ′v ∩ Fη = ∅ for

all η ⊂ U such that η ∪ {v} /∈ X and pσ ∈ F ′v for all σ ( U such that σ ∪{v} ∈ X.

We will show that the family {F ′v}v∈V is a representation of X.

First, let σ ∈ X. Let σ1 = σ ∩ U . Since σ1 ∈ X and U /∈ X, we have σ1 ( U . So,

for any u ∈ σ1, we have

pσ1 ∈ F ′u.

Moreover, for any v ∈ σ \ σ1, since σ1 ∪ {v} ⊂ σ ∈ X, we have

pσ1 ∈ F ′v.

Hence,

pσ1 ∈ ∩v∈σF ′v.
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In particular, ∩v∈σF ′v 6= ∅.
Now, let σ ⊂ V such that σ /∈ X. Then, there exists some missing face τ of X such

that τ ⊂ σ. By assumption, we have |τ \ U | ≤ 1. We divide into two cases:

1. Assume τ ⊂ U . Then, on the one hand, we have

∩u∈τF ′u ⊂ ∩u∈τFu = Fτ .

On the other hand, for all u ∈ τ , by the definition of F ′u, we have

F ′u ∩ Fτ = ∅.

Hence,

∩u∈τF ′u = ∅.

2. Assume that |τ \ U | = 1. Let w be the unique vertex in τ \ U . Then,

∩u∈τ\{w}F ′u ⊂ ∩u∈τ\{w}Fu = Fτ\{w}.

But, since (τ \ {w}) ∪ {w} = τ /∈ X, we obtain, by the definition of F ′w,

F ′w ∩ Fτ\{w} = ∅.

Hence,

∩v∈τF ′v = F ′w ∩
(
∩u∈τ\{w}F ′u

)
⊂ F ′w ∩ Fτ\{w} = ∅.

In both cases we obtain ∩v∈τF ′v = ∅, and therefore

∩v∈σF ′v ⊂ ∩v∈τF ′v = ∅.

So, {F ′v}v∈V is a representation of X in Rd = R|U |−1, as wanted.

The proof of Theorem 6.3.2 is based on ideas developed by Wegner in his thesis

[Weg67] (as presented in [Eck93, Tan13]). Indeed, we can think of Theorem 6.3.2 as an

extension of the following result of Wegner:

Theorem 6.3.3 (Wegner [Weg67]). Let X be a simplicial complex with n vertices.

Then X is (n− 1)-representable. Moreover, if X is not the complete (n− 2)-dimensional

complex, then it is (n− 2)-representable.

Proof. If X is the complete complex, then it is trivially 0-representable. Otherwise,

let U = V . Since V /∈ X and |τ \ V | = 0 ≤ 1 for any missing face τ of X, then by

Theorem 6.3.2, X is (n− 1)-representable. If X is not the complete (n− 2)-dimensional

complex, then there exists some U ⊂ V of size n−1 such that U /∈ X. Since |V \U | ≤ 1,

then |τ \ U | ≤ 1 for any missing face τ of X. Hence, by Theorem 6.3.2, X is (n− 2)-

representable.
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Theorem 1.4.4. Let X be a simplicial complex on vertex set V . Let V1, . . . , Vk be

subsets of V satisfying Vi /∈ X for all i ∈ [k], such that for any missing face τ of X there

exists some i ∈ [k] satisfying |τ \ Vi| ≤ 1. Then, X can be written as an intersection

X = ∩ki=1Xi,

where, for all i ∈ [k], Xi is a (|Vi| − 1)-representable complex. In particular, X is(∑k
i=1(|Vi| − 1)

)
-representable.

Proof. For i ∈ [k], let Mi be the set consisting of all the missing faces τ of X such that

|τ \ Vi| ≤ 1. Let

Xi = {σ ⊂ V : τ 6⊂ σ for all τ ∈Mi}.

Note that X = ∩ki=1Xi. Indeed, if σ ∈ X, then σ does not contain any missing face of X;

in particular, for all i ∈ [k], σ does not contain any τ ∈Mi. Therefore, σ ∈ ∩ki=1Xi. On

the other hand, if σ /∈ X, then τ ⊂ σ for some missing face τ of X. By the assumption

of the theorem, there exists some i ∈ k such that τ ∈ Mi. So, σ /∈ Xi, and therefore

σ /∈ ∩ki=1Xi.

Let i ∈ [k]. The set of missing faces of Xi is exactly Mi. Moreover, since Vi /∈ X,

there is some missing face τ of X such that τ ⊂ Vi. Since |τ \ Vi| = 0 ≤ 1, we have

τ ∈Mi; therefore, Vi /∈ Xi. So, by Theorem 6.3.2, Xi is (|Vi| − 1)-representable.

Finally, by Lemma 6.1.2, X is
(∑k

i=1(|Vi| − 1)
)

-representable.

Remark. In [HW14, Theorem 1.2], an upper bound similar to the one in Theorem 1.4.4

is proved for the Leray number of a simplicial complex. Since L(X) ≤ rep(X) for any

complex X, we can see Theorem 1.4.4 as a generalization of that result.

6.4 Boxicity of complexes without large missing faces

In this section we prove our main result, Theorem 1.4.2.

First, we will need the following simple results about Steiner systems:

Lemma 6.4.1. Let F ⊂ 2V be a partial (d, d+ 1, n)-Steiner system. Then

|F| ≤
⌊

1

d+ 1

(
n

d

)⌋
.

Moreover, if |F| = 1
d+1

(
n
d

)
, then F is a Steiner (d, d+ 1, n)-system.

Proof. Since F is a partial Steiner (d, d+ 1, n)-system, then any subset of V of size d is

contained in at most one element of F . On the other hand, since each σ ∈ F contains

exactly d+ 1 subsets of size d, we obtain

(d+ 1)|F| ≤
(
n

d

)
. (6.2)
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Therefore,

|F| ≤
⌊

1

d+ 1

(
n

d

)⌋
.

Now, assume that |F| = 1
d+1

(
n
d

)
. Then, equality must hold in (6.2). Thus, each subset

of V of size d must be contained in exactly one set of F . That is, F is a Steiner

(d, d+ 1, n)-system.

Lemma 6.4.2. Let F ⊂ 2V be a (d, d + 1, n)-Steiner system. Let τ ⊂ V be a set of

size at most d+ 1 that is not contained in any set of F . Then,

|{σ ∈ F : |τ \ σ| = 1}| ≥ d+ 1.

Proof. Since F forms a Steiner (d, d + 1, n)-system, then any set of size at most d is

contained in at least one set of F . Therefore, we must have |τ | = d + 1. Now, let

τ1, . . . , τd+1 be the subsets of τ of size d. Again, since F is a Steiner system, there exists

σ1, . . . , σd+1 ∈ F such that τi ⊂ σi for all i ∈ [d+ 1].

Since τ is the only set of size d+ 1 containing two or more of the sets τ1, . . . , τd+1,

but τ /∈ F , we must have σi 6= σj for all i 6= j. Thus,

|{σ ∈ F : |τ \ σ| = 1}| ≥ |{σ1, . . . , σd+1}| = d+ 1.

�

The last ingredient needed for the proof of Theorem 1.4.2 is the following result:

Proposition 6.4.3. Let X be a simplicial complex on vertex set V of size n, satisfying

h(X) ≤ d. Let t be the minimum size of a family {σ1, . . . , σt} of subsets of size d+ 1 of

V satisfying σi /∈ X for all i ∈ [t], such that for any missing face τ of X, there exists

some i ∈ [t] such that |τ \ σi| ≤ 1. Then,

t ≤
⌊

1

d+ 1

(
n

d

)⌋
.

Moreover, if h(X) = d ≥ 2, then t = 1
d+1

(
n
d

)
if and only if the set of missing faces of X

forms a Steiner (d, d+ 1, n)-system.

Proof. Let M be the collection of all subsets of V of size d+ 1 that are not simplices of

X.

Let A ⊂M be a maximal (with respect to inclusion) partial Steiner (d, d+ 1, n)-

system. By Lemma 6.4.1, we have

|A| ≤
⌊

1

d+ 1

(
n

d

)⌋
.

We will show that for any missing face τ of X, there exists some σ ∈ A such that

|τ \ σ| ≤ 1. Assume for contradiction that there exists some missing face τ of X
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such that |τ \ σ| > 1 for all σ ∈ A. Let σ0 be some set in M containing τ . Then

|σ0 \ σ| ≥ |τ \ σ| > 1 for all σ ∈ A. Let A′ = A ∪ {σ0}. Let η ⊂ V be a set of size d.

If η 6⊂ σ0, then, since A is a partial Steiner (d, d + 1, n)-system, η is contained in at

most one set in A′. If η ⊂ σ0, then assume for contradiction that η ⊂ σ for some σ ∈ A.

Since |σ0 \ σ| > 1, we have |σ0 ∩ σ| ≤ d− 1. But this is a contradiction to the fact that

η is a set of size d contained in σ0 ∩ σ. So, η is not contained in any set of A. In both

cases, η is contained in at most one set of A′. Therefore, A′ ⊂M is a partial Steiner

(d, d+ 1, n)-system. But this is a contradiction to the maximality of A.

Therefore, for any missing face τ of X there exists some σ ∈ A such that |τ \ σ| ≤ 1.

Hence,

t ≤ |A| ≤
⌊

1

d+ 1

(
n

d

)⌋
.

Now, assume t = 1
d+1

(
n
d

)
. Then, we must have |A| = t = 1

d+1

(
n
d

)
. By Lemma 6.4.1,

A is a Steiner (d, d+ 1, n)-system.

Assume that h(X) = d ≥ 2. We will show that A is exactly the set of missing faces

of X:

We may assume that n ≥ d + 2. Otherwise, since h(X) = d, X must contain a

unique missing face of size d+ 1 (that is, X is a Steiner (d, d+ 1, d+ 1)-system).

First, we will show that A =M. Assume for contradiction that there exists some

τ̃ ∈ M \ A. By Lemma 6.4.2, there exist σ1, σ2 ∈ A such that |τ̃ \ σ1| = |τ̃ \ σ2| = 1.

Since |τ̃ | = d+ 1, we also have |σ1 \ τ̃ | = |σ2 \ τ̃ | = 1. Let

A′ = A ∪ {τ̃} \ {σ1, σ2}.

Let τ be a missing face of X. We will show that there exists some σ ∈ A′ such that

|τ \ σ| ≤ 1. We divide into the following cases:

1. If τ is not contained in any set of A, then, by Lemma 6.4.2, we have

|{σ ∈ A′ : |τ \ σ| = 1}| ≥ |{σ ∈ A : |τ \ σ| = 1}| − 2

≥ d+ 1− 2 = d− 1 ≥ 1.

Therefore, there exists some σ ∈ A′ such that |τ \ σ| = 1.

2. If τ is contained in some σ ∈ A \ {σ1, σ2} ⊂ A′, then |τ \ σ| = 0 ≤ 1.

3. If τ is contained in σi for some i ∈ {1, 2}, then

|τ \ τ̃ | ≤ |σi \ τ̃ | = 1.

Since |A′| = t− 1, this is a contradiction to the minimality of t. Hence, we must have

A =M.
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Finally, assume for contradiction that there exists some missing face τ of X of size

|τ | ≤ d. Let η be a set of size d containing τ . Then , since we assumed n ≥ d+ 2, we

have

|{σ ⊂ V : |σ| = d+ 1, η ⊂ σ}| = n− d ≥ 2.

Note that any σ ⊂ V such that |σ| = d+ 1 and η ⊂ σ is not a simplex of X (since it

contains the missing face τ), and therefore belongs to M = A. Hence, η is contained in

at least two sets of A, a contradiction to A being a Steiner (d, d+ 1, n)-system. Thus,

the set of missing faces of X is exactly A.

Theorem 1.4.2. Let X be a simplicial complex with n vertices, satisfying h(X) ≤ d.

Then

boxd(X) ≤
⌊

1

d+ 1

(
n

d

)⌋
.

Moreover, if h(X) = d, then boxd(X) = 1
d+1

(
n
d

)
if and only if the missing faces of X

form a Steiner (d, d+ 1, n)-system.

Proof. Let {V1, . . . , Vt} be a family of minimum size of subsets of size d+ 1 of V such

that Vi /∈ X for all i ∈ [t], and such that for any missing face τ of X, there exists

some i ∈ [t] satisfying |τ \ Vi| ≤ 1. By Theorem 1.4.4, we have boxd(X) ≤ t. So, by

Proposition 6.4.3, we obtain

boxd(X) ≤ t ≤
⌊

1

d+ 1

(
n

d

)⌋
.

Now, assume that h(X) = d, and the set of missing faces of X does not form a Steiner

(d, d+ 1, n)-system. If d = 1, then it is proved in [Wit80, Theorem 1] that box1(X) < n
2 .

If d ≥ 2 then, by Proposition 6.4.3, we have

t <
1

d+ 1

(
n

d

)
,

and therefore

boxd(X) ≤ t < 1

d+ 1

(
n

d

)
.

Finally, assume that the missing faces of X form a Steiner (d, d+ 1, n)-system M.

Then, by Theorem 1.4.3, we have

boxd(X) = |M| = 1

d+ 1

(
n

d

)
,

as wanted.

Remark. In the case d = 1, the proof of the upper bound in Theorem 1.4.2 reduces to

the proof of Theorem 1.4.1 presented by Cozzens and Roberts in [CR83, Corollary 3.7].
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6.5 Representability of complexes without large missing

faces

Let X be a simplicial complex. By Lemma 6.1.2, we have for any d ≥ 1,

rep(X) ≤ d · boxd(X).

In particular, for d = 1, we obtain as a corollary of Theorem 1.4.1:

Proposition 6.5.1. Let G be a graph with n vertices, and let X(G) be its clique complex.

Then,

rep(X(G)) ≤
⌊n

2

⌋
.

Moreover, rep(X(G)) = n
2 if and only if G is the complete n

2 -partite graph with all sides

of size 2.

The fact that rep(X(G)) = n
2 if G is the complete n

2 -partite graph with sides of size 2

does not follow directly from Theorem 1.4.1. However, it is easy to check that in this

case X(G) is the boundary of the n
2 -dimensional cross-polytope; in particular, it has

non-trivial
(
n
2 − 1

)
-dimensional homology group. Thus, X(G) is not

(
n
2 − 1

)
-Leray, and

therefore is not
(
n
2 − 1

)
-representable.

We conjecture that for d ≥ 1, the following extension of Proposition 6.5.1 holds:

Conjecture 1.4.5. Let X be simplicial complex with n vertices, satisfying h(X) ≤ d.

Then,

rep(X) ≤
⌊
dn

d+ 1

⌋
.

Moreover, rep(X) = dn
d+1 if and only if the missing faces of X consist of n

d+1 pairwise

disjoint sets of size d+ 1.

Analogous bounds are known to hold for Leray numbers (see [Ada14, Proposition

5.4]) and for collapsibility (see Proposition 4.2.2). Conjecture 1.4.5, if true, would imply

both of these results.

The results presented here do not seem suitable for dealing with Conjecture 1.4.5.

One of the simplest examples where our methods fail is the complex X2,7, the complex

whose set of missing faces forms a Steiner (2, 3, 7)-system (usually referred to as the

Fano plane). Since any two vertices in X2,7 are contained in a missing face, the best

bound we can obtain from an application of Theorem 6.3.2 is rep(X2,7) ≤ 5, which is

larger than the conjectured bound
⌊

2·7
3

⌋
= 4. This bound can be proved, however, by

the following simple method:

Lemma 6.5.2. Let X be a d-representable simplicial complex on vertex set V . Let

σ1, σ2 ⊂ V such that σ1 ∩ σ2 ∈ X. Then, the complex X ′ = X ∪ 2σ1 ∪ 2σ2 is (d + 1)-

representable.
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Proof. Let e1, . . . , ed+1 be the standard basis for Rd+1. We identify Rd with the hyper-

plane H = {x ∈ Rd+1 : x · ed+1 = 0} in Rd+1.

Let P = {Pv}v∈V be a representation of X in Rd. Let x ∈ ∩v∈σ1∩σ2Pv ⊂ H (note

that ∩v∈σ1∩σ2Pv 6= ∅ since σ1∩σ2 ∈ X and P is a representation of X). Let x1 = x+ed+1

and x2 = x− ed+1.

For v ∈ V , we define

P ′v =



conv(Pv ∪ {x1} ∪ {x2}) if v ∈ σ1 ∩ σ2,

conv(Pv ∪ {x1}) if v ∈ σ1 \ σ2,

conv(Pv ∪ {x2}) if v ∈ σ2 \ σ1,

Pv if v /∈ σ1 ∪ σ2.

We will show that P ′ = {P ′v}v∈V is a representation of X ′ = X ∪ 2σ1 ∪ 2σ2 .

First, let σ ∈ X ′. If σ ∈ X, then

∩v∈σP ′v ⊃ ∩v∈σPv 6= ∅,

since P is a representation of X. Otherwise, either σ ⊂ σ1 or σ ⊂ σ2. Assume without

loss of generality that σ ⊂ σ1. Then,

x1 ∈ ∩v∈σP ′v,

so ∩v∈σP ′v 6= ∅.
For the second direction, we will need the following claim:

Claim 6.5.3. Let v ∈ V . Then,

P ′v ∩H = Pv.

Proof. If v /∈ σ1 ∩ σ2, then the claim follows immediately from the definition of P ′v.

Assume that v ∈ σ1 ∩ σ2. It is clear that Pv ⊂ P ′v ∩H. We will show that P ′v ∩H ⊂ Pv:
Let y ∈ P ′v ∩H. We can write y = αp+ βx1 + γx2, where p ∈ Pv, α, β, γ ≥ 0 and

α+ β + γ = 1. Since y ∈ H, we have

0 = y · ed+1 = αp · ed+1 + βx1 · ed+1 + γx2 · ed+1 = β − γ.

Hence,

y = αp+ β(x1 + x2) = αp+ 2βx.

Since p, x ∈ Pv and Pv is convex, we obtain y ∈ Pv. So, P ′v ∩H = Pv, as wanted.

Now, let σ ⊂ V such that σ /∈ X ′. In particular, σ 6⊂ σ1 and σ 6⊂ σ2. Let u ∈ σ \ σ1
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and w ∈ σ \ σ2. Then, we have P ′u ⊂ H− and P ′w ⊂ H+, where

H+ = {x ∈ Rd+1 : x · ed+1 ≥ 0}

and

H− = {x ∈ Rd+1 : x · ed+1 ≤ 0}.

Therefore,

∩v∈σP ′v ⊂ H+ ∩H− = H.

So, by Claim 6.5.3, we have

∩v∈σP ′v = ∩v∈σP ′v ∩H = ∩v∈σPv = ∅,

where the last equality follows since P is a representation of X and σ /∈ X.

Hence, P ′ is a representation of X ′ in Rd+1.

Proposition 6.5.4.

rep(X2,7) ≤ 4.

Proof. We identify the vertex set of X2,7 with the set [7] = {1, 2, . . . , 7}. Then, the set

of missing faces of X2,7 is the set

M = {{1, 2, 3}, {1, 4, 5}, {1, 6, 7}, {2, 4, 7}, {3, 4, 6}, {2, 5, 6}, {3, 5, 7}}.

It is easy to check that the set of maximal faces of X2,7 is the set whose elements are

the complements of the sets in M:

{{4, 5, 6, 7}, {2, 3, 6, 7}, {2, 3, 4, 5}, {1, 3, 5, 6},

{1, 2, 5, 7}, {1, 3, 4, 7}, {1, 2, 4, 6}}.

Let X0 be the complex on vertex set [7] whose set of maximal faces is:

{{1, 2, 4}, {2, 3, 4, 5}, {4, 5, 6, 7}}.

It can be checked that the following is a representation of X0 in R1:

P1 = [0, 1], P2 = [1, 2],

P3 = [2, 3], P4 = [0, 5],

P5 = [2, 5], P6 = P7 = [4, 5].

Let X1 = X0 ∪ 2{1,2,5,7} ∪ 2{1,2,4,6}. Since {1, 2, 5, 7} ∩ {1, 2, 4, 6} = {1, 2} ∈ X0 then, by

Lemma 6.5.2, X1 is 2-representable.

Let X2 = X1 ∪ 2{1,3} ∪ 2{2,3,6,7}. Since {1, 3} ∩ {2, 3, 6, 7} = {3} ∈ X1 then, by

Lemma 6.5.2, X2 is 3-representable.
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Finally, let X3 = X2∪2{1,3,5,6}∪2{1,3,4,7}. Since {1, 3, 5, 6}∩{1, 3, 4, 7} = {1, 3} ∈ X2

then, by Lemma 6.5.2, X3 is 4-representable. But it is easy to check that X3 is in fact

the complex X2,7.

Lemma 6.5.2 gives non-trivial bounds only for complexes with a small number of

maximal faces, so it seems unlikely that such a method will be useful in more general

cases of our problem.

We conclude with the following problem, whose solution may be a (very modest)

step towards Conjecture 1.4.5:

Conjecture 6.5.5. Let X2,9 be the simplicial complex whose missing faces form a

Steiner (2, 3, 9)-system (that is, they are the lines of the affine plane of order 3). Then,

rep(X2,9) ≤ 5.
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Chapter 7

Complexes of line-free sets in

finite affine planes

This chapter is organized as follows. In Section 7.1 we present an outline of the proof of

Theorem 1.5.2. In Section 7.2 we prove Theorem 1.5.3 about stable and strongly stable

blocking sets. In Section 7.3 we study the homology of certain subcomplexes of the

complexes Xq and X̂q; this is the last step in the proof of Theorem 1.5.2. Section 7.4

deals with complexes of hyperplane-free sets in n-dimensional finite affine spaces. We

present a conjecture about the top-dimensional homology groups of these complexes,

extending Theorem 1.5.2. We present a possible direction for proving this conjecture,

involving a conjectural characterization of strongly stable blocking sets in finite affine

spaces, generalizing Theorem 1.5.3.

7.1 Proof outline

Let L1, . . . , Lq+1 ⊂ F2
q be the lines throught the origin. For i ∈ [q + 1], let Li,1 =

Li, Li,2, . . . , Li,q be the translates of Li.

For any set V , we define the simplicial complex ∂V as

∂V = {S ⊂ V : S 6= V }.

The complex ∂V is the boundary of the simplex V ; Therefore, it is homeomorphic to a

(|V | − 2)-dimensional sphere.

For i ∈ [q + 1] and j ∈ [q], let

Ki,j = ∂Li,1 ∗ ∂Li,2 ∗ · · · ∗ ∂Li,j−1 ∗ ∂Li,j+1 ∗ · · · ∗ ∂Li,q.

Note that all the sets in Ki,j are line-free. Therefore, Ki,j ⊂ Xq for i ∈ [q + 1] and

j ∈ [q], and Ki,1 ⊂ X̂q for i ∈ [q + 1]. Moreover, the complex Ki,j is homeomorphic

to a (q2 − 2q)-dimensional sphere. Also, note that the sets in Ki,j are exactly the

complements of the blocking sets of size 2q − 1 containing the line Li,j .
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Let Yq = ∪q+1
i=1 ∪

q
j=1 Ki,j and Ŷq = ∪q+1

i=1Ki,1. Note that Yq is a subcomplex of Xq

and Ŷq is a subcomplex of X̂q.

The first step in the proof of Theorem 1.5.2 consists on relating the top-dimensional

homology of Xq and X̂q to the top-dimensional homology of the subcomplexes Yq and

Ŷq, respectively.

Proposition 7.1.1. Let q be a prime power. Then,

H̃q2−2q(Xq) = H̃q2−2q(Yq),

and

H̃q2−2q(X̂q) = H̃q2−2q(Ŷq).

The proof of Proposition 7.1.1 relies on the study of blocking sets in F2
q having

certain stability property.

By Proposition 7.1.1, it is enough to compute the top-dimensional homology of the

subcomplexes Yq and Ŷq:

Proposition 7.1.2.

H̃q2−2q(Yq) =


Z3 if q = 2,

Z11 if q = 3,

Zq(q+1) otherwise.

Proposition 7.1.3. For q = 2, we have

H̃i(Ŷ2) =

Z2 if i = 0,

0 otherwise.

For q ≥ 3,

H̃i(Ŷq) =


Z if i = q − 1,

Zq+1 if i = q2 − 2q,

0 otherwise.

Note that, in the case of Ŷq, we understand the homology in all dimensions.

Theorem 1.5.2.

H̃q2−2q(Xq) =


Z3 if q = 2,

Z11 if q = 3,

Zq(q+1) if q > 3,

and

H̃q2−2q(X̂q) =

Z2 if q = 2,

Zq+1 if q > 2.
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Proof. The claim follows immediately from Propositions 7.1.1, 7.1.2 and 7.1.3.

7.2 Stable blocking sets

Our main goal in this section is to prove Proposition 7.1.1. In order to do this, we need

to study blocking sets satisfying certain stability property:

Let B be a blocking set in F2
q of size 2q − 1. Recall that B is called stable if for

every point v /∈ B there is some u ∈ B such that B ∪ {v} \ {u} is also a blocking set. B

is called strongly stable if 0 ∈ B and for every point v /∈ B there is some u ∈ B \ {0}
such that B ∪ {v} \ {u} is also a blocking set.

Our main goal in this section is to prove the following characterizations of stable

and strongly stable blocking sets:

Theorem 1.5.3. Let B be a blocking set in F2
q of size 2q − 1. Then, B is stable if and

only if B contains an affine line, and it is strongly stable if and only if it contains a

line through the origin.

Before proceeding to the proof of Theorem 1.5.3, let us see how it implies Proposition

7.1.1:

Proof of Proposition 7.1.1. Since Yq ⊂ Xq, we have Zq2−2q(Yq) ⊂ Zq2−2q(Xq). We are

left to show that Zq2−2q(Xq) ⊂ Zq2−2q(Yq).

Let 0 6= z ∈ Zq2−2q(Xq), and let σ ∈ Xq(q
2 − 2q) be a simplex in the support of z.

We will show that σ ∈ Yq:
Note that for any v ∈ σ, there exists a vertex u ∈ F2

q \σ such that σ \{v}∪{u} ∈ Xq.

Otherwise, the simplex σ \ {v} must belong to the support of ∂z, a contradiction to

∂z = 0.

This is equivalent to the set B = F2
q \ σ being a stable blocking set. Hence, by

Theorem 1.5.3, B contains an affine line. That is, σ ∈ Yq. So, Zq2−2q(Xq) ⊂ Zq2−2q(Yq).

We obtain

H̃q2−2q(Xq) = Zq2−2q(Xq) = Zq2−2q(Yq) = H̃q2−2q(Yq),

as wanted.

The proof of H̃q2−2q(X̂q) = H̃q2−2q(Ŷq) is similar.

For the proof of Theorem 1.5.3, we will need the following equivalent definitions for

stable and strongly stable blocking sets:

Let B ⊂ F2
q be a blocking set of size 2q − 1. We say that an affine line L is tangent

to B at the point u if B ∩ L = {u}. Note that for any u ∈ B, there is at least one line

tangent to B at u (otherwise B \ {u} is a blocking set, a contradiction to the minimality

of B).
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Let

B1 = {u ∈ B : there is a unique line tangent to B at u},

and

B0 = B \B1 = {u ∈ B : there are at least two lines tangent to B at u}.

For u ∈ B1, let LB(u) be the unique line tangent to B at u.

Lemma 7.2.1. Let B ⊂ F2
q be a blocking set of size 2q − 1. Let u ∈ B and v ∈ F2

q \B.

Then, B′ = B \ {u} ∪ {v} is a blocking set if and only if u ∈ B1 and v ∈ LB(u).

Proof. The set B′ is a blocking set if and only if v is contained in all the lines tangent

to B at u. But, since through every two points passes a unique line, v can be contained

in at most one line tangent to B at u. Therefore, B′ is a blocking set if and only if

u ∈ B1 and v ∈ LB(u).

Lemma 7.2.2. Let B ⊂ F2
q be a blocking set of size 2q − 1. Then, B is stable if and

only if ⋃
u∈B1

LB(u) ⊃ F2
q \B.

If 0 ∈ B, then B is strongly stable if and only if⋃
u∈B1\{0}

LB(u) ⊃ F2
q \B.

Proof. Follows immediately from Lemma 7.2.1.

Lemma 7.2.3. Let B ⊂ F2
q be a blocking set of size 2q − 1. Let B′ ⊂ B1 such that⋃

u∈B′
LB(u) ⊃ F2

q \B.

Then, there exists an affine line L such that B \B′ ⊂ L ⊂ B.

For the proof of Lemma 7.2.3 we will need the following dual version of the Jamison-

Brouwer-Schrijver Theorem:

Theorem 7.2.4 (Jamison [Jam77], Brouwer-Schrijver [BS78]). Let L be a family of

affine lines in F2
q. If ∪L∈LL = F2

q \ {u} for some u ∈ F2
q, then |L| ≥ 2(q − 1).

We will also need the following simple results about lines tangent to blocking sets:

Lemma 7.2.5. Let B ⊂ F2
q be a blocking set of size 2q−1. Then, every v /∈ B intersects

at least three different lines tangent to B.
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Proof. Let v /∈ B. Let `1, . . . , `q+1 be the lines passing through v. For i ∈ [q + 1],

let Ai = `i \ {v}. Note that the sets A1, . . . , Aq+1 are pairwise disjoint. Since B is a

blocking set, and v /∈ B, we have B ∩Ai 6= ∅ for all i ∈ [q + 1]. Let t be the number of

lines through v that are tangent to B. That is,

t = |{i ∈ [q + 1] : |Ai ∩B| = 1}|.

Then, we have

2q − 1 = |B| ≥
∣∣∣B ∩ (∪q+1

i=1Ai

)∣∣∣ =

q+1∑
i=1

|B ∩Ai| ≥ t+ 2(q + 1− t).

We obtain t ≥ 3, as wanted.

Corollary 7.2.6. Let B ⊂ F2
q be a blocking set of size 2q − 1. Then, there are at least

3(q − 1) lines tangent to B.

Proof. There are q2− (2q− 1) = (q− 1)2 points in F2
q \B. By Lemma 7.2.5, there are at

least three tangents to B passing through each one of them. Each tangent to B contains

exactly q − 1 points in F2
q \B. Therefore, there are at least 3(q − 1)2/(q − 1) = 3(q − 1)

lines tangent to B.

Lemma 7.2.7. Let q ≥ 3 be a prime power. Let B be a blocking set of F2
q of size 2q−1.

Then, B0 6= ∅. Moreover, if |B0| = 1, then B is the union of two lines passing through

the unique point in B0.

Proof. Assume for contradiction that B0 = ∅. Then, we have B = B1. That is, for each

point u ∈ B there is a unique line tangent to B at u. But then, there must be exactly

2q − 1 lines tangent to B. Since q ≥ 3, we have 2q − 1 < 3(q − 1), a contradiction to

Corollary 7.2.6.

Now, assume that |B0| = 1. Let u be the unique point in B0. By Lemma 7.2.5,

there are at least 3(q− 1) lines tangent to B. Since for any w ∈ B \ {u} there is exactly

one line tangent to B at w, then there must be at least q − 1 lines tangent to B at u.

Denote these lines by L′1, . . . , L
′
t, where t ≥ q − 1. Denote the rest of the lines through

u by L′t+1, . . . , L
′
q+1.

Since ∪q+1
i=1L

′
i = F2

q and B ∩ L′i = {u} for i ∈ [t], we have

B \ {u} ⊂
⋃

t+1≤i≤q+1

L′i \ {u}.

Thus, since |B| = 2q − 1, we have

2q − 2 = |B \ {u}| ≤

∣∣∣∣∣∣
⋃

t+1≤i≤q+1

L′i \ {u}

∣∣∣∣∣∣ = (q + 1− t)(q − 1).
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We obtain t ≤ q − 1. Therefore, we have t = q − 1 and B ⊂ L′q ∪ L′q+1. Since

|B| = 2q − 1 = |L′q ∪ L′q+1|, we have in fact B = L′q ∪ L′q+1. That is, B is the union of

two lines passing through the unique point in B0.

Proof of Lemma 7.2.3. For q = 2 the claim holds trivially. Therefore, we will assume

that q ≥ 3.

By Lemma 7.2.7, since B0 ⊂ B \B′, we have B \B′ 6= ∅. We divide into two cases:

Assume that |B \B′| = 1. Since ∅ 6= B0 ⊂ B \B′, we have in fact |B0| = |B \B′| = 1.

Let u be the unique point in B0 = B \B′. Then, by Lemma 7.2.7, B is the union of two

lines passing through u. In particular, B contains a line L that contains B \B′ = {u}.
Now, assume that |B \B′| ≥ 2. First, we will show that there is a line L such that

B \ B′ ⊂ L. If |B \ B′| = 2, this holds trivially. Otherwise, assume that |B \ B′| ≥ 3,

and assume for contradiction that the points in B \B′ are not contained in a line. Then,

there are three points u1, u2, u3 ∈ B \B′ such that the line L′ that passes through u1

and u2 does not contain u3. For each u ∈ B \ (B′∪{u1, u2, u3}), let L′u be a line passing

through u that does not contain u3. Then, the family

L = {LB(u)}u∈B′ ∪ {L′u : u ∈ B \ (B′ ∪ {u1, u2, u3})} ∪ {L′}

is a family of lines satisfying ⋃
`∈L

` = F2
q \ {u3}.

By Theorem 7.2.4, we must have

|L| ≥ 2(q − 1).

On the other hand, we have

|L| = |B′|+ (|B \B′| − 3) + 1 = |B| − 2 = 2q − 3 < 2(q − 1),

a contradiction. Therefore, all the points in B \B′ are contained in some affine line L.

Next, we show that L is contained in B. Let W = L \ B. We want to show that

W = ∅. Let L be the set of lines parallel to L (other than L). Let T ⊂ L consist of the

lines tangent to B and N ⊂ L consist of the lines that are not tangent to B.

For w ∈W , let Tw be the set of lines tangent to B at w. By Lemma 7.2.5, |Tw| ≥ 3.

Note that L /∈ ∪w∈WTw, since |L ∩B| ≥ |B \B′| ≥ 2. Therefore, each line in ∪w∈WTw
intersects B at some point in B \ L.

Any two lines in ∪w∈WTw intersect B \ L at a different point; otherwise, assume

there exists L′, L′′ ∈ ∪w∈WTw that intersect at the point u ∈ B \ L. Then, since there

are at least two lines tangent to B at u, we have u ∈ B0. But B0 ⊂ B \ B′ ⊂ L, a

contradiction to u ∈ B \ L.

Moreover, each line L′ ∈ ∪w∈WTw must intersect B \L at a point lying in one of the
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lines of N . Otherwise, let u be the unique point in B ∩ L′, and assume that u ∈ L′′, for

some L′′ ∈ T . Then, both L′ and L′′ are lines tangent to B at u. Thus, u ∈ B0, again a

contradiction to B0 ⊂ L.

Let t be the number of points of B that are contained in one of the lines in N . Then,

we obtain

t ≥ | ∪w∈W Tw| ≥ 3|W |.

Also, since each line in N contains at least 2 points of B, we have

t ≥ 2|N |,

On the other hand, we have

t ≤ |B \ L| − |T | = |B| − |L|+ |L \B| − |T |

= (2q − 1)− q + |W | − |T | = |W |+ (q − 1− |T |) = |W |+ |N |.

We obtain

2|N |+ 3|W | ≤ 2t ≤ 2|N |+ 2|W |.

Therefore,

|W | ≤ 0.

Thus, W = ∅, as wanted.

Proof of Theorem 1.5.3. First, assume that B contains an affine line L. Let L′1, . . . , L
′
q−1

be the lines parallel to L (other than L). Then, we must have B = L ∪ {ui}q−1
i=1 , where

ui ∈ L′i for all i ∈ [q − 1]. Let v /∈ B. Then, v ∈ L′i for some i ∈ [q − 1], so the set

B ∪ {v} \ {ui} is also a blocking set. Hence, B is stable.

Similarly, if B contains a complete line through the origin, it is strongly stable.

Now, assume that B is stable. By Lemma 7.2.2,⋃
u∈B1

LB(u) ⊃ F2
q \B.

By Lemma 7.2.3, there exists an affine line L such that L ⊂ B.

Finally, assume that B is strongly stable. Then, by Lemma 7.2.2,

⋃
u∈B1\{0}

LB(u) ⊃ F2
q \B.

By Lemma 7.2.3, there exists an affine line L such that B \ (B1 \ {0}) ⊂ L ⊂ B. In

particular, 0 ∈ L. That is, L is a line through the origin.
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7.3 The homology of the subcomplexes Yq and Ŷq

In this section we prove Propositions 7.1.2 and 7.1.3.

Proof of Proposition 7.1.2. If q = 2 then Y2 consists of just 4 isolated vertices; hence,

H̃0(Y2) = Z3. For q = 3 and q = 4, it may be verified by computer that H̃3(Y3) = Z11

and H̃8(Y4) = Z20.

Let q ≥ 5. Let m = q2 − 2q. Let Z be the subcomplex of Yq whose maximal faces

are the simplices of the form F2
q \ (L ∪ L′), where L and L′ are two non-parallel lines in

F2
q .

Claim 7.3.1. Let i ∈ [q + 1] and j ∈ [q]. Let L be the set of affine lines that are not

parallel to the line Li,j. Then,

Z ∩Ki,j =
⋃
L∈L

2F
2
q\(Li,j∪L).

Proof. First, note that F2
q \ (Li,j ∪ L) ∈ Z ∩Ki,j for every L ∈ L. Hence, Z ∩Ki,j ⊃

∪L∈L2F
2
q\(Li,j∪L).

On the other direction, let σ ∈ Z∩Ki,j . Then, since σ ∈ Z, we have σ ⊂ F2
q \(L′∪L′′)

for some non-parallel lines L′, L′′. Moreover, since σ ∈ Ki,j , we have σ ∩ Li,j = ∅.
That is, σ ⊂ F2

q \ (L′ ∪ L′′ ∪ Li,j). At least one of the lines L′ or L′′ is not parallel

to Li,j . Assume without loss of generality that L′ is not parallel to Li,j . Then,

σ ⊂ F2
q \ (Li,j ∪ L′) ∈

⋃
L∈L 2F

2
q\(Li,j∪L). Thus, Z ∩Ki,j ⊂ ∪L∈L2F

2
q\(Li,j∪L).

Claim 7.3.2. Let k be an integer, and let L′1, L
′′
1, . . . , L

′
k, L

′′
k be a family of affine lines,

such that L′i 6= L′′i for all i ∈ [k]. Then,

H̃j

(
∪ki=12F

2
q\(L′i∪L′′i )

)
= 0

for j ≥ m− 1. In particular,

H̃j(Z) = 0

and (by Claim 7.3.1)

H̃j(Z ∩Ki,r) = 0

for j ≥ m− 1, i ∈ [q + 1] and r ∈ [q].

Proof. We argue by induction on k. For k = 1, the complex 2F
2
q\(L′1∪L′′1 ) is contractible.

In particular, H̃j(2
F2
q\(L′1∪L′′1 )) = 0 for all j.

Let k ≥ 2. Let

K = ∪ki=12F
2
q\(L′i∪L′′i )

and

K ′ = ∪k−1
i=1 2F

2
q\(L′i∪L′′i ).
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By the induction hypothesis, we have H̃j(K
′) = 0 for j ≥ m− 1.

We may assume that {Lk, L′k} 6= {Li, L′i} for all i < k (otherwise K = K ′, and

by the induction hypothesis the claim holds). By the Mayer-Vietoris exact sequence

(Theorem 2.2.1), we have a long exact sequence

· · · → H̃j(K
′)
⊕

H̃j(2
F2
q\(L′k∪L

′′
k))→ H̃j(K)→ H̃j−1(K ′ ∩ 2F

2
q\(L′k∪L

′′
k))→ · · · .

Let σ ∈ K ′ ∩ 2F
2
q\(L′k∪L

′′
k). Then, σ ⊂ F2

q \ (L′i ∪ L′′i ∪ L′k ∪ L′′k) for some i < k. Since

{L′k, L′′k} 6= {L′i, L′′i }, then at least three of these lines are distinct. Without loss of

generality, assume that L′i, L
′′
i , L

′
k are pairwise distinct lines. Then,

|σ| ≤ |F2
q \ (L′i ∪ L′′i ∪ L′k)| ≤ q2 − 3q + 3 = m− q + 3.

Hence, dim(K ′ ∩ 2F
2
q\(L′k∪L

′′
k)) ≤ m − q + 2 ≤ m − 3. In particular, for j ≥ m − 1, we

have

H̃j−1(K ′ ∩ 2F
2
q\(L′k∪L

′′
k)) = 0.

By the induction hypothesis, we have, for j ≥ m− 1,

H̃j(K
′)
⊕

H̃j(2
F2
q\(L′k∪L

′′
k)) = 0.

Therefore, we obtain H̃j(K) = 0 for j ≥ m− 1, as wanted.

Claim 7.3.3. We have

H̃m(Yq) ∼= Hm (Yq, Z)

and, for i ∈ [q + 1], j ∈ [q],

Hm (Ki,j , Z ∩Ki,j) ∼= Z.

Proof. We have a long exact sequence of a pair (Theorem 2.2.6)

· · · → H̃m(Z)→ H̃m(Yq)→ Hm (Yq, Z)→ H̃m−1(Z)→ · · ·

By Claim 7.3.2, H̃m(Z) = H̃m−1(Z) = 0. Therefore, we obtain

Hm (Yq, Z) ∼= H̃m(Yq).

Similarly, we have a long exact sequence

· · · → H̃m(Z ∩Ki,j)→ H̃m(Ki,j)→ Hm (Ki,j , Z ∩Ki,j)→ H̃m−1(Z ∩Ki,j)→ · · ·

By Claim 7.3.2, H̃m(Z ∩Ki,j) = H̃m−1(Z ∩Ki,j) = 0. Therefore, we obtain

Hm (Ki,j , Z ∩Ki,j) ∼= H̃m(Ki,j) ∼= Z.
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Claim 7.3.4. Let (i1, j1), . . . , (ik, jk) be a family of pairwise distinct pairs of indices,

such that ir ∈ [q + 1] and jr ∈ [q] for all r ∈ [k]. Then,

Hm

(
∪kr=1Kir,jr ,∪kr=1Kir,jr ∩ Z

)
= Zk.

In particular,

Hm (Yq, Z) = Zq(q+1).

Proof. We argue by induction on k. For k = 1 we have, by Claim 7.3.3, Hm (Ki1,j1 , Z ∩Ki1,j1) =

Z, as wanted. Let k ≥ 2. Let

K = ∪kr=1Kir,jr

and

K ′ = ∪k−1
r=1Kir,jr

By the induction hypothesis, we have Hm (K ′,K ′ ∩ Z) = Zk−1.

By the relative version of Mayer-Vietoris (Theorem 2.2.7), we have the long exact

sequence:

· · · → Hm

(
K ′ ∩Kik,jk ,K

′ ∩Kik,jk ∩ Z
)
→

→ Hm

(
K ′,K ′ ∩ Z

)⊕
Hm (Kik,jk ,Kik,jk ∩ Z)→

→ Hm (K,K ∩ Z)→ Hm−1

(
K ′ ∩Kik,jk ,K

′ ∩Kik,jk ∩ Z
)
→ · · · (7.1)

Let σ ∈ K ′ ∩Kik,jk . Since σ ∈ K ′, there exist some r < k such that σ ∈ Kir,jr . In

particular, σ ⊂ F2
q \Lir,jr . Similarly, since σ ∈ Kik,jk , we have σ ⊂ F2

q \Lik,jk . Therefore,

σ ⊂ F2
q \ (Lir,jr ∪ Lik,jk).

If dim(σ) = m, then Lir,jr and Lik,jk must be non-parallel (otherwise |σ| ≤ m, a

contradiction to dim(σ) = m), and therefore σ ∈ Z. Thus, (K ′ ∩Kik,jk) \ Z does not

contain m-dimensional simplices. Hence,

Hm

(
K ′ ∩Kik,jk ,K

′ ∩Kik,jk ∩ Z
)

= 0.

Assume that dim(σ) = m − 1. Also in this case the lines Lir,jr and Lik,jk must be

non-parallel; otherwise, since |σ| = m = q2 − 2q, we must have σ = F2
q \ (Lir,jr ∪ Lik,jk),

a contradiction to σ ∈ Kik,jk . Therefore, Lir,jr and Lik,jk are non-parallel and σ =

F2
q \ (Lir,jr ∪Lik,jk ∪ {p}) for some p ∈ F2

q \ (Lir,jr ∪Lik,jk). In particular, σ ∈ Z. Thus,

(K ′ ∩Kik,jk) \ Z does not contain (m− 1)-dimensional simplices either. Therefore, we

have

Hm−1

(
K ′ ∩Kik,jk ,K

′ ∩Kik,jk ∩ Z
)

= 0.
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Hence, by (7.1) and the induction hypothesis, we obtain

Hm (K,K ∩ Z) ∼= Hm

(
K ′,K ′ ∩ Z

)⊕
Hm (Kik,jk ,Kik,jk ∩ Z) ∼= Zk−1

⊕
Z = Zk,

as wanted.

Finally, by Claim 7.3.3 and Claim 7.3.4, we obtain H̃m(Yq) ∼= Hm (Yq, Z) ∼= Zq(q+1).

Proof of Proposition 7.1.3. If q = 2, then Ŷ2 consists of just 3 isolated vertices; hence,

H̃i(Ŷ2) =

Z2 if i = 0,

0 otherwise.

Now, assume that q ≥ 3. For i ∈ [q + 1], let

Zi = ∪j≤iKj,1.

Note that Z1 = K1,1, Zq+1 = Ŷq and Zi = Zi−1 ∪Ki,1 for 2 ≤ i ≤ q + 1.

First, we will show that for i ≤ q,

H̃j(Zi) =

Zi if j = q2 − 2q,

0 otherwise.

We argue by induction on i:

For i = 1 the claim holds, since Z1 = K1,1 is a (q2 − 2q)-dimensional sphere.

Now, assume that i > 1. We have

Zi−1 ∩Ki,1 = ∪i−1
j=1(Kj,1 ∩Ki,1).

For all ∅ 6= I ⊂ [i − 1], ∩j∈IKj,1 ∩ Ki,1 is just the complete complex on vertex set

F2
q \ ∪j∈I∪{i}Lj . In particular, it is either empty or acyclic. Therefore, by the Nerve

Theorem (Theorem 2.2.4), the homology groups of Zi−1 ∩Ki,1 are the same as those of

the nerve

N({Kj,1 ∩Ki,1}i−1
j=1) = {σ ⊂ [i− 1] : ∩j∈σKj,1 ∩Ki,1 6= {∅}}

= {σ ⊂ [i− 1] : (∪j∈σLj) ∪ Li 6= F2
q}.

Let τ ⊂ [q + 1]. The lines {Lj}j∈τ cover F2
q if and only if τ = [q + 1]. Therefore, since

2 ≤ i ≤ q, we have

N({Kj,1 ∩Ki,1}i−1
j=1) = 2[i−1]

In particular, N({Kj,1 ∩Ki,1}i−1
j=1) is contractible. Therefore, we obtain

H̃j(Zi−1 ∩Ki,1) = 0
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for all j. By Mayer-Vietoris (Theorem 2.2.1), we have a long exact sequence:

· · · → H̃j(Zi−1∩Ki,1)→ H̃j(Zi−1)
⊕

H̃j(Ki,1)→ H̃j(Zi)→ H̃j−1(Zi−1∩Ki,1)→ · · · .

So, we obtain

H̃j(Zi) ∼= H̃j(Zi−1)
⊕

H̃j(Ki,1)

for all j. Using the fact that Ki,1 is a (q2 − 2q)-dimensional sphere and the induction

hypothesis, we obtain

H̃j(Zi) =

Zi if j = q2 − 2q,

0 otherwise,

as wanted.

Now, let i = q + 1. Similarly as before, we have

Zq ∩Kq+1,1 = ∪qj=1(Kj,1 ∩Kq+1,1).

By the Nerve Theorem (Theorem 2.2.4), the homology groups of Zq ∩Kq+1,1 are the

same as those of the nerve

N({Kj,1 ∩Kq+1,1}qj=1) = {σ ⊂ [q] : ∩j∈σKj,1 ∩Kq+1,1 6= {∅}}

= {σ ⊂ [q] : (∪j∈σLj) ∪ Lq+1 6= F2
q} = {σ ⊂ [q] : σ 6= [q]}.

That is, the nerve is the boundary of a (q − 1)-dimensional simplex; so, it is a (q − 2)-

dimensional sphere. Hence,

H̃j(Zq ∩Kq+1,1) =

Z if j = q − 2,

0 otherwise,

By the long exact sequence

· · · → H̃j(Zq∩Kq+1,1)→ H̃j(Zq)
⊕

H̃j(Kq+1,1)→ H̃j(Zq+1)→ H̃j−1(Zq∩Kq+1,1)→ · · · ,
(7.2)

we obtain

H̃j(Zq+1) ∼= H̃j(Zq)
⊕

H̃j(Kq+1,1)

for j /∈ {q − 2, q − 1}. Since Kq+1,1 is a (q2 − 2q)-dimensional sphere, we obtain

H̃q2−2q(Zq+1) = Zq+1

(note that, since q ≥ 3, we have q2 − 2q > q − 1), and

H̃j(Zq+1) = 0
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for j /∈ {q − 1, q − 2, q2 − 2q}.
Since q2 − 2q > q − 1, we have H̃j(Zq)

⊕
H̃j(Kq+1,1) = 0 for j ≤ q − 1. Hence, we

obtain from the same exact sequence

H̃j(Zq+1) ∼= H̃j−1(Zq ∩Kq+1,1)

for j ∈ {q − 1, q − 2}. That is,

H̃q−1(Zq+1) = Z

and

H̃q−2(Zq+1) = 0.

Thus,

H̃i(Ŷq) = H̃i(Zq+1) =


Z if i = q − 1,

Zq+1 if i = q2 − 2q,

0 otherwise,

as wanted.

Remark. Using the stronger version of the Nerve Theorem, Theorem 2.A.2, we can

obtain a shorter proof of Proposition 7.1.3:

Assume q ≥ 3. We have Ŷq = ∪q+1
j=1Kj,1. Let N = N

(
{Kj,1}q+1

j=1

)
. For I ⊂ [q + 1]

such that |I| ≥ 2, the complex ∩i∈IKi,1 is just the complete complex on vertex set

F2
q\(∪i∈ILi). In particular, we have H̃k (∩i∈IKi,1) = 0. Moreover, since F2

q\(∪i∈ILi) = ∅
if and only if I = [q + 1], we have N = {σ ⊂ [q + 1] : σ 6= [q + 1]}. That is, N is a

(q − 1)-dimensional sphere.

By Theorem 2.A.2, we have a long exact sequence

· · · → H̃k+1 (N)→
q+1⊕
i=1

H̃k (Ki,1)→ H̃k

(
Ŷq

)
→ H̃k (N)→ · · · .

Note that this is essentially the same as the exact sequence (7.2). Hence, the rest of the

proof follows similarly as before.

7.4 Complexes of hyperplane-free sets

Let q be a prime power and n ≥ 2 an integer. A set σ ⊂ Fnq is called hyperplane-free if

it does not contain any affine hyperplane.

We define the simplicial complex

X̂q,n =
{
σ ⊂ Fnq \ {0} : σ is hyperplane-free

}
.

Note that, for n = 2, X̂q,2 = X̂q.
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A blocking set in Fnq is a set that intersects all the affine hyperplanes. One can build

a blocking set of size n(q − 1) + 1 by taking the union of all the lines passing through

some point. In fact, there are no smaller blocking sets:

Theorem 7.4.1 (Jamison [Jam77], Brouwer-Schrijver [BS78]). The minimum size of

a blocking set in Fnq is n(q − 1) + 1.

Note that a set σ ⊂ Fnq \ {0} is hyperplane-free if and only if its complement is a

blocking set containing the origin. Therefore, by Theorem 7.4.1, we have

dim(X̂q,n) = qn − n(q − 1)− 2.

For q = 2 we understand the homology of these complexes completely:

Proposition 7.4.2.

H̃i(X̂2,n) =

Z2(
n
2)

if i = 2n − n− 2,

0 otherwise.

For the proof we will need the following result:

Theorem 7.4.3 (Solomon-Tits (see [CL82])). Let Fln,q be the simplicial complex whose

vertices correspond to the non-trivial linear subspaces of Fnq and whose simplices are the

sets {V1, . . . , Vk} that form a flag V1 ( V2 ( · · · ( Vk. Then,

H̃i(Fln,q) =

Zq
(n2)

if i = n− 2,

0 otherwise.

Proof of Proposition 7.4.2. We look at the Alexander dual of X̂2,n:

X̂V
2,n = {σ ⊂ Fn2 \ {0} : Fn2 \ (σ ∪ {0}) contains an affine hyperplane }.

Since the complement of a hyperplane in Fn2 is also a hyperplane, we obtain

X̂V
2,n = {σ ⊂ Fn2 \ {0} : σ ⊂ H for some linear hyperplane H}.

So, X̂V
2,n is the simplicial complex on vertex set Fn2 \ {0} whose maximal faces are the

linear hyperplanes in Fn2 .

Now, we can write

Fln,2 =
⋃

u∈Fn2 \{0}

st(Fln,2, span(u)).
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Note that, for any σ ⊂ Fn2 \ {0},

⋂
u∈σ

st(Fln,2, span(u)) =

st(Fln,2, span(σ)) if span(σ) 6= Fn2 ,

{∅} if span(σ) = Fn2 ,

=

st(Fln,2, span(σ)) if σ is contained in a linear hyperplane,

{∅} otherwise.

Therefore,

N
(
{st(Fln,2, span(u))}u∈Fn2 \{0}

)
= X̂V

2,n.

Moreover, since st(Fln,2, span(σ)) is contractible for any σ ⊂ Fn2 \{0} with span(σ) 6= Fn2 ,

we obtain by the Nerve Theorem (Theorem 2.2.4),

H̃k(X̂
V
2,n) ∼= H̃k(Fln,2)

for all k. By Theorem 7.4.3, we obtain

H̃i(X̂
V
2,n) =

Z2(
n
2)

if i = n− 2,

0 otherwise.

Thus, by Alexander duality (Theorem 2.2.10), we obtain

H̃ i(X̂2,n) =

Z2(
n
2)

if i = 2n − n− 2,

0 otherwise.

Since the cohomology of X̂2,n is torsion-free, we obtain by Lemma 2.2.9,

H̃i(X̂2,n) =

Z2(
n
2)

if i = 2n − n− 2,

0 otherwise,

as wanted.

Remark. The fact that H̃∗(X̂
V
2,n) ∼= H̃∗(Fln,2) is a special case of Folkman’s Cross-Cut

Theorem (see [Fol66]).

For q ≥ 3, we focus again on the top-dimensional homology groups. We conjecture

the following.

Conjecture 7.4.4. Let q ≥ 3 be a prime power. Then,

H̃qn−n(q−1)−2(X̂q,n) = Z
∏n
i=1

qi−1
q−1 .

Note that, for n = 2, this is the statement of Theorem 1.5.2.
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We propose an approach similar to the one used for Theorem 1.5.2: Let Fq,n be the

collection of all flags F = {V1, . . . , Vn−1}, where Vi is an i-dimensional linear subspace

of Fnq for all i ∈ [n − 1]. Let F = {V1, . . . , Vn−1} ∈ Fq,n. For each i ∈ [n − 1], let

{V j
i }j∈[q−1] be the affine i-dimensional subspaces of Fnq parallel to Vi (other than Vi)

that are contained in Vi+1 (where, for i = n− 1, we define Vi+1 = Vn = Fnq ).

We define the subcomplex KF ⊂ X̂q,n as

KF = ∗ni=1

(
∗q−1
j=1∂V

j
i

)
.

The complex KF is homeomorphic to a (qn − n(q − 1)− 2)-dimensional sphere. Let

Ŷq,n =
⋃

F∈Fq,n

KF .

Conjecture 7.4.4 would follow from the following two conjectures:

Conjecture 7.4.5. Let q ≥ 3 be a prime power and n ≥ 2 be an integer. Then,

H̃qn−n(q−1)−2(X̂q,n) ∼= H̃qn−n(q−1)−2(Ŷq,n).

Conjecture 7.4.6. Let q ≥ 3 be a prime power and n ≥ 2 be an integer. Then,

H̃qn−n(q−1)−2(Ŷq,n) = Z
∏n
i=1

qi−1
q−1 .

We propose the following approach for proving Conjecture 7.4.5:

Let B ⊂ Fnq be a blocking set of size n(q − 1) + 1 containing the origin. B is

called strongly stable if for every point v ∈ Fnq \B there is some u ∈ B \ {0} such that

B ∪ {v} \ {u} is also a blocking set. We conjecture the following characterization of

strongly stable blocking sets, generalizing the characterization in the n = 2 case in

Theorem 1.5.3:

Conjecture 7.4.7. Let B ⊂ Fnq be a blocking set of size n(q − 1) + 1 containing the

origin. Then, B is strongly stable if and only if there is a flag V1 ( V2 ( · · · ( Vn−1

of linear subspaces of Fnq such that dim(Vk) = k and |B ∩ Vk| = k(q − 1) + 1 for all

k ∈ [n− 1].

Finally, we will need the following simple Lemma:

Lemma 7.4.8. Let B ⊂ Fnq be a blocking set of size n(q − 1) + 1 containing the origin.

Let F = {V1, . . . , Vn−1} be a flag such that V1 ( V2 ( · · · ( Vn−1 and dim(Vk) = k

for all k ∈ [n − 1]. Then, Fnq \ B ∈ KF if and only if |B ∩ Vk| = k(q − 1) + 1 for all

k ∈ [n− 1].

Proof. Let B ⊂ Fnq be a blocking set of size n(q − 1) + 1 containing the origin, and let

F = {V1, . . . , Vn−1} be a flag such that V1 ( V2 ( · · · ( Vn−1 and dim(Vk) = k for all

k ∈ [n− 1].
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First, note that, by the definition of KF , if Fnq \B ∈ KF then |B ∩Vk| = k(q− 1) + 1

for all k ∈ [n− 1].

Now, assume that |B ∩ Vk| = k(q − 1) + 1 for all k ∈ [n − 1]. We will show that

Fnq \ B ∈ KF . We argue by induction on n. For n = 2 the claim holds: if F = {V1},
where V1 is a line through the origin, we have F2

q \ B ∈ KF if and only if B contains

the line V1, that is, if and only if |B ∩ V1| = 1 · (q − 1) + 1 = q.

Let n ≥ 3. Let F ′ = {V1, . . . , Vn−2}. Note that, by the definition of KF , we have

Fnq \B ∈ KF if and only if Vn−1 \ (B∩Vn−1) ∈ KF ′ and |B∩V j
n−1| = 1 for all j ∈ [q−1].

Since |B| = n(q−1)+1 and |B∩Vn−1| = (n−1)(q−1)+1 , we obtain |B\Vn−1| = q−1.

Since B is a blocking set, it must intersect each of the hyperplanes V j
n−1, for j ∈ [q − 1].

Therefore, we must have |B ∩ V j
n−1| = 1 for j ∈ [q − 1].

B∩Vn−1 is a blocking set in Vn−1: otherwise, assume for contradiction that B∩Vn−1

is not a blocking set in Vn−1. Then, there is some (n−2)-dimensional subspace U of Vn−1

that is disjoint from B∩Vn−1. Let H1, . . . ,Hq be the linear hyperplanes in Fnq containing

U , other than Vn−1. Since B is a blocking set and B∩Vn−1∩Hi = B∩U = ∅ for all i ∈ [q],

we must have (B \Vn−1)∩Hi 6= ∅ for all i ∈ [q]. The sets Hi \Vn−1 = Hi \U are pairwise

disjoint, therefore we must have |B \ Vn−1| ≥ q, a contradiction to |B \ Vn−1| = q − 1.

So, B ∩ Vn−1 is a blocking set of size (n − 1)(q − 1) + 1 in Vn−1
∼= Fn−1

q , and

|(B ∩ Vn−1) ∩ Vk| = |B ∩ Vk| = k(q − 1) + 1 for all k ∈ [n − 2]. So, by the induction

hypothesis, Vn−1 \ (B ∩ Vn−1) ∈ KF ′ . Thus, Fnq \B ∈ KF .

From Conjecture 7.4.7 and Lemma 7.4.8 it follows that, for a blocking set B ⊂ Fnq of

size n(q−1) + 1 containing the origin, B is strongly stable if and only if Fnq \B ∈ KF for

some flag F = {V1, . . . , Vn−1}. Hence, Conjecture 7.4.5 would follow from Conjecture

7.4.7 (following the same argument as in the proof of Proposition 7.1.1).
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Chapter 8

Laplacian eigenvalues of

complexes of flags

This chapter is organized as follows. In Section 8.1 we present some facts about q-

binomial coefficients that we will need later. In Section 8.3 we introduce the “subspace

inclusion matrices” Aij , we study some of their properties and explain their relation to

the Laplacian matrix L+
0 (Fln,q). In Section 8.3.1 we finish the proof of our main result,

Theorem 1.6.2.

8.1 q-Binomial coefficients

Let q be a prime power, and let a, b be integers. We define the q-binomial coefficient(
a
b

)
q

to be the number of b-dimensional subspaces contained in Faq . More explicitly, we

have (
a

b

)
q

=

∏a
i=1(qi − 1)∏b

i=1(qi − 1)
∏a−b
i=1 (qi − 1)

=

∏a
i=a−b+1(qi − 1)∏b
i=1(qi − 1)

(8.1)

if a ≥ b ≥ 0, and
(
a
b

)
q

= 0 otherwise.

Lemma 8.1.1. Let 0 ≤ r ≤ k ≤ n. Let U be an r-dimensional subspace of Fnq . Then,

the number of k-dimensional subspaces of Fnq that contain U is
(
n−r
k−r
)
q
.

Proof. The number of k-dimensional subspaces of Fnq containing U is equal to the

number of (k− r)-dimensional subspaces of Fnq /U ∼= Fn−rq . Hence, there are
(
n−r
k−r
)
q

such

subspaces.

We will need the following simple results about the behavior of the q-binomial

coefficients as q tends to infinity.

Lemma 8.1.2. Let a, b ≥ 0 be integers. Then,

lim
q→∞

(
a+b
b

)
q

qab
= 1.
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Proof. By Equation (8.1), we have (
a+b
b

)
q

qab
=
f(q)

g(q)
,

where f is a monic polynomial of degree

a+b∑
i=a+1

i =
1

2
b(2a+ b+ 1) = ab+

1

2
b(b+ 1)

and g is a monic polynomial of degree

ab+
b∑
i=1

i = ab+
1

2
b(b+ 1).

Therefore, we have

lim
q→∞

(
a+b
b

)
q

qab
= lim

q→∞

f(q)

g(q)
= 1,

as wanted.

Lemma 8.1.3. Let k < b < a. Then

lim
q→∞

(
a− k
b− k

)
q

/

(
a

b

)
q

= 0.

Proof. By Lemma 8.1.2, we have

lim
q→∞

(
a−k
b−k
)
q(

a
b

)
q

= lim
q→∞

(
a−k
b−k
)
q

q(a−b)(b−k)
· q

(a−b)b(
a
b

)
q

· q−(a−b)k = 1 · 1 · 0 = 0.

We will also use the following inversion formula due to Carlitz:

Lemma 8.1.4 (Carlitz [Car73]). Let {an}mn=0 and {bn}mn=0 be two sequences such that

an =

n∑
k=0

(
n

k

)
q

bk

for all 0 ≤ n ≤ m. Then,

bn =
n∑
k=0

(−1)n−kq(
k+1
2 )+(n2)−kn

(
n

k

)
q

ak

for all 0 ≤ n ≤ m.
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8.2 The weight function

Let V1 ( V2 ( · · · ( Vk be a flag in Fnq , and let σ = {V1, . . . , Vk} ∈ Fln,q. Recall that

we defined the weight function w(σ) to be the number of complete flags extending σ

or, equivalently, the number of maximal faces of Fln,q containing σ. In this section we

discuss some useful properties of the weight function w.

Let GL(n, q) be the group of invertible n × n matrices over Fq. For g ∈ GL(n, q)

and a subspace V ⊂ Fnq , let gV = {gv : v ∈ V }. Note that gV is also a subspace of Fnq
and that dim(gV ) = dim(V ).

Let F be the flag V1 ( V2 ( · · · ( Vk. Then, we denote by gF the flag

gV1 ( gV2 ( · · · ( gVk.

First, we show that w depends only on the dimensions of the subspaces forming the

flag:

Lemma 8.2.1. Let V1 ( V2 ( · · · ( Vk and W1 ( W2 ( · · · ( Wk be two flags in Fnq .

Let σ = {V1, . . . , Vk} and σ′ = {W1, . . . ,Wk}. If dim(Vi) = dim(Wi) for all i ∈ [k], then

w(σ) = w(σ′).

Proof. Let e1, . . . , en be a basis of Fnq such that, for any i ∈ [k], the first dim(Vi) vectors

in the basis form a basis for Vi. Similarly, let v1, . . . , vn be a basis of Fnq such that, for

any i ∈ [k], the first dim(Wi) = dim(Vi) vectors in the basis form a basis for Wi.

Let g ∈ GL(n, q) be the linear isomorphism that maps ei to vi for all i ∈ [n]. Then,

for any i ∈ [k], we have gVi = Wi.

Let F be the set of complete flags extending σ, and let F ′ be the set of complete

flags extending σ′. We have a map g̃ : F → F ′ defined by g̃(F ) = gF for any

F ∈ F . Since F = g−1gF , g̃ is injective. Hence, |F| ≤ |F ′|. By symmetry, we have

w(σ) = |F| = |F ′| = w(σ′).

Lemma 8.2.2. Let k be an integer. Let V1 ( · · · ( Vi−1 ( Vi+1 ( · · · ( Vk be a flag

in Fnq , and let τ = {V1, . . . , Vi−1, Vi+1, . . . , Vk}. Let dim(Vi−1) < d < dim(Vi+1). Let U
be the set of d-dimensional subspaces U ⊂ Fnq satisfying Vi−1 ⊂ U ⊂ Vi+1. For U ∈ U ,

let σU = {V1, . . . , Vi−1, U, Vi+1, . . . , Vk}. Then, we have

w(τ) =
∑
U∈U

w(σU ).

Proof. Notice that, for any U ∈ U , any complete flag extending σU extends also τ .

Moreover, each complete flag extending τ extends exactly one of the flags σU . Therefore,

we have

w(τ) =
∑
U∈U

w(σU )

as wanted.

139



Lemma 8.2.3. Let k be an integer, and 1 ≤ i ≤ k. Let V1 ( · · · ( Vk be a flag in Fnq .

Let σ = {V1, . . . , Vk} and τ = {V1, . . . , Vi−1, Vi+1, . . . , Vk}. Let V0 = {0} and Vk+1 = Fnq .

Let r = dimVi+1 − dimVi−1 and t = dimVi − dimVi−1. Then,

w(σ)

w(τ)
=

(
r

t

)−1

q

.

Proof. Let U be the family of subspaces U ⊂ Fnq satisfying Vi−1 ⊂ U ⊂ Vi+1 and

dim(U) = dim(Vi). By Lemma 8.1.1, we have |U| =
(
r
t

)
q
.

For any U ∈ U , let σU = {V1, . . . , Vi−1, U, Vi+1, . . . , Vk}. Then, we have σ = σVi ,

and, by Lemma 8.2.1, w(σU ) = w(σ) for all U ∈ U .

Therefore, by Lemma 8.2.2, we have

w(τ) =
∑
U∈U

w(σU ) = |U| · w(σ) =

(
r

t

)
q

· w(σ).

We obtain w(σ)
w(τ) =

(
r
t

)−1

q
, as wanted.

Lemma 8.2.4. Let σ ∈ Xn,q(k). Then

L+
k (Fln,q)(σ, σ) = n− k − 2.

Proof. Let σ = {V1, . . . , Vk+1}, and let di = dim(Vi) for all i ∈ [k + 1].

By Lemma 2.2.15, we have

L+
k (Fln,q)(σ, σ) =

1

w(σ)

∑
v∈lk(Fln,q ,σ)

w(vσ)

=
1

w(σ)

∑
d∈[n−1],

d/∈{d1,...,dk+1}

∑
v∈lk(Fln,q ,σ)

dim(v)=d

w(vσ).

By Lemma 8.2.2, we have for any d ∈ [n− 1] \ {d1, . . . , dk+1}:∑
v∈lk(Fln,q ,σ)

dim(v)=d

w(vσ) = w(σ).

So, we obtain

L+
k (Fln,q)(σ, σ) =

1

w(σ)

∑
d∈[n−1],

d/∈{d1,...,dk+1}

∑
v∈lk(Fln,q ,σ)

dim(v)=d

w(vσ)

=
1

w(σ)

∑
d∈[n−1],

d/∈{d1,...,dk+1}

w(σ) = n− k − 2,

as wanted.
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8.3 Subspace inclusion matrices

For i ∈ {0, . . . , n}, denote by S(i) the collection of subspaces of Fnq of dimension i.

Let 1 ≤ i ≤ n− 1 and U ∈ S(i). Define the cochain 1U ∈ C0(Xn,q) as

1U (V ) =

1 if U = V,

0 otherwise.

We call the basis ∪n−1
i=1 {1U : U ∈ S(i)} the standard basis for C0(Xn,q).

Let 0 ≤ i, j ≤ n. Let Aij be the S(i)× S(j) matrix

Aij(U, V ) =

1 if U ⊂ V or V ⊂ U,

0 otherwise.

Note that Aij = Atji, and that Aii is just the identity matrix IS(i). Also, for all 0 ≤ j ≤ n,

A0j ∈ R1×S(j) = RS(j) is the all-1 vector.

Using the matrices Aij , we can give the following explicit description for L+
0 (Fln,q):

Lemma 8.3.1. Let L = L+
0 (Fln,q). We identify L with its matrix representation with

respect to the standard basis. Then, we can write L as an (n− 1)× (n− 1) block matrix

L =


L1,1 · · · L1,n−1

...
...

Ln−1,1 · · · Ln−1,n−1

 ,

where, for (i, j) ∈ [n− 1]× [n− 1], Lij is the S(i)× S(j) matrix

Lij =


(n− 2)I if i = j,

−
(
n−i
j−i
)−1

q
Aij if i < j,

−
(
i
j

)−1

q
Aij if i > j.

Proof. Let i, j ∈ [n− 1], and let U ∈ S(i) and V ∈ S(j). Then, by Corollary 2.2.16 and

Lemma 8.2.4, we have

L(U, V ) =


n− 2 if U = V,

−w({U,V })
w(U) if U ( V or V ( U,

0 otherwise.

By Lemma 8.2.3, we have
w({U, V })
w(U)

=

(
n− i
j − i

)−1

q
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if U ⊂ V and
w({U, V })
w(U)

=

(
i

j

)−1

q

if V ⊂ U .

So, for i = j, we obtain

L(U, V ) =

n− 2 if U = V,

0 otherwise
= (n− 2)I(U, V ),

where I is the S(i)× S(i) identity matrix.

For i < j, we obtain

L(U, V ) =

−
(
n−i
j−i
)−1

q
if U ⊂ V,

0 otherwise
= −

(
n− i
j − i

)−1

q

Aij(U, V ).

For i > j, we obtain

L(U, V ) =

−
(
i
j

)−1

q
if V ⊂ U,

0 otherwise
= −

(
i

j

)−1

q

Aij(U, V ),

as wanted.

We will need the following results regarding products of subspace inclusion matrices:

Lemma 8.3.2 (Kantor [Kan72]). Let k ≤ j ≤ i. Then

AijAjk =

(
i− k
j − k

)
q

Aik.

Proof. Let U ∈ S(k). Then,

AijAjk1U = Aij

 ∑
V ∈S(j):
U⊂V

1V

 =
∑

V ∈S(j):
U⊂V

Aij1V =
∑

V ∈S(j):
U⊂V

∑
W∈S(i):
V⊂W

1W .

Let W ∈ S(i) such that U ⊂ W . By Lemma 8.1.1, the number of j-dimensional

subspaces of W containing U is
(
i−k
j−k
)
q
. So, we obtain

AijAjk1U =
∑

W∈S(i):
U⊂W

(
i− k
j − k

)
q

1W =

(
i− k
j − k

)
q

Aik1U .

Thus, AijAjk =
(
i−k
j−k
)
q
Aik.
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Lemma 8.3.3. Let 0 ≤ k ≤ i, and let U ∈ S(k). Then, for any sequence {αm}km=0, we

can write
k∑

m=0

αm
∑

V ∈S(m):
V⊂U

∑
W∈S(i):
V⊂W

1W =

k∑
m=0

∑
W∈S(i):

dim(U∩W )=m

βm1W , (8.2)

where

βm =
m∑
r=0

(
m

r

)
q

αr

for all 0 ≤ m ≤ k.

Proof. Let 0 ≤ m ≤ k, and let W ∈ S(i) such that dim(U ∩W ) = m. The coefficient of

1W on the right-hand side of Equation (8.2) is βm.

Let 0 ≤ r ≤ k. The number of r-dimensional subspaces of U ∩W is
(
m
r

)
q

if r ≤ m
and 0 otherwise. Therefore, the coefficient of 1W on the left-hand side of Equation (8.2)

is
m∑
r=0

(
m

r

)
q

αr.

We obtain

βm =

m∑
r=0

(
m

r

)
q

αr

for all 0 ≤ m ≤ k, as wanted.

Lemma 8.3.4. Let 0 ≤ k ≤ i ≤ j ≤ n. Then,

AijAjk =
k∑

m=0

cijkmAimAmk,

where, for all 0 ≤ m ≤ k, the coefficients cijkm satisfy the relations

m∑
r=0

(
m

r

)
q

cijkr =

(
n− i− k +m

j − i− k +m

)
q

. (8.3)

Proof. Let U ∈ S(k). Then, we can write

AijAjk1U =
∑

V ∈S(j):
U⊂V

∑
W∈S(i):
W⊂V

1W .

Let 0 ≤ m ≤ k and let W ∈ S(i) such that dim(U ∩W ) = m. Then, by Lemma 8.1.1,

since dim(U + V ) = dim(U) + dim(W ) − dim(U ∩W ) = k + i − m, the number of

j-dimensional subspaces of Fnq containing both U and W is(
n− (k + i−m)

j − (k + i−m)

)
q

=

(
n− i− k +m

j − i− k +m

)
q

.
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So, we can write

AijAjk1U =
k∑

m=0

∑
W∈S(i):

dim(U∩W )=m

(
n− i− k +m

j − i− k +m

)
q

1W .

Using Lemma 8.3.3 and the fact that
∑

V ∈S(m):
V⊂U

∑
W∈S(i):
V⊂W

1W = AimAmk1U , we obtain

AijAjk1U =
k∑

m=0

∑
W∈S(i):

dim(U∩W )=m

(
n− i− k +m

j − i− k +m

)
q

1W

=

k∑
m=0

cijkm
∑

V ∈S(m):
V⊂U

∑
W∈S(i):
V⊂W

1W

=
k∑

m=0

cijkmAimAmk1U ,

where the coefficients cijkm satisfy the relations

m∑
r=0

(
m

r

)
q

ci,j,k,r =

(
n− i− k +m

j − i− k +m

)
q

for all 0 ≤ m ≤ k.

Remark. Let 0 ≤ m ≤ k ≤ i ≤ j ≤ n. By Lemma 8.1.4, we have the following explicit

formula for the coefficient cijkm:

cijkm =

m∑
r=0

(−1)m−rq(
r+1
2 )+(m2 )−rm

(
m

r

)
q

(
n− i− k + r

j − i− k + r

)
q

. (8.4)

We will need the following Lemma about the asymptotic behaviour of the numbers

cijkm.

Lemma 8.3.5. Let k ≤ i ≤ j ≤ n− k. Then, for all 0 ≤ m ≤ k,

lim
q→∞

cijkm(
n−i−k+m
j−i−k+m

)
q

= 1. (8.5)

Proof. We argue by induction on m. For m = 0 we have, by Equation (8.4):

cijk0 =

(
n− i− k
j − i− k

)
q

,
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so the claim holds trivially. Now, let m > 0. Since(
n− i− k +m

j − i− k +m

)
q

=

(
n− j + (j − i− k +m)

j − i− k +m

)
q

,

by Lemma 8.1.2, Equation (8.5) is equivalent to

lim
q→∞

cijkm

q(n−j)(j−i−k+m)
= 1.

By Equation (8.3), we have

cijkm =

(
n− i− k +m

j − i− k +m

)
q

−
m−1∑
r=0

(
m

r

)
q

cijkr.

Dividing by q(n−j)(j−i−k+m), we obtain

cijkm

q(n−j)(j−i−k+m)
=

(
n−i−k+m
j−i−k+m

)
q

q(n−j)(j−i−k+m)
−
m−1∑
r=0

1

q(m−r)(n−j−r)

(
m
r

)
q

q(m−r)r
cijkr

q(n−j)(j−i−k+r)
.

Since r ≤ m−1 ≤ k−1 ≤ n− j−1, we obtain (by the induction hypothesis and Lemma

8.1.2),

lim
q→∞

cijkm

q(n−j)(j−i−k+m)
= 1,

as wanted.

For i ∈ {0, 1, . . . , n}, let

Ei = span({1U : U ∈ S(i)}).

We will need the following Theorem of Kantor:

Theorem 8.3.6 (Kantor [Kan72]). Let 0 ≤ k ≤
⌊
n
2

⌋
and k ≤ i ≤ n− k. Then

rank(Aik) = |S(k)| =
(
n

k

)
q

.

In particular, the linear map Aik : Ek → Ei is injective.

Let Ẽ0 = E0, and, for 1 ≤ k ≤
⌊
n
2

⌋
, let Ẽk be the orthogonal complement in Ek of

the subspace Ak,k−1E
k−1.

Proposition 8.3.7. Let 0 ≤ i ≤ n. Then,

Ei =
⊕

0≤k≤bn2 c, k≤i≤n−k
AikẼ

k.
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Proof. Assume first i ≤
⌊
n
2

⌋
. We argue by induction on i. For i = 0 the claim holds

trivially. Let i > 0. Note that, by Lemma 8.3.2, we have for k ≤ i− 1,

Ai,i−1Ai−1,kẼ
k = AikẼ

k.

By the induction hypothesis, we obtain

Ei = Ai,i−iE
i−1
⊕

Ẽi

= Ai,i−1

 ⊕
0≤k≤bn2 c, k≤i−1

Ai−1,kẼ
k

⊕ Ẽi

=

 ⊕
0≤k≤bn2 c, k≤i−1

AikẼ
k

⊕ Ẽi

=
⊕

0≤k≤bn2 c, k≤i
AikẼ

k =
⊕

0≤k≤bn2 c, k≤i≤n−k
AikẼ

k.

Now, let i >
⌊
n
2

⌋
. By Lemma 8.3.2, we have for k ≤ i ≤ n− k,

Ai,n−iAn−i,kẼ
k = AikẼ

k.

By Theorem 8.3.6, we have Ei = Ai,n−iE
n−i. Therefore, since n− i ≤

⌊
n
2

⌋
, we obtain

Ei = Ai,n−iE
n−i = Ai,n−i

 ⊕
0≤k≤bn2 c, k≤i≤n−k

An−i,kẼ
k


=

⊕
0≤k≤bn2 c, k≤i≤n−k

AikẼ
k.

Lemma 8.3.8. Let 0 ≤ k ≤
⌊
n
2

⌋
and let v ∈ Ẽk. Then, Ajkv = 0 for all 0 ≤ j < k.

Proof. By definition, we have

v(Ak,k−1u) = 0

for all u ∈ Ek−1. Hence, vAk,k−1 = 0. That is,

Ak−1,kv = (vAk,k−1)t = 0.

Now, let 0 ≤ j ≤ k − 1. By Lemma 8.3.2 we have

Ak,k−1Ak−1,j =

(
k − j

k − j − 1

)
q

Akj .
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Transposing the equation, we obtain

Ajkv =

(
k − j

k − j − 1

)−1

q

Aj,k−1(Ak−1,kv) = 0,

as wanted.

Lemma 8.3.9. Let 0 ≤ k ≤
⌊
n
2

⌋
. Let 0 ≤ i < k ≤ j ≤ n. Let v ∈ Ẽk. Then,

AijAjkv = 0.

Proof. By Lemma 8.3.4, we have

AkjAji =
i∑

m=0

ckjimAkmAmi.

Transposing the equation, we obtain

AijAjkv =
i∑

m=0

ckjimAimAmkv.

By Lemma 8.3.8, we have Amkv = 0 for all m ≤ i < k. Therefore, we obtain

AijAjkv = 0,

as wanted.

8.3.1 Proof of Theorem 1.6.2

For 0 ≤ k ≤
⌊
n
2

⌋
, let Bk be a basis for Ẽk. Then, by Proposition 8.3.7,

B =

bn2 c⋃
k=0

⋃
v∈Bk

{Aikv : max{1, k} ≤ i ≤ min{n− 1, n− k}}

is a basis for C0(Xn,q).

Theorem 8.3.10. Let L = L+
0 (Fln,q). Then, the matrix representation of L with

respect to the basis B is a block diagonal matrix
L0

. . .

Lbn2 c


with blocks

Lk = Idim(Ẽk) ⊗ L̃k,
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where L̃0 is the (n− 1)× (n− 1) matrix with entries

(L̃0)ij =

n− 2 if i = j,

−1 if i 6= j,
(8.6)

for 1 ≤ i, j ≤ n− 1, and, for 1 ≤ k ≤
⌊
n
2

⌋
, L̃k is the (n− 2k + 1)× (n− 2k + 1) matrix

with entries

(L̃k)ij =


n− 2 if i = j,

−cijkk
(
n−i
j−i
)−1

q
if i < j,

−
(
i−k
j−k
)
q

(
i
j

)−1

q
if i > j

(8.7)

for k ≤ i, j ≤ n− k.

Proof. Let 0 ≤ k ≤
⌊
n
2

⌋
. Let v ∈ Bk and max{1, k} ≤ j ≤ min{n − 1, n − k}. By

Lemma 8.3.1, we have

LAjkv = −
j−1∑
i=1

(
n− i
j − i

)−1

q

AijAjkv + (n− 2)Ajkv −
n−1∑
i=j+1

(
i

j

)−1

q

AijAjkv.

Let 1 ≤ i ≤ n− 1. If i < k, we have by Lemma 8.3.9,

AijAjkv = 0.

Next, let i > n− k. Then, we have n− i < k ≤ j ≤ n− k < i. So, we have, by Lemma

8.3.4 (after transposing the equation),

An−i,iAij =

n−i∑
m=0

cj,i,n−i,mAn−i,mAmj .

Therefore, by Lemma 8.3.9, we obtain

An−i,iAijAjkv =
n−i∑
m=0

cj,i,n−i,mAn−i,mAmjAjkv = 0.

Since An−i,i is invertible (by Theorem 8.3.6), we obtain

AijAjkv = 0.

Now, assume k ≤ i ≤ n− k. If i < j, we have by Lemma 8.3.4 and Lemma 8.3.8,

AijAjkv =
k∑

m=0

cijkmAimAmkv = cijkkAikv.
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If i > j, we have by Lemma 8.3.2,

AijAjkv =

(
i− k
j − k

)
q

Aikv.

Therefore, we obtain

LAjkv = −
j−1∑

i=max{1,k}

cijkk

(
n− i
j − i

)−1

q

Aikv + (n− 2)Ajkv

−
min{n−1,n−k}∑

i=j+1

(
i

j

)−1

q

(
i− k
j − k

)
q

Aikv.

Thus, the subspace spanned by the vectors

{Aikv : max{1, k} ≤ i ≤ min{n− 1, n− k}}

is invariant under L, and the matrix representation of the restriction of L on this

subspace is exactly L̃k (for the case k = 0, note that, by Equation (8.4), we have

cijkk =
(
n−i
j−i
)
q
). Therefore, the representation of L with respect to the basis B is the

diagonal block matrix 
L0

. . .

Lbn2 c


where

Lk = Idim(Ẽk) ⊗ L̃k =


L̃k

. . .

L̃k


for all 0 ≤ k ≤

⌊
n
2

⌋
.

Now we can prove our main result, Theorem 1.6.2.

Theorem 1.6.2. Let n ≥ 3 and let q be a prime power. Then, for any ε > 0 there is

an integer q0 such that, for q ≥ q0, any eigenvalue λ 6= 0, n− 1 of L+
0 (Fln,q) satisfies

|λ− (n− 2)| < ε.

That is, as q tends to infinity, all nonzero eigenvalues of L+
0 (Fln,q) either are equal to

n− 1 or tend to n− 2.

Proof. By Theorem 8.3.10, the set of eigenvalues of L = L+
0 (Fln,q) is the union of the

sets of eigenvalues of the matrices L̃k, for 0 ≤ k ≤
⌊
n
2

⌋
.
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First, let k = 0. By Equation (8.6), we have for 1 ≤ i, j ≤ n− 1,

(L̃0)ij =

n− 2 if i = j,

−1 if i 6= j.

So, for all q, the eigenvalues of L̃0 are 0 with multiplicity 1, and n− 1 with multiplicity

n− 2.

Now, let k ≥ 1, and let k ≤ i, j ≤ n− k. Then, by Equation (8.7) and Lemma 8.1.3,

we have for i > j

lim
q→∞

(L̃k)ij = lim
q→∞

−

(
i−k
j−k
)
q(

i
j

)
q

= 0.

For i < j, we have by Equation (8.7) and Lemma 8.3.5,

lim
q→∞

(L̃k)ij = lim
q→∞

−
cijkk(
n−i
j−i
)
q

= −1.

Thus, the matrix L̃k tends element-wise to the upper triangular matrix:

lim
q→∞

(L̃k)ij =


n− 2 if i = j,

−1 if i < j,

0 if i > j.

Therefore, as q →∞, all the eigenvalues of L̃k tend to n−2. That is, for any ε > 0 there

is an integer q0 such that for q ≥ q0, any eigenvalue λ of L̃k satisfies |λ− (n− 2)| < ε.

Another consequence of Theorem 8.3.10 is the following bound on the number of

distinct eigenvalues of L+
0 (Fln,q).

Corollary 8.3.11. For any prime power q ≥ 2, the number of distinct eigenvalues of

L+
0 (Fln,q) is at most

⌊
n2

4

⌋
+ 2.

Proof. By Theorem 8.3.10, the set of distinct eigenvalues of L+
0 (Fln,q) is the union of

the sets of eigenvalues of the matrices L̃k, for 0 ≤ k ≤
⌊
n
2

⌋
. The matrix L̃0, defined by

(L̃0)ij =

n− 2 if i = j,

−1 if i 6= j,

has only two distinct eigenvalues. For 1 ≤ k ≤
⌊
n
2

⌋
, the matrix L̃k is an (n− 2k + 1)×

(n− 2k+ 1) matrix, and therefore it has at most n− 2k+ 1 distinct eigenvalues. Hence,
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the matrix L+
0 (Fln,q) has at most

2 +

bn2 c∑
k=1

(n− 2k + 1) = 2 + n
⌊n

2

⌋
−
(

1 +
⌊n

2

⌋) ⌊n
2

⌋
+
⌊n

2

⌋
= 2 +

⌊n
2

⌋(
n−

⌊n
2

⌋)
=
⌊n

2

⌋ ⌈n
2

⌉
+ 2 =

⌊
n2

4

⌋
+ 2

distinct eigenvalues.

We can see Corollary 8.3.11 as a first step towards the k = 0 case of the first part of

Conjecture 1.6.1. Based on this result, we make the following refined conjecture:

Conjecture 8.3.12. For any prime power q ≥ 2, the number of distinct eigenvalues of

L+
0 (Fln,q) is exactly

⌊
n2

4

⌋
+ 2.
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Chapter 9

Conclusion

In this chapter we summarize the open problems and possible directions for further

investigation arising from our work.

9.1 Collapsibility of complexes from families of matrices

and graphs

Let F be a field, and let A be a finite family of m× n matrices over F. In Chapter 3 we

studied the complex MA,r whose simplices correspond to families B ⊂ A such that any

matrix in span(B) is of rank at most r. We showed that, if F is an infinite field, the

collapsibility of MA,r is at most r(r+1) (Theorem 1.1.5). We don’t expect the condition

on F to be necessary or the bound to be tight. In fact, we conjecture the following:

Conjecture 3.5.15. Let A be a finite family of matrices in Fm×n, and let r ≥ 1. Then,

MA,r is 2r-collapsible.

It may be interesting to study the collapsibility of MA,r for special families of matrices.

For example, we conjecture that if A consists of skew-symmetric matrices of rank two,

the bound on the collapsibility may be reduced to 3r
2 (Conjecture 3.5.13), and if A

consists of symmetric matrices of rank two, the bound on the collapsibility may be

reduced to r (Conjecture 3.5.14).

In Chapter 4 we studied the collapsibility of In(G), the simplicial complex whose

vertices are the vertices of the graph G = (V,E) and whose simplices are subsets

U ⊂ V that do not contain an independent set of size n in G. Our main concern

was on the question whether, for a graph G with maximum degree ∆, the bound

C(In(G)) ≤
⌈

∆+1
2

⌉
(n − 1) holds (Question 1.2.4). We answered this question in the

affirmative in the special cases n ≤ 3 or ∆ ≤ 2, but found examples showing that in

general the answer is negative. It would be interesting to decide for which values of ∆

and n the bound in Question 1.2.4 holds. The combinatorial conjecture stating that

fG(n) ≤
⌊(

∆
2 + 1

)
(n− 1)

⌋
+ 1 for graphs with maximum degree ∆ (Conjecture 1.2.3)

remains open.
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A weaker property which may hold is the following:

Conjecture 9.1.1. Let G = (V,E) be a graph with maximum degree at most ∆, and

let n ≥ 1 be an integer. Let A be an independent set of size n− 1 in G. Then,

C(lk(In(G), A)) ≤
⌊

(n− 1)∆

2

⌋
.

For the subclass of claw-free graphs, this is proved in Proposition 4.4.5. Conjecture

9.1.1 would imply the bound fG(n) ≤
⌊(

∆
2 + 1

)
(n− 1)

⌋
+ 1 (by the same argument as

the one used to prove Theorem 1.2.9), settling Conjecture 1.2.3 in the case of even ∆.

Another possible direction is to focus on the family of claw-free bounded degree

graphs. We showed in Theorem 1.2.9 that Conjecture 1.2.3 holds for graphs in this

family when ∆ is even. In the case of odd ∆, although we obtain good upper bounds

for fG(n), the question remains unsettled. It would also be interesting to prove the

corresponding tight upper bound on the collapsibility number of In(G), at least for the

case of even ∆.

We know, by Proposition 4.5.2, that the bound in Question 1.2.4 does not hold for

graphs with maximum degree at most 3. The following problem arises:

Problem 9.1.2. Find the smallest positive integer g(n) such that the following holds:

for every graph G with maximum degree at most 3,

C(In(G)) ≤ g(n).

By Theorem 1.2.6 and Proposition 4.5.1 we have 2(n − 1) ≤ g(n) ≤ 3(n − 1) for all

n ≥ 1, and, by Corollary 4.5.5, g(8k) ≥ 17k − 1 for all k ≥ 1. Improving either the

upper or lower bounds for g(n) may be of interest.

9.2 Leray numbers of tolerance complexes

Recall that given a complex K on vertex set V and an integer t ≥ 0, the t-tolerance

complex Tt (K) is the simplicial complex on vertex set V whose simplices are the sets

U ⊂ V that contain a simplex σ ∈ K of size |σ| ≥ |U | − t.
In Chapter 5 we showed that for any d and t there exists an integer h(t, d) such that

if K is d-collapsible, then Tt (K) is d-Leray (Theorem 1.3.5). It would be interesting

either to weaken the condition on K from being d-collapsible to being d-Leray (see

Conjecture 1.3.3), or strengthening the conclusion on the tolerance complex to give a

bound on its collapsibility (see Conjecture 1.3.4).

Furthermore, we don’t expect the bound h(t, d) to be tight (except in the case d = 1).

In particular, in the case t = 1 we conjecture the following:

Conjecture 9.2.1. Let K be d-collapsible. Then, T1 (K) is
(⌊(

d+3
2

)2⌋− 1
)

-Leray.
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The bound in the conjecture is of the same order of magnitude, but smaller, than

the bound proved in Theorem 1.3.5, h(1, d) = d2 + 2d. We were able to verify this

conjecture only for d ≤ 2 (see Theorem 1.3.6).

9.3 Representability of complexes without large missing

faces

In Chapter 6 we presented the following conjecture:

Conjecture 1.4.5. Let X be simplicial complex with n vertices, satisfying h(X) ≤ d.

Then,

rep(X) ≤
⌊
dn

d+ 1

⌋
.

Moreover, rep(X) = dn
d+1 if and only if the missing faces of X consist of n

d+1 pairwise

disjoint sets of size d+ 1.

For d = 1 this follows almost immediately from Roberts’ theorem on the boxicity

of a graph (see Proposition 6.5.1). For d = n− 1 this is a result of Wegner (Theorem

6.3.3).

As an interesting special case, we propose to focus on the family of complexes whose

missing faces form a Steiner triple system. In fact, even solving the following particular

case may be of interest:

Conjecture 6.5.5. Let X2,9 be the simplicial complex whose missing faces form a

Steiner (2, 3, 9)-system (that is, they are the lines of the affine plane of order 3). Then,

rep(X2,9) ≤ 5.

9.4 Complexes of hyperplane-free sets and stability of block-

ing sets in finite affine spaces

Let q be a prime power and n ≥ 2 an integer. In Chapter 7 we defined X̂q,n to be the

simplicial complex on vertex set Fnq \ {0} whose simplices are the subsets that do not

contain any affine hyperplane. We conjecture

Conjecture 7.4.4. Let q ≥ 3 be a prime power. Then,

H̃qn−n(q−1)−2(X̂q,n) = Z
∏n
i=1

qi−1
q−1 .

The n = 2 of the conjecture follows from Theorem 1.5.2.

Recall that a set B ⊂ Fnq is a blocking set if it intersects all the affine hyperplanes,

and it is called strongly stable if for every point v ∈ Fnq \B there is some u ∈ B \{0} such

that B ∪ {v} \ {u} is also a blocking set. We conjecture the following characterization
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of strongly stable blocking sets of size n(q − 1) + 1, generalizing the characterization in

the n = 2 case in Theorem 1.5.3:

Conjecture 7.4.7. Let B ⊂ Fnq be a blocking set of size n(q − 1) + 1 containing the

origin. Then, B is strongly stable if and only if there is a flag V1 ( V2 ( · · · ( Vn−1

of linear subspaces of Fnq such that dim(Vk) = k and |B ∩ Vk| = k(q − 1) + 1 for all

k ∈ [n− 1].

In addition to its interest for its own sake, we expect Conjecture 7.4.7 to be an

important step towards a solution of Conjecture 7.4.4.

9.5 Papikian’s conjecture on the eigenvalues of complexes

of flags

Recall that Fln,q is the simplicial complex whose vertices correspond to non-trivial

linear subspaces of Fnq and whose simplices correspond to flags. Let L+
k (Fln,q) be the

k-dimensional weighted upper Laplacian on Fln,q. In [Pap16], Papikian conjectured the

following:

Conjecture 1.6.1 (Papikian [Pap16]). Let n ≥ 3 and let q be a prime power. Let

0 ≤ k ≤ n− 3. Then, as q tends to infinity, the positive (i.e nonzero) eigenvalues of

L+
k (Fln,q) tend to the integers

n− k − 2, n− k − 1, n− k, . . . , n− 1.

Or, more formally: for any ε > 0 there exists an integer q0 such that, for q ≥ q0, for any

eigenvalue λ of L+
k (Fln,q) there is some m ∈ {n− k − 2, n− k − 1, . . . , n− 1} such that

|λ−m| < ε.

In Chapter 8 we prove this conjecture in the special case k = 0 (Theorem 1.6.2). A

possible direction for future research is to try to extend the methods in Chapter 8 to

prove the general case of the conjecture, or at least some other special cases, such as

the case k = 1.
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משפט.

H̃q2−2q(Xq) =


Z3 IF q = 2,

Z11 IF q = 3,

Zq(q+1) IF q > 3,

ו־

H̃q2−2q(X̂q) =

Z2 IF q = 2,

Zq+1 IF q > 2.

נקודה לכל אם ׳׳יציבה״ נקראת B הקבוצה .F2
qב־ 2q − 1 בגודל חוסמת קבוצה B תהי

נקראת B חוסמת. קבוצה גם היא B ∪ {v} \ {u}ש־ כך u ∈ B נקודה קיימת v /∈ B
היא B∪{v}\{u}ש־ כך u ∈ B\{0} קיימת v /∈ B ולכל ,0 ∈ B אם חזקה״ בצורה ׳׳יציבה
הקומפלקסים של ההומולוגיה בקביעת העיקריים המרכיבים אחד חוסמת. קבוצה גם

היציבות החוסמות הקבוצות את המאפיין הבא, המשפט הוא חסרות־ישרים קבוצות של

חזקה: בצורה והיציבות

היא אם ורק אם יציבה היא B אזי, .F2
qב־ 2q − 1 בגודל חוסמת קבוצה B תהי משפט.

שלם ישר מכילה היא אם ורק אם חזקה בצורה יציבה והיא שלם, אפיני ישר מכילה

הראשית. דרך העובר

i = לכל Vi ⊂ Vi+1 אם דגל נקרא Fnq ב־ V1, . . . , Vk וקטוריים מרחבים תתי אוסף

תתי הם שקודקודיו הקומפלקס להיות FLn,q הדגלים קומפלקס את נגדיר .1, . . . , k − 1

המהווים מרחבים תתי אוספי הם שלו והסימפלקסים Fnq של הלא־טריוויאליים המרחבים
דגל.

על הממושקלים הלפלסיאן אופרטורי של העצמיים הערכים את חוקרים אנו 8 בפרק

הבאה: הטענה את מוכיחים אנו הדגלים. קומפלקס

λ 6= 0, n− 1 עצמי ערך כל ,q ≥ q0 ראשונית חזקה שלכל כך q0 קיים ε > 0 לכל משפט.

מקיים: FLn,q על ה־0־מימדי הממושקל הלפלסיאן אופרטור של

|λ− (n− 2)| < ε.

n− ל־1 או ל־0 שווה שאינו הלפלסיאן של עצמי ערך כל לאינסוף, שואף q כאשר כלומר,

.n− 2 לערך שואף

על פפיקיאן של השערה של ה־0־מימדי) המקרה (את פרטי מקרה פותרת זאת תוצאה

קומפלקס על הלפלסיאן אופרטורי של העצמיים הערכים של האסימפטוטית ההתנהגות

.([Pap16] (ראה הדגלים

v



5־ליריי. הוא T1 (K) אזי, 2־מטיט. קומפלקס K יהי משפט.

וקומפלקס d טבעי מספר בהינתן הבאה: הגיאומטרית בשאלה עוסקים אנו השישי בפרק

קומפלקסים של סופי מספר של כחיתוך X את לכתוב ניתן האם קודקודים, n בעל X

כחיתוך X את לכתוב ניתן עבורו המינימלי tה־ מהו חיובית, התשובה אם d־יציגים?

,X של ה׳׳d־קופסאתיות׳׳ הזה המינימלי tל־ קוראים אנו d־יציגים? קומפלקסים t של

.BOXd(X)ב־ זאת ומסמנים

רוברטס ידי על לראשונה שנחקר גרף של הקופסאתיות מושג את מכליל זה פרמטר

הבא, המשפט היא שלנו העיקרית התוצאה שמו. כן ועל ,([Rob69] (ראה ה־60 בשנות

רוברטס: מאת גרפים עבור דומה משפט המכליל

לכל σ ∈ X אבל τ /∈ Xש־ כך τ קודקודים אוסף היא X קומפלקס של חסרה פאה

בגודל קבוצות תתי אוסף היא (t, k, n) מסוג שטיינר מערכת .t ≤ k ≤ n יהיו .σ ( τ

באחת בדיוק מוכלת V של t בגודל קבוצה תת שכל כך ,n בגודל V קבוצה של k

באוסף. מהקבוצות

פאה של המקסימלי שהמימד קודקודים n בעל סימפלציאלי קומפלקס X יהי משפט.

אזי, .d הוא שלו חסרה

BOXd(X) ≤
⌊

1

d+ 1

(
n

d

)⌋
.

X של החסרות הפאות אוסף אם ורק אם BOXd(X) = 1
d+1

(
n
d

)
שוויון מתקיים בנוסף,

.(d, d+ 1, n) מסוג שטיינר מערכת מהווה

קודמות תוצאות ומשפר ,d = 1 במקרה רוברטס משפט את מכליל כאמור, זה, משפט

.d > 1 עבור ([Wit80]) וויטזנהאוזן מאת

של שונים להיבטים הקשורות קומפלקסים של משפחות חוקרים אנו ו־8 7 בפרקים

׳׳חסרות־ישרים״ קבוצות של בקומפלקסים עוסק 7 פרק סופיים. וקטוריים מרחבים

חסרת־ נקראת σ ⊂ F2
q קבוצה .q בגודל שדה Fq יהי סופי. שדה מעל אפיני במישור

קומפלקסים מגדירים אנו שלם. אפיני ישר מכילה לא היא אם ישרים

Xq =
{
σ ⊂ F2

q : σ IS LINE־FREE
}

ו־

X̂q =
{
σ ⊂ F2

q \ {0} : σ IS LINE־FREE
}

= Xq \ 0.

של משפט האפיניים. הישרים בכל שנוגעות נקודות אוסף היא F2
qב־ חוסמת קבוצה

קבוצה של המינימלי הגודל כי קובע ([BS78]) ושריבר בראור ושל ([Jam77]) ג׳מיסון

המשלים אם ורק אם ישרים חסרת היא שקבוצה מכיוון .2q − 1 הוא F2
qב־ חוסמת

הוא X̂qו־ Xq הקומפלקסים שני מימד כי מקבלים אנו חוסמת, קבוצה הוא שלה

העליון במימד ההומולוגיה קביעת היא זה בפרק שלנו העיקרית התוצאה .q2 − 2q

חסרות־ישרים: קבוצות של הקומפלקסים של
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את מוכיחים אנו כללי, ו־∆ n ≤ 3 עבור .∆ ≤ ש־2 במקרה רק הדוק הנ״ל החסם

הבאים: ההדוקים החסמים

אזי, .∆ היותר לכל מקסימלית דרגה בעל גרף G יהי משפט.

C(I2(G)) ≤
⌈

∆ + 1

2

⌉
.

אזי, .∆ היותר לכל מקסימלית דרגה בעל גרף G יהי משפט.

C(I3(G)) ≤

∆ + 2 IF ∆ IS EVEN,

∆ + 1 IF ∆ IS ODD.

אהרוני, של תוצאות למספר חדשות הוכחות מקבלים אנו שלנו, מהתוצאות כמסקנה

אנו בנוסף, בגרפים. ססגוניות תלויות בלתי קבוצות על [ABKK19] וקים קים בריגס,

הבאה: החדשה התוצאה את מוכיחים

יהי טבעי. מספר n ≥ 1 ויהי ,∆ מקסימלית דרגה בעל טפרים נטול גרף G יהי משפט.

אזי, .Gב־ n בגודל תלויות בלתי קבוצות A1, . . . , At יהיו .t =
⌊(

∆
2 + 1

)
(n− 1)

⌋
+ 1

1 ≤ i1 < i2 < · · · < in ≤ t כאשר ,{ai1 , . . . , ain} ׳׳ססגונית״ תלויה בלתי קבוצה קיימת
.j לכל aij ∈ Aij ו־

אנו ,t טבעי מספר בהינתן .V קודקודים קבוצת על סימפלציאלי קומפלקס K יהי

קומפלקס מגדירים

Tt (K) = {η ∪ τ : η ∈ K, τ ⊂ V, |τ | ≤ t}

= {σ ⊂ V : ∃η ⊂ σ, |σ \ η| ≤ t, η ∈ K}.

הקומפלקסים בין הקשר את מתארים אנו .Tt (K) הקומפלקסים את חוקרים אנו 5 בפרק

העיקרי העיסוק .[MO11]ב־ ואוליוורוס מונטחנו שהוכיחו הלי מסוג משפטים לבין האלה

ידוע אם Tt (K) של המטיטות על או ליריי מספרי על להגיד ניתן מה בשאלה הוא שלנו

זה בפרק שלנו העיקרית התוצאה d־ליריי. או d־מטיט הוא K המקורי שהקומפלקס

היא:

הוא Tt (K) אז d־מטיט, הוא K אם המקיים: h(t, d) מספר קיים dו־ t לכל משפט.

,h(t־ליריי. d)

מתקיים ,t = 1 עבור .h(t, 1) = 2t + 1 הדוק חסם מקבלים אנו ,d = 1 עבור

,d = 2, t = 1 הפרטי במקרה אופטימלי. לא החסם זה במקרה .h(1, d) = d2 + 2d

הבא: ההדוק החסם את מוכיחים אנו
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סופיות: קבוצות משפחת של העצב

הקבוצות אוסף S(X) יהי .V קודקודים קבוצת על סימפלציאלי קומפלקס X יהי משפט.

הבאה: התכונה את המקיימות {v1, . . . , vk} ⊂ V

ש־ כך X של σ1, . . . , σk+1 מקסימליות פאות קיימות

,i ∈ [k] עבור vi /∈ σi •

.1 ≤ i < j ≤ k + 1 עבור vi ∈ σj •

d′(X)־מטיט. הוא X אזי, .S(X)ב־ קבוצה של המקסימלי הגודל d′(X) יהי

לתכונות הקשורות קומפלקסים של משפחות של המטיטות את חוקרים אנו מכן לאחר

הן: 3 בפרק שלנו המרכזיות התוצאות והיפרגרפים. גרפים של שונות

הגודל זהו כלומר, .H של המינימלי הכיסוי גודל את τ(H)ב־ נסמן היפרגרף. H יהי
מספר בהינתן ההיפרגף. צלעות כל את חותכת אשר קודקודים קבוצת של המינימלי

הקומפלקס את נגדיר ,p טבעי

CovH,p = {F ⊂ H : τ(F) ≤ p}.

קומפלקס נגדיר בנוסף,

IntH = {F ⊂ H : A ∩B 6= ∅ ∀A,B ∈ F}.

הנ׳׳ל: הקומפלקסים של המטיטות על הבאים ההדוקים החסמים את מוכיחים אנו

־
((
r+p
r

)
− 1
)
הוא CovH,p אזי, .r היותר לכל בגודל צלעות בעל היפרגרף H יהי משפט.

מטיט.

1־מטיט.
2

(
2r
r

)
הוא IntH אזי, .r היותר לכל בגודל צלעות בעל היפרגרף H יהי משפט.

שניים אף אשר קודקודים אוסף היא Gב־ תלויה בלתי קבוצה גרף. G = (V,E) יהי

הסימפלציאלי הקומפלקס להיות In(G) את נגדיר צלע. ידי על מחוברים אינם מתוכם

אינן אשר הקודקודים קבוצות הם שלו והסימפלקסים G הגרף קודקודי הם שקודקודיו

.n בגודל תלויה בלתי קבוצה מכילות

של שונות משפחות עבור In(G) הקומפלקסים של המטיטות את חוקרים אנו 4 בפרק

מוכיחים: אנו חסומה. מקסימלית דרגה בעלי הגרפים במשפחת מתמקדים אנו גרפים.

אזי, .∆ היותר לכל מקסימלית דרגה בעל גרף G יהי משפט.

C(In(G)) ≤ ∆(n− 1).
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תקציר

בשם פשוטות בניין אבני מאוסף המורכב טופולוגי מרחב הוא סימפלציאלי קומפלקס

מסוימת גיאומטרית או קומבינטורית לבעיה לשייך ניתן קרובות לעיתים סימפלקסים.

לעיתים חושפת הקומפלקס של הטופולוגי המבנה חקירת מתאים. סימפלציאלי קומפלקס

המקורית. הבעיה על מידע

של שונים וגיאומטריים קומבינטוריים טופולוגיים, היבטים חוקרים אנו זאת בעבודה

עוסקים שאנו מרכזיות תכונות שלוש ביניהם. הקשר ואת סימפלציאלים קומפלקסים

הבא: באופן המוגדרות קומפלקס, של ו־d־יציגות d־מטיטות d־ליריי, תכונת הן בהן

מושרה קומפלקס תת לכל H̃k (Y ;F) = 0 אם d־ליריי נקרא X קומפלקס שדה. F יהי
עבורו המינימלי dה־ הוא ,L(X)ב־ המסומן ,X של ליריי מספר .k ≥ d ולכל X של Y

של התורשתי״ ההומולוגי ה״מימד כעל ליריי מספר על לחשוב אפשר d־ליריי. הוא X

הקומפלקס.

אנו .Xב־ τ יחידה מקסימלית בפאה המוכל d היותר לכל בגודל סימפלקס σ ∈ X יהי

הקומפלקס כי אומרים

X ′ = X \ {η ∈ X : σ ⊂ η ⊂ τ}

ניתן אם d־מטיט נקרא X הקומפלקס אלמנטרי. d־מיטוט צעד ידי על Xמ־ מתקבל

המטיטות אלמנטריים. d־מיטוט צעדי של סדרה ביצוע ידי על שלו הפאות כל את להסיר

d־מטיט. הוא X עבורו המינימלי d המספר היא ,C(X) ידי על המסומנת ,X של

הסימפלציאלי הקומפלקס הוא המשפחה של העצב קבוצות. של משפחה F1, . . . , Fn תהי

N({F1, . . . , Fn}) = {I ⊂ [n] : ∩i∈IFi 6= ∅}.

.Rdב־ קמורות קבוצות משפחת של לעצב איזומורפי הוא אם d־יציג נקרא X קומפלקס

שכל הראה הוא .[Weg75]ב־ וגנר יד על לראשונה נחקר הנ׳׳ל התכונות שלושת בין הקשר

ו־d־ d־ליריי תכונות d־ליריי. הוא d־מטיט קומפלקס וכל d־מטיט, הוא d־יציג קומפלקס

.([Kal84, AK85, KM05] למשל (ראה הלי מטיפוס בבעיות מרכזי תפקיד משחקות מטיטות

המטיטות. בתכונת עוסקים אנו זאת בתיזה ו־4) 3 (פרקים הראשונים הפרקים בשני

הוא הנ׳׳ל הכלים אחד .X קומפלקס של המטיטות לחסימת כלים מספר מפתחים אנו

הוא X שבו הפרטי במקרה [MT09] ב־ וטנצר מטושק ידי על הוכח אשר הבא, המשפט
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בפקולטה משולם רועי פרופסור של בהנחייתו בוצע המחקר
למתמטיקה.

בכנסים למחקר ושותפיו המחבר מאת כמאמרים פורסמו זה בחיבור התוצאות מן חלק

העדכניות גרסאותיהם אשר המחבר, של הדוקטורט מחקר תקופת במהלך ובכתבי־עת

הינן: ביותר

Minki Kim and Alan Lew. Complexes of graphs with bounded independence number. Israel
J. Math. to appear. arXiv:1912.12605.

Minki Kim and Alan Lew. Complexes of graphs with bounded independence number (extended
abstract). Sém. Lothar. Combin., 84B:Art. 39, 12, 2020.

Alan Lew. Collapsibility of simplicial complexes of hypergraphs. The Electronic Journal of
Combinatorics, 26(4):P4.10, 2019.

Alan Lew. Representability and boxicity of simplicial complexes. Discrete Comput. Geom.,
2021.

תודות

ועידודו. הנחייתו על משולם לפרופסור מודה אני

בהשתלמותי הנדיבה הכספית התמיכה על לטכניון מודה אני





טופולוגית בקומבינטוריקה מחקרים

מחקר על חיבור

התואר לקבלת הדרישות של חלקי מילוי לשם

לפילוסופיה דוקטור

לאו אלן

לישראל טכנולוגי מכון ־־־ הטכניון לסנט הוגש

2021 אוגוסט חיפה התשפ״א אלול





טופולוגית בקומבינטוריקה מחקרים

לאו אלן


	List of Figures
	Abstract
	Abbreviations and Notations
	1 Introduction
	1.1 Minimal exclusion sequences and collapsibility of complexes of hypergraphs
	1.2 Complexes of graphs with bounded independence number
	1.3 Leray numbers of tolerance complexes
	1.4 Representability and boxicity of simplicial complexes
	1.5 Complexes of line-free sets in finite affine planes
	1.6 Laplacian eigenvalues of complexes of flags

	2 Background
	2.1 Simplicial complexes
	2.2 Simplicial homology
	2.2.1 Nerve theorems
	2.2.2 Relative homology
	2.2.3 Cohomology and Alexander duality
	2.2.4 Leray numbers
	2.2.5 Weighted Laplacians

	2.3 Collapsibility
	2.3.1 Basic properties

	2.4 Helly-type theorems
	2.A Nerve theorems from double complexes
	2.A.1 A double complex from a partition
	2.A.2 The Mayer-Vietoris double complex


	3 Minimal exclusion sequences and collapsibility of complexes of hypergraphs
	3.1 A bound on the collapsibility of a complex
	3.2 Collapsibility of independence complexes
	3.3 Complexes of hypergraphs
	3.4 More complexes of hypergraphs
	3.5 More applications of minimal exclusion sequences
	3.5.1 Complexes from projective varieties
	3.5.2 Matrices with bounded maximal rank
	3.5.3 Complexes of graphs with bounded matching number and some conjectures


	4 Complexes of graphs with bounded independence number
	4.1 Preliminaries on graphs
	4.2 Upper bounds for collapsibility numbers
	4.3 Chordal graphs
	4.4 Graphs with bounded maximum degree
	4.4.1 The n3 case and claw-free graphs

	4.5 Lower bounds on Leray numbers
	4.5.1 Extremal examples
	4.5.2 A negative answer to Question 1.2.4
	4.5.3 Leray number of the disjoint union of graphs


	5 Leray numbers of tolerance complexes
	5.1 Some topological preliminaries
	5.2 Proof of Theorem 1.3.5
	5.3 Improved bound for d=2,  t=1
	5.4 Examples of 1-tolerance complexes

	6 Representability and boxicity of simplicial complexes
	6.1 Intersection of simplicial complexes
	6.2 Lower bounds on d-boxicity
	6.3 Upper bounds on representability
	6.4 Boxicity of complexes without large missing faces
	6.5 Representability of complexes without large missing faces

	7 Complexes of line-free sets in finite affine planes
	7.1 Proof outline
	7.2 Stable blocking sets
	7.3 The homology of the subcomplexes Yq and q
	7.4 Complexes of hyperplane-free sets

	8 Laplacian eigenvalues of complexes of flags
	8.1 q-Binomial coefficients
	8.2 The weight function
	8.3 Subspace inclusion matrices
	8.3.1 Proof of Theorem 1.6.2


	9 Conclusion
	9.1 Collapsibility of complexes from families of matrices and graphs
	9.2 Leray numbers of tolerance complexes
	9.3 Representability of complexes without large missing faces
	9.4 Complexes of hyperplane-free sets and stability of blocking sets in finite affine spaces
	9.5 Papikian's conjecture on the eigenvalues of complexes of flags

	Bibliography
	Hebrew Abstract

