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Abstract

Let X be a simplicial complex. X is called d-Leray if the homology groups of any
induced subcomplex of X vanish in dimensions d and higher. X is called d-collapsible
if it can be reduced to the void complex by sequentially removing a simplex of size
at most d that is contained in a unique maximal face. X is called d-representable
if it is the nerve of a family of convex sets in R%. It was shown by Wegner that
any d-representable complex is d-collapsible and any d-collapsible complex is d-Leray.
Moreover, many combinatorial properties of families of convex sets are known to follow
from the d-Lerayness or d-collapsibility of the nerve of the family.

In this thesis we study different combinatorial, topological and geometric aspects
of simplicial complexes and the relations between them. We focus in particular on the
notions of d-Lerayness, d-collapsibility and d-representability.

First, we prove some general upper bounds on the collapsibility of a complex X (the
minimum integer d such that X is d-collapsible). We then apply these bounds to several
families of simplicial complexes related to different properties of graphs and hypergraphs.
As an application, we obtain some old and new results concerning “rainbow independent
sets” in graphs.

Inspired by results of Montejano and Oliveros, we study the t-tolerance complex of
a complex X. This is the complex whose simplices are formed as the union of a simplex
in X and a set of size at most t. We show that, for any ¢ and d, there is a function
h(t,d) such that the ¢-tolerance complex of any d-collapsible complex is h(t, d)-Leray.

Next, we study the d-bozicity of a simplicial complex X, which is the minimal &
such that X can be written as the intersection of k d-representable complexes. This is
an extension of the classical notion of boxicity of graphs introduced by Roberts. We
prove tight upper bounds and corresponding lower bounds on the d-boxicity of simplicial
complexes with n vertices, improving upon previous work by Witsenhausen. We also
present a related conjecture about the representability of complexes on n vertices.

Finally, we study certain complexes associated to linear and affine spaces over finite
fields: we investigate the topology of the complex of line-free sets in a finite affine plane
and its relation to blocking sets having certain stability properties, and we study the
asymptotic behavior of the Laplacian eigenvalues of complexes of flags in Fy, settling a

special case of a conjecture of Papikian.






Abbreviations and Notations

the set {1,2,...,n}

the collection of all subsets of size k of the set V

the collection of all subsets of the set V'

the collection of all k-dimensional simplices of the complex X
the k-dimensional skeleton of the complex X

the subcomplex of X induced by U

the star of the simplex ¢ in the complex X

the link of the simplex ¢ in the complex X

the dimension of the simplex o

the dimension of the complex X

the join of the complexes X and Y

the space of R-valued k-chains of the complex X

the space of R-valued k-cochains of the complex X

the k-th reduced homology group of X with coefficients in R
the k-th reduced cohomology group of X with coefficients in R
the collapsibility of a complex X

the Leray number of a complex X

the representability of a complex X

the maximal dimension of a missing face of X

the nerve of a family of sets C

the complex of sub-hypergraphs of H with covering number at

most p

the complex of pairwise intersecting sub-hypergraphs of H

the complex whose missing faces are the independent sets of size n

in G

minimal integer k£ such that any family of k independent sets of

size n in G have a rainbow independent set of size n

the maximum number of vertices in an r-uniform t-critical hyper-

graph

the t-tolerance complex of K



the boxicity of the graph G

the d-boxicity of the complex X

the finite field of order ¢

the complex of line-free subsets of Fg

the complex of line-free subsets of F2 \ {0}
the complex of flags in Fy

the k-dimensional weighted upper Laplacian on X



Chapter 1

Introduction

A simplicial complex is a topological space formed as the union of simple building
blocks, called simplices. Simplicial complexes can be naturally associated to various
combinatorial or geometric objects, and the topological structure of these complexes
often sheds light on combinatorial properties of the original object.

In this thesis we study different topological, combinatorial and geometric aspects of
simplicial complexes and the relations between them. We focus on the properties of
d-Lerayness, d-collapsibility and d-representability, which are defined as follows:

Let X be a simplicial complex on vertex set V. For U C V, the subcomplex of X
induced by U is the complex X[U] = {o € X : ¢ C U}. Let F be a field. X is called
d-Leray if H, (X[U);F) =0 for any U C V and any k > d. The Leray number of X,
denoted by L(X), is the minimum d such that X is d-Leray.

Let 1 be a simplex of X of size at most d that is contained in a unique maximal face
7 € X. Then, we say that the complex X' = X \ {o € X : n C o C 7} is obtained from
X by an elementary d-collapse. The complex X is called d-collapsible if there exists a
sequence of elementary d-collapses from X to the void complex (). The collapsibility of
X, denoted by C(X), is the minimum d such that X is d-collapsible.

Let C ={C1,...,Cp} be a family of sets. The nerve of C is the simplicial complex

N(C)={I C[m]: NMierC; # 0}.

A complex X is called d-representable if it is isomorphic to the nerve of a family of
convex sets in R?. The representability of X, denoted by rep(X), is the minimum d
such that X is d-representable.

The notions of d-collapsibility and d-Lerayness were introduced by Wegner in
the seminal paper [Weg75], where he showed that any d-representable complex is d-
collapsible, and any d-collapsible complex is d-Leray. In the following years, further
research was done on the relations between these properties (see e.g. [MT09, Tan10b])
and on combinatorial applications, in particular in the context of Helly-type problems
(see e.g. [Kal84, AK85, KMO05]).



Here, we first develop some tools for bounding the collapsibility of a simplicial
complex. We then apply these tools for studying various families of complexes associated
to different properties of graphs, hypergraphs and matrices.

Next, we study the topology of “tolerance complexes”, a family of simplicial com-
plexes related to a “tolerant version” of Helly’s theorem due to Montejano and Oliveros
([MO11)).

We then study the d-boxicity of a complex, a notion related to d-representability,
which generalizes the classical notion of boxicity of a graph due to Roberts ([Rob69]).

Finally, we study two families of complexes associated to vector spaces over finite
fields. The first ones are the complexes of line-free sets in finite affine planes. In order
to determine the homology of these complexes, we study certain stability properties of
affine blocking sets. The second family that we study is that of the complexes of flags
in Fj. We study the Laplacian eigenvalues of these complexes, solving a special case of
a conjecture of Papikian ([Papl6]).

In the following sections we give a detailed account of our results.

1.1 Minimal exclusion sequences and collapsibility of com-

plexes of hypergraphs

Let H be a finite hypergraph. We identify ‘H with its edge set. The rank of H is the
maximal size of an edge of H.
A set Cis a cover of H if ANC # 0 for all A € H. The covering number of H,
denoted by 7(#), is the minimal size of a cover of H.
For p € N, let
Covyp={F CH: 7(F) <p}.

That is, Covyy is a simplicial complex whose vertices are the edges of H and whose
simplices are the hypergraphs F C H that can be covered by a set of size at most
p. Some topological properties of the complex Cov([,;]), were studied by Jonsson in
[Jon08].

The hypergraph H is called pairwise intersecting if AN B # () for all A, B € H. Let

Inty ={F CH: AnB#0forall A, Be F}.

So, Inty is a simplicial complex whose vertices are the edges of H and whose simplices
are the hypergraphs F C H that are pairwise intersecting.

Our main results are the following:

Theorem 1.1.1. Let H be a hypergraph of rank r. Then Covy, is (("17) —1)-
collapsible.

Theorem 1.1.2. Let H be a hypergraph of rank r. Then Inty is %(%T)—collapsz’ble.



The following examples show that these bounds are sharp:

o Let H = ([r;fp}) be the complete r-uniform hypergraph on r + p vertices. The
covering number of H is p+ 1, but for any A € H the hypergraph H \ {A} can be
covered by a set of size p, namely by [r+ p]\ A. Therefore the complex Cov([rtp]),p
is the boundary of the ((ij) — 1)-dimensional simplex, so it is homeomorphic
to a (("?) — 2)-dimensional sphere. Hence, Cov([rjp]) is not (("t?) — 2)-Leray,

7p
and therefore it is not (("1?) — 2)-collapsible.

o Let H = ([M) be the complete r-uniform hypergraph on 2r vertices. Any A € H

T
intersects all the edges of H except the edge [2r]\ A. Therefore the complex Int([zT])
is the boundary of the %(%T)—dimensional cross-polytope, so it is homeomorphic
to a (%(2:) — 1)-dimensional sphere. Hence, Int([zr]) is not (%(2:) — 1)-Leray, and

therefore it is not (%(2:) — 1)-collapsible.

A related problem was studied by Aharoni, Holzman and Jiang in [AHJ19], where
they show that for any r-uniform hypergraph H and p € Q, the complex of hypergraphs
F C H with fractional matching number (or equivalently, fractional covering number)
smaller than p is ([rp] — 1)-collapsible.

Our proofs rely on two main ingredients. The first one is the following theorem:

Theorem 1.1.3. Let X be a simplicial complex on vertex set V. Let S(X) be the
collection of all sets {v1,...,vx} CV satisfying the following condition:

There exist mazimal faces 01,02, ...,0k+1 of X such that:

e v; ¢ o; for alli € [k],

e v, cojforalll <i<j<k+1.

Let d'(X) be the mazimum size of a set in S(X). Then X is d'(X)-collapsible.

Theorem 1.1.3 is a special case of a more general result, due essentially to Matousek
and Tancer (who stated it in the special case where the complex is the nerve of a family
of finite sets, and used it to prove the case p = 1 of Theorem 1.1.1; see [MT09]).

The second ingredient is the following combinatorial lemma, proved independently
by Frankl and Kalai.

Lemma 1.1.4 (Frankl [Fra82], Kalai [Kal84]). Let {Ai,...,Ax} and {Bi,..., By} be

families of sets such that:
o |A;| <r, |B;j| <p forallic k],
e A;NB; =10 foralli € [K],

e AiNBj#0 foralll1 <i<j<k.



Then
k< (r-i—p).
r

Finally, we present some additional applications of Theorem 1.1.3. In particular, we
obtain the following result:
Let F be a field. Let A be a finite set of matrices in F™*". Let

p(A) = max{rank(A) : A € span(A)}.
For r € N, define the simplicial complex
My, ={BCA: p(B) <r}.

Theorem 1.1.5. Assume that F is infinite. Then, the complex M, is r(r + 1)-

collapsible.

1.2 Complexes of graphs with bounded independence num-

ber

Let G = (V, E) be a (simple) graph. A set I C V is called an independent set in G if no
two vertices in I are adjacent in G. The independence number of G, denoted by a(G),
is the maximal size of an independent set in G. For U C V, we denote by G[U] the
subgraph of G induced by U. For every integer n > 1, we define the simplicial complex

I,(G) = {U CV: a(G[U]) < n}.

For example, I2(G) is the clique complex of G, i.e. U € I3(G) if and only if G[U] is a
complete graph. For any graph G, the complex I (G) is just the empty complex {0}.

Here, we study the collapsibility of the complexes I,,(G), for several classes of graphs.
Our main motivation is the following problem, presented by Aharoni, Briggs, Kim and
Kim in [ABKK19]:

Let F = {A1,...,An} be a family of (not necessarily distinct) non-empty subsets
of some finite set V. For a positive integer n < m, a rainbow set of size n for F is a set
of n distinct elements in V' of the form {a;,,...,a;,}, where 1 <i; <ig <--- <i, <m
and a;; € A;; for each j <n.

Let G be a graph, and let F be a finite family of independent sets in G. A rainbow
independent set in G with respect to F is a rainbow set for F that forms an independent
set in G. For a positive integer n, let fi(n) be the minimum integer ¢ such that every
collection of ¢t independent sets of size n in G has a rainbow independent set of size n.

For a graph class G and a positive integer n, let

fg(n) = sup fa(n).

Geg
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The connection between the complexes I,,(G) and the parameters fg(n) is given by

the following version of Kalai and Meshulam’s “topological colorful Helly theorem”:

Theorem 1.2.1 (Kalai and Meshulam [KMO05]). Let X be a d-collapsible simplicial
complex on vertex set V, and let X¢ ={oc C V : 0 ¢ X}. Then, every collection of d+ 1

sets in X has a rainbow set belonging to X°.

Theorem 1.2.1 is a special case of Theorem 2.1 in [KMO05] (see Section 2.4 for a

detailed derivation). An immediate application of Theorem 1.2.1 gives us:

Proposition 1.2.2. Let G be a graph and n > 1 an integer. Then,
fa(n) < C(IL(G)) + 1.

Proof. Let G = (V, E). Recall that A C V does not belong to I,,(G) if and only if A
contains an independent set of size n in G. Therefore, by Theorem 1.2.1, every family
of C(I,(G)) + 1 independent sets of size n in G has a rainbow set that contains an

independent set of size n. O

The study of rainbow independent sets originated as a generalization of the “rainbow
matching problem” in graphs (note that a matching in a graph is an independent set
in its line graph); see e.g. [AB09, ABC*19, BGS17]. The application of collapsibility
numbers in the study of rainbow matchings was initiated in [AHJ19], and further
developed in [BK19]. In [HL20], the Leray number of complexes of graphs with bounded
matching number was studied, and some applications to rainbow matching problems
were found.

In [ABKK19], Aharoni et al. proved some results about fg(n) for different classes
of graphs. One of the main conjectures in [ABKK19] is the following.

Conjecture 1.2.3 (Aharoni, Briggs, Kim, Kim [ABKK19]). Let D(A) be the class of

graphs with mazimum degree at most A, and let n be a positive integer. Then,

A+1

foay(n) = [2-‘ (n—1)+1.

It was shown in [ABKK19] that Conjecture 1.2.3 is true for A <2 and for n < 3. In

the general case, the best bounds observed by Aharoni et al. are given by

A+1
[; w (n=1)+1< fp@ay(n) <Al —1) +1.
It is natural to ask whether the following extension of Conjecture 1.2.3 holds:

Question 1.2.4 (Aharoni [Ahal9]). Let G be a graph with mazimum degree at most
A, and let n be a positive integer. Does the following bound hold?

o) <[22 -,



Our main results are the following:
Theorem 1.2.5. Let G = (V, E) be a chordal graph and n > 1 an integer. Then,
C(I,(G)) <n-1.
Moreover, if a(G) > n, then C(I,(G)) =n — 1.

Theorem 1.2.6. Let G = (V, E) be a graph with mazimum degree at most A and n > 1

an integer. Then,

C(1,(G)) < Aln—1).

The bound in Theorem 1.2.6 is tight only for A < 2. In the case n < 3 we can prove
the following tight bounds, for general A:

Theorem 1.2.7. Let G = (V, E) be a graph with mazximum degree at most A. Then,

Theorem 1.2.8. Let G = (V, E) be a graph with maximum degree at most A. Then,

A+2 if A is even,
A+1 if A is odd.

C(I3(G)) <

Theorems 1.2.6, 1.2.7 and 1.2.8 settle Question 1.2.4 affirmatively in the special

cases where A < 2 or n < 3. Unfortunately, the bound in Question 1.2.4 does not hold
in general: In Section 4.5 we present a family of counterexamples to the case A = 3.

Combining these results with Proposition 1.2.2, we obtain corresponding upper

bounds for fg(n), thus recovering several results first proved in [ABKK19]. The

following bound, however, is new:

Theorem 1.2.9. Let G be a claw-free graph with mazximum degree at most A, and let

n > 1 be an integer. Then,

fa(n) < Kg + 1) (n — 1)J +1.

Theorem 1.2.9 shows that Conjecture 1.2.3 holds for the subclass of claw-free graphs
with maximum degree at most A, in the case where A is even. The proof of Theorem

1.2.9 relies on bounding the collapsibility of certain subcomplexes of the complex I,,(G).

1.3 Leray numbers of tolerance complexes

Let ‘H be an r-uniform hypergraph on vertex set V. Recall that the covering number of
‘H, denoted by 7(#H), is the minimum size of a set U C V such that U intersects all the

10



edges of H. The hypergraph H is called t-critical if 7(H) =t and 7(H') < t for every
hypergraph #H' that is obtained from H be removing an edge. The Erdds-Gallai number
n(r,t) is the maximum number of vertices in an r-uniform ¢-critical hypergraph. Erd8s
and Gallai showed in [EG61] that n(2,t) = 2t and n(r,2) = L(%)QJ For general r
and t, Tuza proved in [Tuz85] the bound

r+t—1 r+t—2
t) <
arn< (TN (7).

which is tight up to a constant factor. In particular, we have n(r,t) = O(t"!) for r
fixed and t — oo, and n(r,t) = O(r?) for ¢ fixed and r — co.

Let F be a family of sets. We say that F has a point in common with tolerance t
if there is a subfamily ' C F such that |F'| > |F| —t and Nacr A # 0. In [MO11],
Montejano and Oliveros proved the following Helly-type theorem.

Theorem 1.3.1 (Montejano-Oliveros [MO11, Theorem 3.1]). Let F be a family of con-
vex sets in RY. If every subfamily F' C F of size at most n(d 4 1,t + 1) has a point in

common with tolerance t, then F has a point in common with tolerance t.

In fact, it was shown in [MO11] that any family of sets satisfying a Helly property
satisfies also a corresponding “tolerant Helly property”. In terms of simplicial complexes,
this may be stated as follows:

Let K be a simplicial complex on vertex set V', and let t > 0 be an integer. A
missing face of K is a set 7 C V such that 7 ¢ K but o € K for any o C 7. Let h(K)
be the maximal dimension of a missing face of K.

Define the simplicial complex

T (K)={nuUr:neK,tCV,|r| <t}
={oCcV:3InCo,o\n <t,ne K}

We call T; (K) the t-tolerance complex of K. Note that Ty (K) = K for every complex

K.

Theorem 1.3.2 (Montejano-Oliveros [MO11, Theorem 1.1]). Let K be a simplicial com-
plex with h(K) < d, and let t > 0 be an integer. Then, h(T; (K)) < n(d+1,t+1)—1.

It is known that any d-Leray complex K satisfies h(K) < d (see e.g. [Weg75]).
By replacing the h(K) with the collapsibility or Leray number of K, the following

conjectures arise:

Conjecture 1.3.3. Let K be a d-Leray simplicial complex. Then, T, (K) is (n(d+1,t+
1) = 1)-Leray.

Conjecture 1.3.4. Let K be a d-collapsible simplicial complex. Then, Ty (K) is (n(d+
1,t 4+ 1) — 1)-collapsible.

11



Let t > 1, and let A, B be two disjoint sets of size ¢ + 1 each. Let K be the simplicial
complex on vertex set AU B whose maximal faces are the sets A and B. It is easy to
check that K is 1-collapsible, and therefore 1-Leray (in fact, it is easy to show that it
is even 1-representable). On the other hand, the complex T; (K) is the boundary of
the simplex AU B. That is, 7; (K) is a 2t-dimensional sphere. In particular, it is not
2t-Leray. Therefore, for d = 1, the bound 7n(2,t + 1) — 1 = 2t 4+ 1 in Conjectures 1.3.3
and 1.3.4 cannot be improved.

For ¢t = 1, it was shown in [MO11, Theorem 3.2] that there exists a d-representable
complex K such that 77 (K) is the boundary of a Q(%)w — 1>—dimensional simplex.

In particular, 7; (K) is not (L(%)q — 2)—Leray. Therefore, for ¢ = 1, the bound
nd+1,2)—1= L(%)QJ — 1 in Conjectures 1.3.3 and 1.3.4 cannot be improved.

Our main result is the following weak version of Conjectures 1.3.3 and 1.3.4:

Theorem 1.3.5. Let K be a d-collapsible complex. Let t > 0. Then, T (K) is h(t,d)-
Leray, where h(0,d) = d for all d > 0, and for t > 0,

min{¢,d}
) = S (‘j)(h(t—s,d)ﬂ) +d
s=1

Note that we require the stronger property (collapsibility) for K, and obtain only
the weaker property (Leray) for the tolerance complex. For d = 1, we obtain the sharp
bound h(t,1) =2t +1=n(2,t+1) — 1. For d > 1, h(t,d) is larger than the conjectural
bound n(d + 1, + 1) — 1. However, for fixed ¢, we have h(t,d) = O(d**1), which is of
the same order of magnitude as that of n(d + 1,¢+ 1) — 1.

In the special case d = 2,t = 1, we can prove the following stronger bound:

Theorem 1.3.6. Let K be a 2-collapsible complex. Then, T; (K) is 5-Leray.

Note that 5 = 7(3,2) — 1, so the bound in Theorem 1.3.6 is tight.

1.4 Representability and boxicity of simplicial complexes

Let F = {F1,...,F,} be a family of sets. The intersection graph of F is the graph on
vertex set [n], whose edges are the pairs {i,j} for 1 <¢ < j < n such that F; N Fj # 0.
A graph G = (V, E) is called an interval graph if it is isomorphic to the intersection
graph of a family of compact intervals in the real line.

Let G be a graph. The bozicity of G, denoted by box(G), is the minimal integer
k such that G can be written as the intersection of k interval graphs. Equivalently,
box(G) is the minimal k£ such that G is isomorphic to the intersection graph of a family
of axis-parallel boxes in R¥.

The notion of boxicity was introduced by Roberts in [Rob69]. The following result
was first proved by Roberts in [Rob69], and later rediscovered by Witsenhausen in
[Wit80]:
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Theorem 1.4.1 (Roberts [Rob69], Witsenhausen [Wit80, Theorem 1]). Let G be a graph

with n vertices. Then
n

< |=1.
boz(G) < LQJ
Moreover, box(G) = %5 if and only if G is the complete %-partite graph with sides of size
2.

We extend the notion of boxicity from graphs to simplicial complexes as follows:

Let X be a simplicial complex. For every d > 1, we define the d-boxicity of X,
denoted by boxy(X), as the minimal & such that X can be written as the intersection
of k d-representable simplicial complexes.

Let G = (V,E) be a graph. The clique complex of G, denoted by X(G), is the
simplicial complex on vertex set V' whose simplices are the cliques in G, that is, the
sets U C V satisfying {u,w} € F for all u,w € U such that u # w.

Let B = {Bj,...,B,} be a family of axis-parallel boxes in R*. It is well known
that any ¢ boxes By, ..., B;, have a point in common if and only if B;, N B;, # (0 for
every 1 < j < r <t. Therefore, the nerve N(B) is exactly the clique complex of the
intersection graph of B. So, for any graph G, we have box(G) = box1 (X (G)). Thus, we
can see the parameters boxy(X) as higher dimensional generalizations of the boxicity of
a graph.

Let X be a simplicial complex on vertex set V. Recall that a missing face of X is a
set 7 C V such that 7 ¢ X but ¢ € X for any ¢ C 7, and that h(X) is the maximal
dimension of a missing face of X. Note that a complex X satisfies h(X) = 0 if and only
if it is a simplex, and it satisfies h(X) = 1 if and only if it is the clique complex of some
graph G (the missing faces of X (G) are the edges of the complement graph of G).

A family F of subsets of size k of a set V of size n is called a Steiner (¢, k,n)-system
if any subset of V of size t is contained in exactly one set of F. If any subset of V' of size
t is contained in at most one set of F, then F is called a partial Steiner (t, k,n)-system.
A Steiner (2,3, n)-system is also called a Steiner triple system.

In [Wit80, Theorem 2], Witsenhausen extended Theorem 1.4.1, proving that any
simplicial complex X with n vertices whose missing faces are all of dimension exactly d
has d-boxicity at most % (7). On the other hand, he showed in [Wit80, Theorem 3] that
a complex X whose missing faces form a Steiner triple system (in particular, h(X) = 2)
has 2-boxicity at least %(g)

Here, we extend Witsenhausen’s lower bound to all values of d, and prove an

improved upper bound, matching the lower bound.

Theorem 1.4.2. Let X be a simplicial complex with n vertices, satisfying h(X) < d.

Then )
boza(X) < Lm <Z>J .

Moreover, if h(X) = d, then boxy(X) = ﬁ(g) if and only if the missing faces of X

form a Steiner (d,d + 1,n)-system.



To prove the equality case in Theorem 1.4.2 we will need the following result:

Theorem 1.4.3. Let X be a complex whose set of missing faces is a partial Steiner
(d,d + 1,n)-system M. Then, X cannot be written as the intersection of less than
M| d-Leray complexes. On the other hand, the d-boxicity of X is at most |[M|. As a
consequence,

bozy(X) = |M|.

It was proved by Rédl in [R6d85] that, for any d > 1, there exist partial Steiner
(d,d + 1,n)-systems of size (1 — 0(1))#1(3)' Therefore, the bound in Theorem 1.4.2
is asymptotically tight. Moreover, by a well known result of Keevash ([Keel4]), there
exist Steiner (d,d + 1,n)-systems for infinitely many values of n. Thus, the equality
case in Theorem 1.4.2 is achieved for infinitely many values of n.

The upper bound in Theorem 1.4.2 follows as a consequence of the next result:

Theorem 1.4.4. Let X be a simplicial complex on vertex set V. Let Vq,..., Vi be
subsets of V' satisfying Vi ¢ X for all i € [k], such that for any missing face T of X there

exists some i € [k] satisfying |7\ Vi| < 1. Then, X can be written as an intersection
X =N X,

where, for all i € [k], X; is a (|V;| — 1)-representable complex. In particular, X is
(Zle("/z| - 1)) -representable.

Finally, we present the following conjecture related to the representability of com-

plexes without large missing faces:

Conjecture 1.4.5. Let X be simplicial complex with n vertices, satisfying h(X) < d.

Then,
dn
X)<|——]|.
ot <[]
Moreover, rep(X) = % if and only if the missing faces of X consist of g7 pairwise

disjoint sets of size d + 1.

The d = 2 case of the conjecture follows from Robert’s theorem (Theorem 1.4.1)
and the d = n — 1 case follows from a result of Wegner (Theorem 6.3.3). Moreover, the
analogous bound is known to hold for Leray numbers (see [Adal4, Proposition 5.4]) and
for collapsibility ([KL19, Proposition 3.5]).

1.5 Complexes of line-free sets in finite affine planes

Let ¢ be a prime power and let I, be the finite field of order ¢q. A set o C Iﬁ‘g is called

line-free if it does not contain any affine line.
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We define the following simplicial complexes:
Xy = {J - Iﬁ‘g t o is line—free} ,

X, = {ocC Fg \ {0} : o is line-free} = X, \ 0.

A blocking set in Fg is a set of points that intersects all the affine lines. One can
build a blocking set of size 2q — 1 by taking the union of any two non-parallel lines. The

following theorem shows that there are no smaller blocking sets:

Theorem 1.5.1 (Jamison [Jam77], Brouwer-Schrijver [BS78]). The minimum size of

a blocking set in Fg is 2q — 1.

Note that a set o C Fg is line-free if and only if its complement is a blocking set.
Similarly, a set 7 C F2 \ {0} is line-free if and only if its complement is a blocking set

containing the origin. Therefore, by Theorem 1.5.1, we have
dim(X,) = dim(X,) = ¢* — 2¢.

The homology of the complexes X, and Xq seems to be quite “rich” (see Figures 1.1

and 1.2). We chose to focus on the top-dimensional homology groups Hg_o,(X,) and
Hp 5(Xy).

. 73 ifi=0,
H;(X5) = {

0 otherwise.
Z if i =2,
Hi(X3) =<7 ifi=3,
0 otherwise.
Zs if i =6,
- 7Y% ifi=1,
HiXa) =922 ;g
0 otherwise.

Figure 1.1: The homology of the complexes X, for ¢ < 4.
Our main result is the following:

Theorem 1.5.2.
z? ifq=2,
Hp o,(X,) =4 2" if ¢ =3,
74+ if g > 3,

and
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7?2 ifi=0,

0 otherwise.

Hi(X5) = {

Z if i =2,

Hi(X3)={ 7% ifi=3,
0 otherwise.

Zs if i =6,

- A 713 ifti=7

H;(X,) = ’

XD =35 i 8,
0 otherwise.

Figure 1.2: The homology of the complexes Xq, for ¢ < 4.

. . 7?2 if ¢ = 2,
Hq2—2q(‘-((1) = fq
1 .
79+ if g > 2.

Let B be a blocking set in Fg of size 2¢ — 1. We call B stable if for every point
v ¢ B there is some u € B such that B U {v} \ {u} is also a blocking set. We call B
strongly stable if 0 € B and for every point v ¢ B there is some v € B\ {0} such that
B U {v}\ {u} is also a blocking set.

One of the main tools in the proof of Theorem 1.5.2 is the following characterization

of stable and strongly stable blocking sets:

Theorem 1.5.3. Let B be a blocking set in Fz of size 2¢ — 1. Then, B is stable if and
only if B contains an affine line, and it is strongly stable if and only if it contains a

line through the origin.

1.6 Laplacian eigenvalues of complexes of flags

Let n > 3 be an integer and ¢ be a prime power. Let Fl, ; be the simplicial complex

n
q’

correspond to flags; that is, the simplices are the sets of subspaces {V1,...,Vi} such
that Vi C --- C V4.
A flag of length n — 1 is called a complete flag. Note that the complete flags are

whose vertices correspond to non-trivial linear subspaces of F”, and whose simplices

exactly the maximal faces of Fl,, ;. In particular, for any prime power ¢, Fl, 4 is a pure
(n — 2)-dimensional complex.

Let C*(Fl,,) be the space of real k-cochains on Fl,,, and let dy : C*(Fl,,) —
C*1(Fl,, ) be the k-th coboundary operator.

Let Fl, 4(k) be the set of k-dimensional simplices of Fl,, ;. For o = {Vi,...,Viy1} €
Fl,, 4(k), let w(o) be the number of complete flags extending . That is, w(o) is the
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number of maximal faces of Fl,, ; containing 0. We define an inner product on the

vector space C*(Fl, ,) by

(@)= Y w(o)d(o)y(o).

oEFl, 4(k)

Let dj be the operator adjoint to dj with respect to this inner product.
We define the weighted upper k-Laplacian L} (Fl, ) : C*(Fl, ) — C*(FL, ) by

Ly (Fl, q) = djdg.

In [Papl6], Papikian conjectured the following:

Conjecture 1.6.1 (Papikian [Papl6]). Let n > 3 and let ¢ > 1 be a prime power. Let
0<k<n-—3. Then,

1. The number of distinct eigenvalues of Ly} (Fl,4) does not depend on q.

2. As q tends to infinity, the positive (i.e nonzero) eigenvalues of L;(Flmq) tend to

the integers
n—k—2n—-k—1n—%k,...,n—1.

Or, more formally: for any e > 0 there exists an integer qo such that, for ¢ > qo,
for any eigenwvalue X\ of L (Fl, q) there is somem € {n—k—2,n—k—1,...,n—1}
such that

A —m| <e.

Here, we prove the k = 0 case of the second part of Papikian’s conjecture:

Theorem 1.6.2. Let n > 3 and let q be a prime power. Then, for any € > 0 there is
an integer qo such that, for q > qo, any eigenvalue A # 0,n — 1 of Lar(Flmq) satisfies

IA—(n—-2)] <e

That is, as q tends to infinity, all nonzero eigenvalues of Lar(Fln,q) either are equal to

n—1 or tend ton — 2.
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Chapter 2

Background

2.1 Simplicial complexes

Let V be a finite set and let X C 2" be a family of sets. X is called a simplicial complex
ifo e X forall 7 € X and ¢ C 7. The set V is called the verter set of X. Unless
otherwise stated, we always assume that V = U,cx0o. A set 0 € X is called a simplex
or a face of X. The dimension of a simplex o € X is dim(o) = |o| — 1. For short, we
call a k-dimensional simplex a k-simplex. Let X (k) be the set of all k-simplices.

The dimension of the complex X, denoted by dim(X), is the maximal dimension of
a simplex in X.

A missing face of a complex X is a set 7 C V such that 7 ¢ X but ¢ € X for any
o C 7. We denote by h(X) the maximum dimension of a missing face of X. If all the
missing faces of X are of size 2 (that is, if h(X) = 1), then X is called a flag complex.

A subcomplex of X is a simplicial complex Y such that each simplex of Y is also a
simplex of X. The k-dimensional skeleton of X, denoted by X *) | is the subcomplex of
X consisting of all the faces of X of dimension k or less.

Let U C V. The subcomplex of X induced by U is the complex
X[Ul={ceX:0oCU}
Let 7 € X. We define the link of 7 in X to be the subcomplex
k(X,7)={ceX:onNnTt=0,0UT € X},

the star of 7 in X to be the subcomplex
st(X,7)={ceX:0UTe X}

and the costar of 7 in X to be the subcomplex
cost(X,7)={ceX:17¢c}.
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If 7 = {v}, we write Ik(X,v) = 1k(X,{v}), st(X,v) = st(X,{v}) and X \ v =
cost(X, {v}) = X[V\ {v}].
Let X1,..., X, be simplicial complexes on pairwise disjoint vertex sets. We define

the join of X1,..., X, to be the simplicial complex
w0 Xy = X1 xXox--x Xy, ={o1UoaU---Uoy,: 0; € X; for all i € [m]}.

Let v € V. If v € 7 for every maximal face 7 € X we say that X is a cone over v.
For U C V, we denote by 2V = {0 : o C U} the complete complex on vertex set U.

The complete k-dimensional complex on vertex set U is the complex

@HY® ={ocU: |o| <k+1}.

2.2 Simplicial homology

Let X be a simplicial complex on vertex set V and let k > —1. An ordered k-simplex
[vo, ..., vk is a k-dimensional simplex {vg,..., v} € X together with an order of its
vertices.

Let R be a commutative ring with unit element. Let C(X; R) be the free R-module

generated by the ordered k-simplices of X, under the relations

[’U(), <o 77}’9] = Sgn(”)[”ﬂ'(O)? B Uﬂ'(k)]?

for every k-simplex {vp,...,vx} € X and permutation 7 : {0,...,k} — {0,...,k}
(where sgn(m) € {1, —1} is the sign of the permutation).

The elements of Ck(X; R) are called k-chains.

We define a homomorphism J : Ci(X; R) — C_1(X; R) that acts on the spanning

set as follows:

k
Oxlvos o) = Y (=) 00,5 i1, Vi, O]
i=0
The operator Jy is called the boundary operator.
We define the group of k-cycles as Z(X; R) = Ker(0y) and the group of k-boundaries
as By(X; R) = Im(O11). For any k, we have By(X; R) C Z;(X; R), so we can define
the quotient

Hy(X; R) = Z(X; R)/Be(X; R).

The group fIk(X; R) is called the k-th reduced homology group of X with coefficients in
R.

For R = Z, we denote Hy, (X;Z) = Hy, (X).

If Hy (X;R) =0 for all k> —1, we call X acyclic (over R).

A useful tool for computing homology is the Mayer-Vietoris long exact sequence:
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Theorem 2.2.1 (Mayer-Vietoris). Let X,Y be simplicial complexes. Then, the follow-

ing sequence 1S exact
c = He (X NY;R) = Hy (X; R)@D Hy (Y5 R) = Hy (X UY;R) —» Hy (XNY5R) = -
A useful special case is the following:

Theorem 2.2.2. Let X be a simplicial complex on vertex set V', and let v € V. Then,

the following sequence is exact
o= Hy, (Ik(X,v); R) = Hi (X \v;R) = Hy, (X;R) = Hp_y (Ik(X,v);R) — --- .

Proof. Let A = X \ v and B = st(X,v). By Theorem 2.2.1, we have a long exact

sequence
- — Hy (AN B;R) — Hy (A;R) @D Hi (B;R) — Hy (AUB; R) = Hy_1 (ANB;R) — -+ .

Note that B is a cone over v, and therefore Hy, (B; R) = 0 for all k. Moreover, AUB = X
and AN B =1k(X,v). So, we obtain a long exact sequence

oo = Hp (Ik(X,v); R) = H, (X \ v; R) = Hy, (X;R) — Hy_, (Ik(X,v);R) — - - -,
as wanted. Il

The homology with field coefficients of a join of complexes can be computed by the

following simple formula:

Theorem 2.2.3 (Kiinneth Theorem). Let X = X * Xo *---x X,,,. Then,

Hi(X;F) = @ (X1, F) @ ® H,, (X F).

i1+ tim=i—m41,
—1<i; <dim(X;) Vje[m]

2.2.1 Nerve theorems

Another tool we will need is the Nerve Theorem: Let X1, ..., X,, be simplicial complexes.

The nerve of the family {Xj,..., X,,} is the simplicial complex
N({Xl, .. ,Xm}) = {I C [m] s NierX; # {@}}

Theorem 2.2.4 (Leray’s Nerve Theorem). Let Xi,...,X,, be simplicial complexes,
and let X = U™, X;. If for every 0 # I C [m], NicrX; is either empty or acyclic,
then

iy (X R) = [ (N({X1, .., Xon}): R)

for all k > —1.
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We present a proof of Theorem 2.2.4 and some generalizations of it in Appendix

2.A.

The following special case of the Nerve Theorem will be useful: Let X be a simplicial

complex, and let o1,..., 0, be the maximal faces of X. Let
N(X)=N({29,...,29m}).

Then, we have

Corollary 2.2.5. For all k > —1,
Hy, (X;R) = Hy, (N(X); R).
Proof. For every I C [m], we have
Mier2%t = 2Miers,
In particular, if N;e2% # {0}, then
Hy (Nier2°;R) =0
for all kK > —1. Therefore, by Theorem 2.2.4, we have
Hi, (X;R) = H, (N(X); R)

for kK > —1, as wanted. O

2.2.2 Relative homology

Let X be a simplicial complex and let Y be a subcomplex of X. Let Cx(X,Y; R) be
the free R-module generated by the ordered k-simplices in X \ Y, under the relations

[an s ,Uk] = Sgl’l(ﬂ')[Uﬂ.(O), SRR Uw(k)]a

for every k-simplex {vo,...,vt} € X \ Y and permutation = : {0,...,k} — {0,...,k}.
We define a homomorphism J : Cr(X,Y; R) — Cx_1(X,Y; R) that acts on the spanning
set by

8k[vo,...,vk]: Z (—1)i[v0,...,vi_1,vi+1,...,vk].
1€{0,...,k}:
{v0,+Vi—1,0i4 15,V JEY

We define the group of k-cycles as Z(X,Y; R) = Ker(9y) and the group of k-boundaries
as Bi(X,Y; R) = Im(0ky+1). For any k, we have By(X,Y; R) C Zx(X,Y; R), so we can
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define the quotient

For R =7, we denote Hy, (X,Y;Z) = H, (X,Y).
The relative homology of the pair Y C X is related to the homology of the two

complexes via the following result:

Theorem 2.2.6 (Long exact sequence of a pair). Let Y C X be simplicial complezes.

Then, the following sequence is exact:
The following relative version of the Mayer-Vietoris exact sequence will be useful:

Theorem 2.2.7 (Relative Mayer-Vietoris). Let Y C X be simplicial complexes. Let
C C A, D C B be simplicial complexes, such that X = AUB andY = C U D. Then,

the following sequence is exact

-+ = Hy (AN B,C N D; R) — Hy (A, C; R) €D Hi (B, D; R) —
%Hk(X,Y;R)—)kal(AﬂB,CﬂD;}a—)“-

2.2.3 Cohomology and Alexander duality

Let X be a simplicial complex. Let R be a commutative ring with unit element.

Let £k > —1. A k-cochain is an R-valued skew-symmetric function on the ordered
k-simplices. That is, ¢ is a k-cochain if for any two ordered k-simplices o, in X that
are equal as sets, it satisfies ¢(d) = sgn(m)¢p(o), where 7 is the permutation that maps
o to o.

Let C*(X) denote the space of k-cochains on X. We define a homomorphism
dy : C*(X) — C*1(X) by

k
dk(d))([vo, . ,vk]) = Z(—l)i(ﬁ([vo, ey V=15 Uig1,y - - - ,’Uk])
i=0
for any k-cochain ¢ and any ordered k-simplex [vy, ..., vg]. The homomorphism dy, is

called the coboundary operator.
We define the group of k-cocycles as Z¥(X; R) = Ker(d;) and the group of k-
coboundaries as B¥(X; R) = Im(dg_1). For any k, we have B*(X; R) C Z*(X; R), so

we can define the quotient
H*(X;R) = Z*(X;R)/B*(X;R).
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The group ]:Ik(X; R) is called the k-th reduced cohomology group of X with coefficients
in R. For R = 7, we denote H* (X;7) = H* (X).

Let I be a field. The following result is a simple corollary of the universal coefficient
theorem (see e.g [Hat02]).

Theorem 2.2.8. Let X be a simplicial complex. Then,
Hy, (X3 F) = H*(X;F)

for all k > —1.

Another simple consequence of the universal coefficient theorem is the following:

Lemma 2.2.9. Let X be a simplicial complex. For any k > —1, we can write Hj, (X) =
7Pk © Ty, where Ty, is a finite abelian group (the torsion subgroup of Hy (X)). Then,
we have for all k > —1

H* (X)) = 7P @ T),_,.

Let X be a simplicial complex on vertex set V. Let
XV ={ocCcV:V\c¢X}.

Note that XV is also a simplicial complex. XV is called the Alezander dual of X.

It is easy to check that the maximal faces of X" are the complements of the missing
faces of X. Similarly, the missing faces of XV are the complements of the maximal
faces of X.

The homology of X is related to the cohomology of its dual by the following result:

Theorem 2.2.10 (Alexander duality). Let X be a simplicial complex on vertex set V.
If V¢ X, then for all =1 < k < |V| — 2, we have

Hy, (X;R) = HVI7F3(XV; R).

In particular, if R = F is a field, we obtain from Theorem 2.2.8:

Corollary 2.2.11. Let X be a simplicial complex on vertex set V. If V ¢ X, then for
all =1 <k <|V| —2, we have

Hy (X;F) = Hy|—p3 (X F) .

Let X be a simplicial complex, and let M be the set of missing faces of X. Let

F(X):{N'CM: UT#V}.

TeN

Note that I'(X) is a simplicial complex on vertex set M. The homology groups of X
and I'(X) are related as follows:
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Theorem 2.2.12 (Bjorner, Butler, Matveev [BBM97, Theorem 2|). Let X be a sim-
plicial complex on vertex set V. If X is not the complete complex on V, then for all
—-1<k<|V]| -2,

Hy, (X5F) = Hy|_g—3 (T(X); F).

Proof. Note that I'(X) = N(XV). Therefore, the claim follows from Corollary 2.2.11
and Corollary 2.2.5. O

2.2.4 Leray numbers

Let X be a simplicial complex on vertex set V', and let F be a field. We say that X is
d-Leray if
Hy (X[U];F) =0

forall U C V and k > d.
The Leray number of X, denoted by L(X), is the minimal d such that X is d-Leray.

The following result on the Leray numbers of union of complexes will be of use later:

Theorem 2.2.13 (Kalai, Meshulam ([KMO06]). Let X = U, X;. Then

L(X) < (i(L(X,-) + 1)) ~ 1

i=1
2.2.5 Weighted Laplacians

Let X be a simplicial complex on vertex set V. Given an ordered k-simplex o =
[vo, . ..,v] and a vertex v € 1k(X, o), denote by vo the ordered simplex [v, vy, ..., vg].
For ordered simplices o, 7 in X such that 7 C o and o \ 7 = {v} for some vertex v € V,
let (o : 7) be the sign of the permutation mapping o to vr. For ordered simplices o, T
such that o = 7 as sets, let (¢ : 7) be the sign of the permutation mapping o to 7.

We will consider the simplices in X (k) as ordered simplices, each given an arbitrary
fixed order.

We can write the coboundary operator dj : C*(X;R) — C*1(X;R) as

A0 = 3 (o: 7o),

T€o (k)

for any k-cochain ¢ and ordered k-simplex o, where o(k) C X (k) is the set of k-
dimensional faces contained in the (k + 1)-dimensional simplex o.

Let w : X — RT be a weight function on the simplices. We define an inner product
on the vector space C*(X;R) by

(@, 0) = > w(o)g(o)i(o).

ceX(k)

Let d be the operator adjoint to dj with respect to this inner product. Then, we have
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Lemma 2.2.14.
w(vT

) vT
L ).

() () = Y
velk(X,7)

Proof. Let ¢ € C*(X;R) and ¢ € C*+1(X;R). Then,

(o) = > w(o)dpg(o)b(o) = Y. D w )é(7)¢b(0)
ceX (k+1) ceX (k+1) Teo(k)
= Z Z w(o)(o:T)p(T)Y(o) = Z Z w(vT)(vr 2 7)(T)Y(vT)
T7e€X (k) ceX(k+1),7Co TeX (k) velk(X,T)
= 3 wmen | S v,
TeX (k) velk(X,T)

where we used the facts that, since 1 is a cochain, we have (o : 7)¢(0) = (v : 7)9(vT),
and that (vr : 7) = 1. Thus, we obtain

w(vT

) vT
L),

dy,(¥)(r) =
velk

(X,7)
as wanted. O
We define the weighted upper k-Laplacian L} : C*(X;R) — C*(X;R) by
L} = didy.

Let k> 0 and 0 € X (k). We define the k-cochain 1, by

0 otherwise.

{(O‘ :7)  if o =7 (as sets),

The set {1, } ;e x (1) forms a basis of the space C*(X;R), that we will call the standard

basis.

We will identify the operator LZ with its matrix representation in the standard
basis. For 0,7 € X(k), we will denote by L} (c,7) the matrix element at row indexed
by 1, and column indexed by 1,. That is, L{ (o,7) = L 1,(0).

Lemma 2.2.15. Let 0,7 € X (k). Then,

> velk(X,0) % ifo=r,
Li(o,7) = wl(;zu;)(a oNt)(t:0NT) iflonNt|=k ocUrTe X(k+1),
0 otherwise.
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Proof. Let ¢ € C*(X;R) and o € X (k). Then, we have

Liolo) = dideolo) = > o= S T M0 w0600
velk(X,0) wia velk(X,0) 0eX (k),
0Cvo
— Uel%(p) ((va : U)ZZJ((U;)) (o) + ne(%l) u;}(z):)) (vo : vn)¢(vn)) .
Using the fact that (vo : o) =1 and (vo : vn) = —(o : 1), we obtain
w(vo
Liglo)= > (a) -y ¥ ° £ ) (vn)
velk(X,o) velk(X,0) neo(k— 1)
B w(vo) w(oUo), .
= UE%}:{J) e #(o) — ee;k)’ W(a con0)0:0n0)h),
|eNb|=k,
oUheX

where we used the fact that, since ¢ is a k-cochain, we have, for o € X (k), v € Ik(X, o),
neo(k—1)and § =nuU{v},

(0 :m)p(vn) = (o :n)(0 : vn)p(8) = (o : 1)(0 : n)p(0)
=(c:0nNB)(cNB:n)O:0nb)(cNO:n)pl) =(c:0n0)0:0n0)p(0).

Finally, setting ¢ = 1, for 7 € X (k), we obtain

L (o,7) = L} 1,(0)

2 velk(X,0) % if o =,
=1 - (g onr)(rionT) iflonT|=k oUTEX(k+1),

0 otherwise.

In particular, for £k = 0, we obtain:

Corollary 2.2.16. Let u,u’ € V. Then,

DoveV: {upleX (1) Ii’f&'ﬁf)) if u=1,
L§ (u,u') = § —wdea)) if {u,u'} € X(1),
0 otherwise.
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2.3 Collapsibility

Let X be a finite simplicial complex. Let 1 be a simplex of X of size at most d that is

contained in a unique maximal face 7 € X. We say that the complex
X' =X\{ceX:nCcocCrT}

is obtained from X by an elementary d-collapse, and we write X NG
The complex X is called d-collapsible if there exists a sequence of elementary

d-collapses from X to the void complex . The sequence
X =Xo 5 Xy B o I X, =

is called a d-collapsing sequence for X. The collapsibility of X (or collapsibility number),
denoted by C(X), is the minimal d such that X is d-collapsible.
The notion of d-collapsibility was introduced by Wegner in [Weg75]. He proved the

following simple properties of collapsibility:

Lemma 2.3.1 (Wegner [Weg75]). Let X be a simplicial complex on vertex set V and
U CV. Then,
C(X[U]) < O(X).

Lemma 2.3.2 (Wegner [Weg75]). Let X be a d-collapsible complex. Then, X is homo-
topy equivalent to a complex of dimension at most d — 1. In particular, Hy, (X) =0 for

k>d.

Most importantly, he showed the following relation between collapsibility and
representability:
Let F = {F1,...,Fy} be a familiy of sets. We define the nerve of F to be the
simplicial complex
N(F)=A{I C [m]: NierF; # 0}.

If X = N(C), where C is a family of convex sets in R? X is called d-representable.
The representability of X, denoted by rep(X), is the minimal d such that X is d-

representable.

Theorem 2.3.3 (Wegner [Weg75]). Let X be a d-representable complex. Then, X is
d-collapsible.

From Lemma 2.3.1, Lemma 2.3.2 and Theorem 2.3.3, we obtain that for any complex
X,
rep(X) < C(X) < L(X).

It will be convenient to extend the notion of d-collapsibility from complexes to

general families of sets:
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Let V be a finite set. An interval in 2V is a family of sets
[o,7]={nCcV:cCncCr},
for some c C T CV.
Let F C 2V be a family of sets. Let o € F such that
* o] <d,
e o is contained in a unique maximal set 7 € F, and
e [0,7] C F.

Then, we say that the family
F' =F\|o,1]

is obtained from F by an elementary d-collapse. The family F is called d-collapsible if
there is a sequence of elementary d-collapses from F to the void family (. Let C(F) be
the minimal d such that F is d-collapsible.

The following equivalent definition of d-collapsibility will be useful to us:
Lemma 2.3.4. The family F is d-collapsible if and only if it can be written as a union
of intervals F = U"[0;, ], such that

o |o;| <d foralll <i<m,

oo, 1 for1<i<j<m.

We will call such a partition F = U", [0, 7;] a d-collapsing partition of F. Note

that this is indeed a partition of F: For 1 <1i < j <m, [0y, 7] N [0, 7;] = 0 (otherwise,

we would obtain o; C 7;, a contradiction).

Proof of Lemma 2.5.4. Assume F is d-collapsible. Let

be a d-collapsing sequence for F, where for each 1 <i <m, F; = F;—1 \ [0s, 73]

We have F = U" [0y, 7] and |o;| < d for all 1 <i <m. Let 1 <i < j <m. Then,
we have 0;,7; € F;_1. The set o0; is contained in the unique maximal set 7; in F;_1;
therefore, if 0; C 7, then 7; € [0;,7;]. But then, 7; ¢ F;, a contradiction to the fact
that 7; € Fj_1.

The other direction is similar: Given a d-collapsing partition F = U [0y, 7;], we

obtain a d-collapsing sequence
f2f0—>.71—>-"—>.7m:®,

where

Fi= Uilog ) = Fia \[oi7
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forall 1 <i<m.

Indeed, we have, for all 1 <i < m, |o;| < d and [o;, ;] C F;—1. It is left to show
that for each 1 < ¢ < m, 7; is the unique maximal set of F;_1 containing o;: Assume
for contradiction that o; C 7 for some 7 € F;_1 such that 7 ¢ 7;. Then, we must have

7 C 75 for some j > i. But then we obtain o; C 7 C 7}, a contradiction. O

Remark. In [Mat09], a similar approach was applied for studying (> d)-collapsibility, a
variant of d-collapsibility (See [Mat09, Lemma 4.2]).

2.3.1 Basic properties

Next, we present several useful properties of d-collapsible families. Most of these results
were previously known (in the context of simplicial complexes), but we present here

new short proofs, based on Lemma 2.3.4.

Lemma 2.3.5. Let F C 2V. Then,
C(F) < max{|o|: o € F}.

Proof. Let d = max{|o|: 0 € F}. Let 01,...,0p, be the sets in F, ordered by decreasing
size. In particular, o; ¢ o; for i < j. Thus, F = U" [0y, 04] is a d-collapsing partition
for F, as wanted. ]

In particular, for a simplicial complex X, we obtain C'(X) < dim(X) + 1.
Let F ¢ 2V, and let U C V. Let

FlU={occCcU: oeF}
be the subfamily of F induced by U.
Lemma 2.3.6 (Wegner [Weg75]). Let F C 2", and let U C V. Then,
C(FIU]) < C(F).
Proof. Let F = U, [0;, 7] be a d-collapsing partition of F. Then, we can write

.7:[U] = U [Ui,Ti ﬂU].

1€[m):
o, CU

Let 1 <14 < j <m. Then o; ¢ 7;; therefore, 0; ¢ 7;NU. Hence, we obtain a d-collapsing
partition of F[U]. O

Lemma 2.3.7 (Khmelnitsky [Khm18]). Let F,G C 2V. Then
C(FNG) <C(F)+C(9).
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Proof. Let F = U" (04, 7] be a C(F)-collapsing partition for 7, and G = U§:1[77j, 6,1
be a C(G)-collapsing partition for G.

Let ZT={(i,7) : os Un; C ;N6;}. For (i,j),(r,s) € I, we say that (i,7) < (r,s) if
t<rori=randj<s.

We can write

FNGg= U [JiUnj,Tiﬁej].
(4,5)€T

Now, let (i,7) < (r,s). If i < r, then o; ¢ 7; hence, o; Un; ¢ 7. NOs. If i = r and
J < s, then n; ¢ 0s; therefore, o; Un; ¢ 7. N 0. So, this is a (C(F) + C(G))-collapsing
partition for F NG, as wanted. O

Remark. Note that Lemma 2.3.6 (and its proof) is a special case of Lemma 2.3.7 (where

G =2Y).

Let V, W be disjoint finite sets. Let F C 2V and G ¢ 2W. The join of F and G is
the family
FxG={ocUT:0€F, T€G}.

Note that, if 7 and G are simplicial complexes, this corresponds to the definition of join

stated in Section 2.1.

Lemma 2.3.8. Let V,W be disjoint finite sets. Let F C 2V. Then,
C(F«*2") =C(F).
Proof. Since F = (F x2W)[V], we have by Lemma 2.3.6,
C(F) < C(F=2").
Now, let F = U]",[04, ;] be a d-collapsing partition of F. Then,
F 2V =Um oy, 7 U{W}]
is a d-collapsing partition of F % 2. Thus,
C(F) > O(F »2"),
as wanted. O

A useful special case of Lemma 2.3.8 is the following:

Lemma 2.3.9 (Tancer [Tanll, Prop. 3.1]). Let X be a simplicial complex on vertex

set V, and let v € V such that X is a cone over v. Then,
C(X)=C(X\v).
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Lemma 2.3.10 (Khmelnitsky [Khm18]). Let V,W be disjoint finite sets. Let F C 2V
and G C 2W. Then,
C(F+G) <C(F)+C(9).

Proof. We can write
FxG=(F«2")n(G=2").

By Lemma 2.3.8 and Lemma 2.3.7,
C(F*G) <C(F) +C(9),
as wanted. 0
Another useful special case is the following:
Lemma 2.3.11. Let V,W be disjoint finite sets. Let F C 2. Then,
C(F+{W}) =C(F) + [W].

Proof. Let d > 0. It is easy to check that F = U" [0y, 73] is a d-collapsing partition for
F if and only if F* {W} =U",[o; UW,7; UW]is a (d + |W]|)-collapsing partition for
Fx{W}. O

Lemma 2.3.12. Let F C 2V and let (P, <) be a poset. Let p: F — P that satisfies
o Ca = p(o) <p(o").
Assume that for each x € P the family p~'(x) is d-collapsible. Then, F is d-collapsible.

Proof. We argue by induction on |P|. If |[P| = 1, then P = {z} and F = p~!(z);
therefore, F is d-collapsible.

Assume |P| > 1. Let x be a maximal element in P. By Lemma 2.3.4, we can write
p (@) = UL [oi, 7il,

where |o;| < dforall1 <i<m,and o; ¢ 7j for 1 <i<j<m.
By the induction hypothesis, p~ (P \ {z}) is also d-collapsible; hence, we can write

pil(P\ {:II}) = U?L':erl[O-ia Ti]a

where |o;| <dforallm+1<i<t,ando; 7 form+1<i<j<t.

Thus, we can write
F=p Hz)up (P \{a}) = Ui_i[os, 7).
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Forall 1 <i <t wehave |o;] <d. Ifl<i<j<morm+1<i<j<t, then
o;  7j. Let 1 <7 <mand m+1 < j <t, and assume for contradiction that o; C 7;.
Then, p(o;) < p(7;). But p(0;) = x, and « is maximal in P; therefore, p(7;) = z. But
this is a contradiction to 7; € p~1(P\ {z}).

Therefore, o; ¢ 7 for all 1 <14 < j <t; so, by Lemma 2.3.4, F is d-collapsible. [

Remark. Lemma 2.3.12 can be seen as an analogue of the “Cluster Lemma” from

discrete Morse theory (see [Jon08, Lemma 4.2]).
Let F C 2V. For o € F, define

k(F,o)={r\o:7€F,0CT}
={ncV:enn=0,0UneF}

and
cost(F,o) ={ne F:odn}

Note that, if F is a simplicial complex, these definitions coincide with the definitions of

the link and costar of a simplex presented in Section 2.1.

Lemma 2.3.13. Let F C 2V and let 0 € F. Then,
C(F) <max{C(cost(F,0)), C(Ik(F,0)) + |o|}.
Proof. Let P ={0,1}, and let p : F — P be defined by

0 ifod¢n,
1 ifocCn.

p(n) =

for all n € F.
Now let n, 7 € F such that n C 7. If o ¢ n then p(n) = 0, therefore p(n) < p(r). If
o C 1, then o C 7, therefore p(n) = p(7) = 1. In all cases, p(n) < p(r). Moreover, we
have
p1(0) = cost(F, o)

and
p 1) ={neF:ocn}=Ik(F,o)x*{c}

By Lemma 2.3.11,
C(k(F,o)x{c}) = C(k(F,0))+|o|.

Therefore, by Lemma 2.3.12, we obtain

C(F) < max{C(cost(F,0)), C(k(F,0)) + |o|}.
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For v € V, we write 1k(F,v) = Ik(F,{v}) and F \ v = cost(F, {v}) = F[V \ {v}].

As an immediate consequence of Lemma 2.3.13, we obtain

Lemma 2.3.14 (Tancer [Tanll, Prop 1.2]). Let F C 2 and let v € V. Then,
C(F) < max{C(F \v),C(lk(F,v)) + 1}.

Another useful relation between the collapsibility of a family of sets and that of

their links is the following result:

Lemma 2.3.15 (Khmelnitsky [Khm18]). Let F C 2V, and let o € F. Then,
Ck(F,0)) < C(F).

Proof. Let d = C(F). Let F = U",[0;, ;] be a d-collapsing partition of F. Then, we
have

k(F,o) = U [o; \ o,7i \ o]

1€[m]
oCT;

Indeed, let n € 1k(F,0). Then, nNo =0 and nUo € F. Let [0, 7] be the interval
containing n U o. Note that o C 7;. Then, n € [0; \ 0, 7; \ . Hence,

k(F,0)C | [oi\ o7\ o).

1€[m]
oCT;

On the other direction, let n € [0; \ 0, 7; \ o] for some i € [m] such that o C 7;. Then,

nNo=0and nUo € [0;,7;] C F. Therefore, n € Ik(F, o). Thus,

k(F,o0) D U [oi \ o,7: \ o].

i€[m]
oCT;

It is left to show that 1k(F, o) = Uiepm)loi \ 0,7 \ o] is indeed a d-collapsing partition.

oCT;
First, note that |o; \ 0| < |o;| < d for all i € [m]. Now, let 1 <i < j < m such that

o C 7; and o C 7. We have to show that o; \ 0 ¢ 7; \ 0. Assume for contradiction that
gi\o CTj\o.

Then, we obtain
;i C(o;\o)Uo C(1j\0o)Uo =13,

a contradiction to the fact that F = U" [0y, 73] is a d-collapsing partition.
Thus, C(Ik(F,0)) <d. O

Let V be a finite set, and let F C 2V. Let
FED =5 e F:lo| >d}.
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Lemma 2.3.16. Let V be a finite set. Then, the family (2V)Z% is d-collapsible.

Proof. We argue by induction on |V|. If |V| = 0 the claim holds trivially for all d.
Assume |V| > 0. Let u € V. Note that

Ik((zv)(zoz)’ u) = (QV\{U})(Zd_1)7

and
(2V)ED\ 4 = (2VMuh(Ed),

So, by the induction hypothesis,
C(I((2)ED, ) < d -1

and
C((2V)ED\ ) < d.

Therefore, by Lemma 2.3.14, we obtain C’((2V)(Zd)) <d. O

Proposition 2.3.17. Let F C 2V. Then, F is d-collapsible if and only if FE s
d-collapsible.

Proof. Assume that F is d-collapsible. Let F = U" [0y, ;] be a d-collapsing partition

of 7. Then, we can write
m

Fd) _ U[Ji’ e
i=1
For each 0 € F(Z9 let p(o) = m—i, where 7 is the unique index such that o € [0y, 7;](Z%.
Let 0,0’ € FZ9 such that o C o’. Note that if p(¢) = m — i, then o € [0, 7],
and therefore o’ ¢ [0;, ;] for j > i (otherwise we would obtain o; C 0 C ¢’ C 7}, a
contradiction). That is, o’ € [0}, ;] for some j < 4. Hence, p(c') > m — i = p(o).

For each 1 < i < m, we have
o4, Ti](Zd) = ({o;} * 271‘\01‘)(261) = {0y} * (QTi\Ui)(Ed*\UiD
By Lemma 2.3.11 and Lemma 2.3.16, we have

Cl[os, 7] ED) = C({o7} * (27\o0)(Zdloil)y
= C((@\7)EHD) 4 |oy] = (d = Joi]) + o] = d.

So, by Lemma 2.3.12, C(F(E9) < 4.
On the other direction, assume that F(Z% is d-collapsible. Let p : F — {0,1} be
defined by
0 ifp <d-—1,
L if |y > d.
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Note that for any n, 7 € F such that n C 7, we have p(n) < p(7). Also, we have
pHO)={neF:|n<d-1}

and
p~(1) = FE.

By Lemma 2.3.5, p~1(0) is (d — 1)-collapsible. Therefore, by Lemma 2.3.12, F is
d-collapsible. O

As a consequence of Proposition 2.3.17, we obtain the following equivalent definition

for d-collapsibility. For simplicity, we state the result only for simplicial complexes:

Lemma 2.3.18 (Tancer [Tanl0a, Lemma 5.2]). Let X be a simplicial complez. Then,
X is d-collapsible if and only if one of the following holds:

o dim(X) < d, or

o There exists some o € X such that |o| = d, o is contained in a unique mazximal
face T # o of X, and cost(X, o) is d-collapsible.

Proof. If dim(X) < d, then X is d-collapsible by Lemma 2.3.5. If there is some o € X
such that |o| = d, o is contained in a unique maximal face of X, and cost(X, o) is
d-collapsible, then X is d-collapsible by definition.

On the other direction, assume that X is d-collapsible. If dim(X) < d, we are done.
Otherwise, assume that dim(X) > d. By Proposition 2.3.17, X(Z9 is d-collapsible.
Let X(2d) — U™ (o4, 7] be a d-collapsing partition. Note that, for any i € [m], since
0; € X9 we have |oy| = d. Let i be the minimal index in [m] such that o; # 7; (there
is such an index i since dim(X) > d).

Note that cost(X 9, ;) = Uj4[0;,7;]. Indeed, we have

cost(XZD o) € XED\ [0y, 7] = Ujilog, 75]-

On the other direction, note that for j > 4, since U} [0, Tx] is a d-collapsing partition,

we have o; ¢ 7;; hence [0}, 7;] C cost(X (%

,0i). For i < j, we have 0; = 7, and
therefore o; ¢ 7; (since |o;| = |75] but o; # ;). So, [oj,7;] C cost(XED 0;).

In particular, cost(X (9 g;) = cost(X, 0;)(E? is d-collapsible. So, by Proposition
2.3.17, cost(X, 0;) is d-collapsible, as wanted. Finally, since o; ¢ 7; for j # i, 7; is the
unique maximal face in X (=% containing o;, and therefore it is the unique maximal

face in X containing o;. O

Lemma 2.3.19 (see e.g. [AHJ19, Prop. 2.1]). Let F C 2V be a family of sets. Let V
be a finite set, and let m: V — V be surjective. Let

7Y F)={ocV: (o) € F}.
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Then, C(m~Y(F)) = C(F).

Proof. Note that F is isomorphic to an induced subfamily of 7~!(F); therefore,
C(r=Y(F)) > C(F).
On the other direction, assume that F is d-collapsible, and let F = U™ [0;, 7] be a

d-collapsing partition. Then, we can write
Y F) = Ul (o, 7).

For o € m~1(F), let p(0) = m —1, where i is the unique index such that o € 7~!([oy, 7]).
Let 0,0’ € 7~ Y(F) such that o C o’. If p(0) = m — i, then 7(c) € [0, 7:], and therefore
n(o’) ¢ [oj,7;] for j > i (otherwise, o; C (o) C m(0’) C 7, a contradiction). Thus,
n(o’) € [0, 75] for some j < i. So, p(c’) > m —i = p(o).

Let 1 <i<m. Let 0; = {v1,..., v} (for some k < d). Then,

W_l([di, TZ]) = (2ﬂ*1(v1)>(21) * (2”71(”2))(21) ) (2“71(%))(21) * 27r*1('r¢\m')
By Lemma 2.3.10 and Lemma 2.3.16,
ClnY[oi,m])) <k-1+0=k < d.

Thus, by Lemma 2.3.12,
C(x~'(F)) < d.

Therefore, C(7~1(F)) = C(F). O

2.4 Helly-type theorems

The well known Helly Theorem states that for any family of convex sets in R?, if any
d + 1 of the sets have non-empty intersection, then the whole family has non-empty
intersection.

Recall that a missing face of a complex X is a set 7 C V such that 7 ¢ X but 0 € X
for any o C 7, and h(X) is the maximal dimension of a missing face of X.

Helly’s Theorem may be stated in terms of simplicial complexes as follows:

Theorem 2.4.1 (Helly’s Theorem). Let X be d-representable. Then, h(X) < d.

Helly’s Theorem holds also for the larger classes of d-collapsible and d-Leray com-

plexes:

Theorem 2.4.2 (Topological Helly’s Theorem). Let X be d-Leray. Then, h(X) < d.

The following “colorful” extension of Helly’s Theorem was proved by Lovész (see
[Bar82]):
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Theorem 2.4.3 (Colorful Helly Theorem (Lovasz)). LetCy,...,Cq41 be non-empty fam-
ilies of compact convex sets in R%, and suppose that for any C1 € Cy,...,Cyr1 € Cap1,
the intersection ﬂg;rllCi is not empty. Then there there is some i € [d + 1] such that the

intersection of all the sets in C; is not empty.

In [KMO5], the following generalization of Lovész’s theorem was presented:

Theorem 2.4.4 (Kalai-Meshulam [KMO05]). Let X be a d-collapsible complex on vertex
set V. Let M be a matroid on vertex set V. with rank function p. If M C X then there
exists a simplex 7 € X such that p(7) = p(V) and p(V \ 7) < d.

For d-Leray complexes, a slightly weaker result was proved:

Theorem 2.4.5 (Kalai-Meshulam [KMO05]). Let X be a d-Leray complex on vertex set
V. Let M be a matroid on vertex set V with rank function p. If M C X then there
exists a simplex T € X such that p(V \ 1) < d.

We will need the following version of the Colorful Helly Theorem for d-collapsible

complexes:

Theorem 1.2.1 (Kalai-Meshulam [KMO05], see also [AHJ19]). Let X be a d-collapsible
simplicial complex on vertex set V. Let Vi,...,Vy1 C V such that V; ¢ X for
all i € [d+ 1]. Then, there exists distinct vertices vi € Viy,...,v € Vi, where
1<y <ig <+ <ix <d+1, such that {vy,...,vx} ¢ X.

Proof. Let U =V3U---UVyy; and let X’ = X[U]. By Lemma 2.3.6, X' is d-collapsible.
Let
U={(v,i):i€d+1],veV}

and let 7w : U — U be defined by
m((v,7)) = v

for all (v,i) € U. By Lemma 2.3.19, 7~ *(X’) is also d-collapsible.
For i € [d+1], let U; = {(v,4) : v € V;}. We define a matroid M on vertex set U by

M = (201)(0) ¥ ook (2ﬁd+1)(0)

That is, M consists of all the sets of the form {(v1,41), ..., (vk,ix)}, where i; # i, for all
1 <j < s<k. Let p be the rank function of M. Note that for any set o C U, we have

p(U\o)=d+1—|{ie[d+1]: U C o}l

Now, assume for contradiction that for any choice of distinct vertices vy € Vi,,...,v; €
Vie, where 1 < ij <ig < --- <1 <d+1, we have {vy,...,vp} € X. Then, we have
M c 7= Y(X’). So, by Theorem 2.4.4, there is a simplex 7 € 7~ 1(X’) such that
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p(U\ 1) < d. So, there is some i € [d + 1] such that U; C 7. In particular, we obtain
U; € m=1(X"), and therefore V; = 7(U;) € X’. But this contradicts the assumption that
Vi ¢ X for all i € [d+ 1]. O
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2.A Nerve theorems from double complexes

In this section we present a proof of the Nerve Theorem (Theorem 2.2.4). In fact, we

prove the following stronger versions of the theorem:

Theorem 2.A.1. Let X1,...,X,, be non-empty simplicial complexes, and let X =
U™ X;. Then, there exists an homomorphism h : Hy (X; R) — Hy (N({X1,..., Xm}); R)
such that

o If, for all I C [m] of size 1 < |I| <k, I;Tk_m (NierXi; R) = 0, then h is surjective.

o If, for all I C [m] of size 1 < |I| < k+1, I~{k+1_|1‘ (NierXi; R) = 0, then h is

mjective.

Theorem 2.A.1 was proved, in a slightly different form, by Meshulam in [Mes01]. A

version of this theorem more similar to the one presented here is proved in [Mon17].

Theorem 2.A.2. Let X1,...,X,, be non-empty simplicial complexes, and let X =
U™, X;. Let N = N({X1,...,Xm}). Assume that, for all I C [m] of size at least 2,

Nic1X; is either empty or acyclic. Then, the following sequence is exact:

m
+o+ = Hy1 (N3 R) — @) Hi (Xi; R) = Hy, (X5 R) = Hy, (N5 R) — -
i=1

The proofs presented here are based on the proof of Theorem 2.2.4 appearing in
[BT82, Section 8], and on ideas from [HS10].

Let R be a commutative ring with unit element. A chain complex is a sequence of
R-modules C = {C}?° __ together with a family of homomorphisms 0y, : C, — Cj_1
satisfying Or0x11 = 0 for all k. The operator 0y is called the boundary operator. We
define the homology groups of C by

. Ker 6k

Hk‘ (C) - Im8k+1 .

For example, if X is a simplicial complex, then, for C = {Cy(X; R)}32 _ ., (taking
Cr(X; R) = 0 whenever X (k) = ), we obtain Hy, (C) = Hy (X; R).

Let (C,0) and (D, d") be two chain complexes. A chain map f = {fp}32 . isa
family of homomorphisms f : C, — Dy, satisfying fr_10k = 0} fx for all k.

Given a chain map f : C — D, we define the mapping cone of f to be the chain

complex

Cone(f)r = Cp—1 @ Dy,

with boundary operator
9" (e, d) = (=0Ok-16, = fr—1¢ + O4d)
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for any (c,d) € Cone(f)r = Cy—1 ® Dy. It is easy to check that 9;°"°0;%"° = 0 for all F,
so Cone(f) is indeed a chain complex.

The homology of the mapping cone is related to the homology of the complexes C
and D by the following result:

Theorem 2.A.3. Let f : C — D be a chain map. Then, the following sequence is
exact:

-+ — Hy, (C) = Hy (D) — Hy (Cone(f)) — Hx—1(C) — -+

A double complex is a family of R-modules C = {Ci,j}(szfoo with commuting
boundary operators

h .
81‘,]’ : Ciyj — 01;17]'
and
v, .. ..
87;"7' . CrL,] — Cl,j—l

for all 4, j. That is, for all 7, j, we have

h aqh _
991, = 0,

v AU _
9% 41 =0

and
ol 0 =0y o

Za]_l 2_17.7 7'7j'

For any ¢, {C; ;}
HY;(C) the j-th homology group of this complex. Moreover, for any j, {H;;(C)}72

1=—00

]O-';_OO is a chain complex with boundary operator 83 e Denote by

is a chain complex with boundary operator dy. Denote by H[LJH Y(C) the i-th homology
group of this complex.

The total complex of the double complex C is the chain complex

TOt(C)k = @ Ci,j
2,7:
i+j=k
with boundary operator

8]t€Ot : TOt(C)k — TOt(C)k,1

defined by
Otz = 0z + (-1)'0} 2

for any 4,j such that i + j = k and z € C;; C Tot(C)s. It is easy to check that
({Tot(C)x 32 ., 0%") is indeed a chain complex. Let Hf*(C) be the k-th homology
group of the total complex Tot(C).

From now on, we will assume that C; ; = 0 whenever ¢ < 0 or j < 0.

Lemma 2.A.4. Let k > 1. Assume that Hi‘jk_i(C) =0 forall <i<k-—1. Let
z =20+ + zp_1 € Ker(9}°"), where z; € C;—; for all0 <i <k —1. Then, there is
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some y =yo+ -+ yp—1 € Tot(C)g41, where y; € C; py1—; for all 0 < i <k —1, such
that z = O}°hy.

Proof. Let n € {—1,0,...,k — 1} be the minimal index such that z; = 0 for all i > n.
We argue by induction on n. If n = —1, then z = 0, and we can take y = 0 € Tot(C)j11-

Assume n > 0. Since 8,20% =0 and z; = 0 for ¢ > n, we must have 8}’“,67712” =0.
Since H}l”k_n = 0, there is some x € C), —p+1 such that z, = 8;;7k_n+1x.

Let 2/ = z + (=1)"T10i% x. Write 2/ = 2{ + --- + z}_,, where z{ € Cj_; for all
0 <i<k—1. Then, we have z, = z; for i <n—2, z/,_; = zp—1 + (—1)"+1827k_n+1x
and z, = 0 for i > n — 1. So, since 9}°*z’ = 9;{°'z = 0, by the induction hypothesis
there is some " € Tot(C)y1 such that 2z’ = 9;°%% 4/, Setting y = ' + (—1)"z, we obtain
z = 9% y. Moreover, by the induction hypothesis we can write y' = yj + -+ y,_1,
where y; € C; p+1—; for 0 <i <k — 1. Hence, we can write y = yo + - - - + yx—1, where
Yi = Y; € Ci 1 for i #n, and y, =y, + (=1)"x € Cp p—n1- O

Lemma 2.A.5. Let k > 0. Then, there is a homomorphism h : H{°/(C) — H,?’OH”(C)
such that:

o If Hz?jk_l_i(C) =0 for all 0 <i <k — 2, then h is surjective.

o If H;’k_Z(C) =0 for all0 <i < k—1, then h is injective.

Proof. Let z = 29+ - - - + 2, € Ker(9}°"), where z; € C; j—; for all 0 < i < k.
Note that 9} jzr = 0 and 8,?0% =04 1((—1)kzk_1). Therefore, z; represents an
homology class [z] € H,QOH”(C), and we can define h : H{°*(C) — H,?,OH“(C) by

h([2]) = [z&]-

Note that h is well defined: Let y = yo + -+ + yp41, where y; € Cjpy1—; for all
0 <7 < k+1. Then, we have

h([z + O%y)) = [2k + Ofter ourrr + (—1)*0F 1ua] = [2] € HE o HY(C),

since [0} ;yx] = 0 € H ((C) and [GQH’Oka] =0¢€ H,?’OH”(C). So, h([z 4+ 9% y]) =
h([z])-

Now, assume that HY, | ;(C) =0forall0 <i <k—2. Let [2] € H,’;OH”(C). Then,
we have 8,’370% = 8}6’7171:1: for some x € Ci_11.

Let 2/ = 8,?_17133. Note that 8,’;_2712’ =0 and

v I _ qu h __ ah v __ Aah h _
ak—2,12 = ak—Z,lak—l,lx = 8k—1,08k—1,1$ = 8k—1,08k,02k =0.

So, 2’ € Ker(9;°",). Therefore, by Lemma 2.A.4, there is some ¢/ =y + -+ y,_, €
Tot(C)y, where y, € C; j—; for all 0 < i < k — 2, such that 2’ = 9}°%y/.
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Let z = 2z + (—1)*(z — ¢/). Then, we have
0z = O gz + (V)M _1 g2 + (1) O 2 — Oy 47) = 0.

So, z € Ker(9;°") and h([z]) = zx. Thus, h is surjective.

Finally, assume that ka_Z(C) =0forall0<¢<k—1. Let z=29+---+2; €
Ker(9}°"), where z; € C;p—; for all 0 < i <k, such that h([z]) = [z] = 0 € H}! (H(C).
That is, there exist x € Cjy1,0 and w € C} 1 such that 82+1’0$ =zr + 0,2’7110.

Let 2/ = z 4+ 0{% ((—1)Fw — x). We have

2=+ 42k + (—1)’“8,’5’111) + 0w — 8,’;“7037
=20+ -+ 2o+ (Zk—l + (*Dkal}cl,lw) :

Since 9;°'z" = 9i°*z = 0, then, by Lemma 2.A.4, there is some y € Tot(C)x+1 such that

2= 8t°t1y So, we have
2 =2 = (D) w — 2) = O (y + (1) w + 2).

That is, [z] = 0 € H{°*(C). Hence, h is injective. O
The following special case of Lemma 2.A.5 will be useful:

Corollary 2.A.6. If H;(C) =0 for all i and all j > 1, then H{*"(C) = HIQ’,OH“(C) for
all k.

For a € Z, let C=® = {C’<a & be the double complex

j*OO

<o _ Ci; ifi<a,
by .

0 otherwise,

with vertical boundary operators 8;; for ¢ < a and 0 for ¢ > a, and horizontal boundary

operators Olhj for : < a and O for 7 > a.

Similarly, let C2¢ = {C be the double complex

zg——oo

o0 _ Ci; ifi>a,
Z?] .
0 otherwise,
with vertical boundary operators —9;; for i > a and 0 for ¢ < a, and horizontal boundary
operators —affj for ¢ > a and 0 for ¢ § a.
The following Lemma relates between the total homology groups of the complexes

Ccse Cz%t! and C:

Lemma 2.A.7. The following sequence is exact
— HPY(C=) — H[°'(C) — H[*'(C=T) — H[Y (€= —
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Proof. For k € Z, we define a map f : Toty1(CZ%) — Toty(C=?) as follows: For
2 € Toty1(CZ4FL), let

h
fk;(Z) = - a—i—l,k—a’z,?

where 2’ is the component of z in Cyi1 j—q.
It is easy to check that f = {fix}rez is a chain map between the complexes
Tot,1(CZ%t1) and Tot,(C=*). We have

Cone(f) = Tot(CZ*T1) @ Toty(CS?) = Tot(C).

Moreover, for z € Toty(C), write z = z1+29, where z1 € Tot(CZ%*1) and 29 € Toty,(C=9).

Let 2’ be the component of z; in Cyy1 g—q—1. Then, we have
O (=) = (01 (21) — Oy mas () + (—fis (1) + 0 (22) = B (2).

So, Hy (Cone(f)) = H;°*(C). Thus, by Theorem 2.A.3, we obtain the long exact

sequence
RN H;g(jrtl(CZa-&-l) _> H]got(cﬁa) - H}‘got(c) s H]‘got(cza—i-l) .

as wanted. O

Remark. In [AY21], some variants of Lemma 2.A.7 are applied to the study of double

complexes arising from problems in combinatorial commutative algebra.

2.A.1 A double complex from a partition

Let K be a simplicial complex on vertex set V. Let V = AU B be a partition of V.
Following [HS10], we define a double complex as follows:

For any i, j, let
K(i,j)={ce K: |ocnA|l=1 |oNB|=j}

Let K; ; be the free R-module generated by the ordered (i + j — 1)-dimensional simplices

of the form [vo, ..., vi4j—1], where {vo,...,viyj—1} € K(i,7), under the relations

[Vo, .+ -+, Vigj1] = sgn(w)[vﬂ(o), R Uﬂ(i-i—j—l)]a

for every simplex {vo,...,viyj—1} € K(i,j) and permutation 7 : {0,...,i+j — 1} —
{0,...,i4+75—1}
Let K = {Ki,j}z@,.}':—oo' Let o = [vo,...,vi—1, U0, ..., uj—1] be an ordered simplex in
K such that vg,...,v;—1 € A and uo,...,uj—1 € B. We define boundary operators
i—1
8&-0’ = Z(—l)k[vo, vy Uk—1, V4155 Ui—1,UQy - - - ,Uj_ﬂ
k=0
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and
j—1

9; 0 = Z(—l)k[vo,~'-,Uz‘flvuo,---,Uk—l,uk+17---,uj71]~
k=0

It is easy to check that these are indeed boundary operators and that they commute.

For any k, we have
Tot(K)k = @D Kij = Cro1(K; R).
i+j=k
Moreover, it is easy to check that 9°" is exactly the boundary operator d;_1 of the
complex K. That is, we have for all k,
H*"(K) = He—1 (K; R).

Lemma 2.A.8. For alli,j, we have

HY;(K) = @ Hji (k(K,9)[B];R).

neK(i—1),
nCA

Proof. For any i, j, define

fiKij— € Cii(k(K,n)[B);R)
neK (i—1),
nCA

f([’l)(), <oy Vi1, UQy - - - 7uj—l]) = [u07 ce 'auj—l] € C]—l(lk(Ka {’U(], cee 7vi—1});R)

for any {vg,...,vi—1,u0,...,uj—1} € K, where {vg,...,v;—1} C Aand {ug,...,uj—1} C
B. 1t is easy to check that f is a chain map (where we take the boundary operator

of K; j to be 97; and the boundary operator of P, cr(i—1) Cj—1(Ik(K,n)[B]; R) to be
nCA
the direct sum of the boundary operators of its summands), and that f is bijective.

Therefore, we obtain

H};(K) = @ H;_1 (k(K,n)[B]; R)
neK(i—1),
nCA

as wanted. O

Let
Na(K) = {n € K[A] : Ik(K,n)[B] # {0}}.
Note that N4(K) is a subcomplex of K[A].
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Lemma 2.A.9. For all i, we have
10(K) = Cia(K[A], Na(K); R)

and

H}\\H"(K) = H;_1 (K[A], NA(K); R) .
Proof. By Lemma 2.A.8, there is an isomorphism f* : HYy — @yer(i-1), H_ (Ik(K,n)[B]; R)
cA
defined by !
f([o]) = [0) € H-1 (Ik(K, 0)[B]; R)

for all o € K[A](i — 1).
Note that, for any complex X, we have H_1 (X; R) = 0if X # {0}, and H_; (X; R) =
R if X = {(}. Hence, we have

l12

@B {1 (k(K,n)[B];R) B R=Ci (KA, NA(K);R).

neK(i—1), neK[A](i—1),
nCA n¢NA(K)

Thus , we obtain an isomorphism
f i HE(K) = Cioa (K[A], Na(K); R)

defined by
- o ifo ,
Foh =7 T FNAE
0 ifoe Ng(K)

for any o € K[A](i—1). Tt is easy to check that f is a chain map between ({HP ()} s o)
and ({C;—1(K[A], No(K); R)}$2 0); therefore, we obtain

H}'\H"(K) = H;_y (K[A], Na(K); R) ,
as wanted. O

Lemma 2.A.10. Assume that A € K. Then, for all i, we have

HJ' H"(K) = Hi—» (Na(K); R) .

Proof. Since A € K, we have K[A] = 24. In particular, K[A] is acyclic. Hence, by
Lemma 2.A.9 and Theorem 2.2.6, we obtain

HIWHY(K) = Hi—1 (24, Na(K); R) = Hi—3 (NA(K); R),
as wanted. Il

By applying Lemma 2.A.5 to the double complex K, we obtain the following result:
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Theorem 2.A.11. Let K be a simplicial complex on vertex set V = A B. Assume
that A € K. Then, there is a homomorphism h : Hy, (K;R) — Hy_1 (Ns(K); R) such
that

o If, for all0 <i < k—1, Hp_,_; (Ik(K,0)[B];R) = 0 for all 0 C A of size i, then

h is surjective.

o If, for all 0 < i <k, Hy_; (Ik(K,0)[B];R) =0 for all 0 C A of size i, then h is

injective.

Proof. For all k we have H{°, (K) = Hy, (K; R), and, by Lemma 2.A.10, H} | (H"(K)
Hi_1 (NA(K); R). By Lemma 2.A.8, we have for all i and j

HEL(C) = @D -1 (K(K, o) [BJ; R).

oCA
lo|=1

Thus, the claim follows immediately from Lemma 2.A.5. 0

As an immediate consequence, we obtain:

Corollary 2.A.12. Let K be a simplicial complex on vertex set V = AU B. Assume
that A € K. If

Hy (Ik(K,0)[B];R) =0

for allo € A and all k > 0, then Hy, (K;R) = Hy_1 (NA(K); R) for all k.

Theorem 2.A.13. Let K be a simplicial complex on vertex set V = Al B. Assume
that A, B € K and that, for any v € A, Ik(K,v)[B] # {0}. If, for all 0 C A of size
lo| > 2 and all k > 0 we have

Hy (Ik(K, 0)[B]; R) = 0,

then the following sequence is exact

+o- = Hyp1 (Na(K); R) = @) Hy (Ik(K, 0)[B]; R) = Hy11 (K; R) = Hy (NA(K); R) — - -
veEA

Proof. Let C = K='. Since B € K, we have K[B] = 25. In particular, H; (K[B]; R) =0

for all k. Since C=Y consists of only one non-zero column, we have, using Lemma 2.A.8,
H™(C=") = Hg,(C=") = Hg,(K) = Hy—1 (K[B]; R) = 0
for all k. By Lemma 2.A.7, we have an exact sequence
ce = HEYCSY) = HEY(C) — Hi*Y(C2Y) — HEY (€S0 — -
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Therefore,
HIP(K1) = HE'(C) = HEH )

for all k. Since CZ! consists of only one non-zero column, we obtain

HiPY (K=Y = Hi*Y(C?Y) = HY .1 (C7') = HY1(K) = @D Hi—2 (k(K, v)[B]; R)
vEA

for all k£ (where the last isomorphism follows from Lemma 2.A.8).
By Lemma 2.A.10, we have for ¢ > 3

H}HY(K=?) = H]' H"(K) = H; o (Na(K); R).

Moreover, since lk(K,v)[B] # {0} for all v € A, we have v € N4(K) for all v € A.
Therefore, by Lemma 2.A.9,

HYo(K) 2 Co(2*, Na(K); R) = 0 = H{ o(K=2).

So,
HyoH'(K=?) = Hy o H"(K) = Hy (Na(K); R) .

Since for ¢ < 2 we have H{’LOH“(ICZQ) = 0= H; 3 (Na(K); R), we obtain
ioH"(K=?) = Hi_5 (Na(K); R)
for all . By Lemma 2.A.8, we have for all i > 2 and j > 1

H{j(K*?) = H};(K) = @D Hj-1 (k(K,0)[B]; R) = 0.
ocCA
lo|=1
Moreover, by definition of K22, we have Hy (K=2) =0 for i < 2 and all j. Hence, by
Corollary 2.A.6, we obtain
H(K=?) = H}!  H"(K=?) = Hy_3 (Na(K); R)

for all k. Recall that H{°(K) = Hy_ (K; R) for all k. Therefore, by Lemma 2.A.7, the

sequence

+-+ = Hip1 (Na(K); R) — €D Hy (Ik(K,v)[B]; R) = Hip1 (K; R) = Hy, (Na(K); R) — -
vEA

is exact. n
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2.A.2 The Mayer-Vietoris double complex

Let X1, ..., X, be non-empty simplicial complexes on vertex set V', and let X = U, X;.
Let K be the simplicial complex on vertex set V' \J[m] whose simplices are the sets of the
form o U I, where I C [m] and o € N;e;X; (where, for I = (), we define N;e; X; = 2Y).

Let A=V and B = [m]. Note that V € K. For any o € K[V] =2V, we have
k(K,0)[B] = {I C [m]: 0 € NierX;} = 2li€imloeXi},

Thus, k(K,0)[B] = {0} if 0 ¢ X and 1k(K,0)[B] is a complete complex if 0 € X.
Therefore, No(K) = X. Moreover, we have Hy, (Ik(K,0)[B]; R) = 0 for all k > 0 and
o C V. Hence, by Corollary 2.A.12, we have

Hy, (X;R) = Hyy1 (K R)

for all k.

Now, let A = [m] and B = V. Note that [m] € K (since () € Njcp,) X;). For any
I C A =[m], we have

lk(K,I)[B] = {U cV:co¢€ ﬁiEIXi} = NjerX;

and

NA(K> = {I C [m] s MierX; # {@}} = N({Xl, R ,Xm})

Now we can complete the proofs of Theorems 2.A.1 and 2.A.2:

Proof of Theorem 2.A.1. Let A=[m] € K and B=V. For ) # I C [m], we have
Ik(K, I[V] = Nier X;.
Moreover, for I = () we have
k(K,0)[V] = K[V] =2".
In particular, 1k(K,®)[V] is acyclic. Since Hyi1 (K;R) = H (X;R) and Nao(K) =

N({Xi,...,Xm}), the claim follows from Theorem 2.A.11. O

Proof of Theorem 2.A.2. Let A=[m|] € K and B=V € K. For alli € A = [m], we
have

(K. 1)[V] = X; # {0}.

For I C [m] of size |I| > 2,
(K, D[V] = Nier X;
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is either empty or acyclic. So, by Theorem 2.A.13, the sequence

+o+ = Hyp1 (Na(K); R) — @D Hy, (Ik(K,4)[V]; R) = Hyyq (K; R) — Hy, (Na(K); R) — -+
1€[m)|

is exact. Since No(K) = N and Hy (X; R) = Hyy1 (K; R) for all k, we obtain the long

exact sequence

c-+ = Hypp1 (N3 R) — @D Hi (X33 R) = Hy, (X;R) — Hp (N3 R) — -+ |

1€[m)]

as wanted. O
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Chapter 3

Minimal exclusion sequences and
collapsibility of complexes of

hypergraphs

This chapter is organized as follows. In Section 3.1 we present our generalization of
Matousek and Tancer’s bound on the collapsibility of a simplicial complex, and we
prove Theorem 1.1.3. In Section 3.2 we present some results on the collapsibility of
independence complexes of graphs. In Section 3.3 we prove our main results on the
collapsibility of complexes of hypergraphs. Section 3.4 contains some generalizations of
Theorems 1.1.1 and 1.1.2, which are obtained by applying different known variants of
the Frankl-Kalai Lemma (Lemma 1.1.4). Section 3.5 contains more applications of the
minimal exclusion sequence method. In particular, we prove Theorem 1.1.5 about the
collapsibility of complexes of matrices with bounded maximal rank. We also present
some conjectures about the collapsibility of the complexes M 4, for different classes of

matrices.

3.1 A bound on the collapsibility of a complex

Let X be a (non-void) simplicial complex on vertex set V. Fix a linear order < on V.
Let A= (01,...,0m) be a sequence of faces of X such that, for any o € X, o C o for
some ¢ € [m]. For example, we may take o1, ..., 0., to be the set of maximal faces of X
(given some fixed ordering).

For a simplex 0 € X, let mx 4<(0) = min{i € [m] : 0 C 0;}. Let i € [m] and

o € X such that mx 4 <(0) = i. We define the minimal exclusion sequence

mesx A<(0) = (v1,...,0i-1)

as follows: If ¢ = 1 then mesx 4 (o) is the empty sequence. If i > 1 we define the

sequence recursively as follows:
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Since 7 > 1, we must have o ¢ o7; hence, there is some v € ¢ such that v ¢ 1. Let
v1 be the minimal such vertex (with respect to the order <).
Let 1 < j <7 and assume that we already defined v1,...,v;_1. Since ¢ > j, we must

have o ¢ oj; hence, there exists some v € o such that v ¢ o;.

e If there is a vertex v;, € {v1,...,vj—1} such that v, ¢ o}, let v; be such a vertex

of minimal index k. In this case we call v; old at j.

o If v, € 0j for all k < j, let v; be the minimal vertex v € o (with respect to the

order <) such that v ¢ o;. In this case we call v; new at j.

Let Mx 4.<(0) C o be the simplex consisting of all the vertices appearing in the

sequence mesx 4 <(0). Let
d(X, A, <) =max{|Mx 4<(c): 0 € X}.

The following result was stated and proved in [MT09, Prop. 1.3] in the special case
where X is the nerve of a finite family of sets (in our notation, X = Covy,; for some

hypergraph H).

Theorem 3.1.1. The simplicial complex X is d(X, A, <)-collapsible.

The proof given in [MT09] can be easily modified to hold in this more general setting.

Here we present a different proof, based on the application of Lemma 2.3.14.

Proof of Theorem 3.1.1. First, we deal with the case where X is a complete complex
(i.e. a simplex). Then X is 0-collapsible; therefore, the claim holds.
For a general complex X, we argue by induction on the number of vertices of X. If
V| =0, then X = {0}. In particular, it is a complete complex; hence, the claim holds.
Let [V| > 0, and assume that the claim holds for any complex with less than |V|
vertices. If 0y = V, then X is the complete complex on vertex set V', and the claim
holds. Otherwise, let v be the minimal vertex (with respect to <) in V'\ oy.

In order to apply Lemma 2.3.14, we will need the following two claims:

Claim 3.1.2. The complez X \ v is d(X, A, <)-collapsible.

Proof. For every i € [m], let o} = 0; \ {v}, and let A" = (0,...,0,,). Let 0 € X \ v.
Since v ¢ o, then, for any ¢ € [m], o0 C o0; if and only if o C o}. Hence, every simplex
o € X \ v is contained in o] for some i € [m] (since, by the definition of A, o C o; for
some i € [m]). So, by the induction hypothesis, X \ v is d(X \ v, A’, <)-collapsible.
Let 0 € X \ v. We will show that mesx 4 <(0) = mesx\, 4/,<(c). Since for any

i € [m], o C oy if and only if o C o, then the two sequences are of the same length. Let

mesx 4<(0) = (v1,...,0k)
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and

mes x\y,4,<(0) = R

We will show that v; = v} for all i € [k]. We argue by induction on i. Let ¢ € [k], and
assume that v; = v} for all j <. Since v ¢ o, then o \ 0; = o \ 0]. Therefore, for any
j <i,vj €0\ o;if and only if v; = v; € 0\ 0;. Hence, v; is old at 4 if and only if v]
is old at 4, and if v; and v, are both old at i, then v; = v,. Otherwise, both v; and v]
are new at ¢. Then, v; is the minimal vertex in o \ 0y, and v} is the minimal vertex in
o\ o} =0\0;. Thus, v; =v..

Therefore, |Mx\y 4,<(0)] = [Mx 4,<(0)| for any o € X \ v; hence,
d(X \v, A, <) <d(X, A <).
So, X \ v is d(X, A, <)-collapsible. O
Claim 3.1.3. The complez 1k(X,v) is (d(X, A, <) — 1)-collapsible.

Proof. Let I = {i € [m] : v € o;}. For every i € I, let 0! = o; \ {v}. Write
I'={iy,...,ir}, where iy <--- <i,, and let A" = (0] ,...,07 ).

For any o € 1k(X,v), the simplex o U {v} belongs to X; hence, there exists some
i € [m] such that o U {v} C 0;. Since v € o U {v}, we must have i € I, and therefore
o C o/ = 0;\ {v}. So, by the induction hypothesis, 1k(X,v) is d(lk(X,v), A", <)-
collapsible.

Let 0 € 1k(X,v). We will show that

Mx a,<(0U{v}) = Myg(xw),a7,<(0) U{v}.

Let

mesy A.<(ocU{v}) = (vi,...,0p),

and

mesji(xv), 4", < (0) = (U1, .., u).

For any j € [r], o C o} if and only if 0 U{v} C 0i;. Also, for i ¢ I, 0 U{v} ¢ o; (since
v ¢ 0;). Therefore, n = i;41 — 1.

The vertex v is the minimal vertex in V'\ o1, therefore it is the minimal vertex in
(cU{v})\o1. Hence, we have v; = v. Now, let ¢ > 1 such that ¢ ¢ I. Then, v; = v is the
vertex of minimal index in the sequence (vy,...,v;_1) that is contained in (o U{v}) \ o;.
Therefore, v; = v.

Finally, we will show that v;; = u; for all j € [t]. We argue by induction on j. Let
J € [t], and assume that v;, = u, for all £ < j.

For any k < ij, either vy, = v (if k ¢ I) or v, = uy for some £ < j (if k =i, € I). Also,
since v € 0y, we have (o U {v}) \ 0y, = o\ 07 . So, for any k <ij, vy € (0 U{v}) \ oy,
if and only if £ = i, for some ¢ < j such that u, € o\ O’;;. Therefore, v;; is old at i;
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if and only if u; is old at j, and if v;; and u; are both old, then v;; = u;. Otherwise,
assume that v;; is new at i; and wu; is new at j. Then, v;; is the minimal vertex in
(0 U{v})\ 04, and u; is the minimal vertex in o \ O';; = (e U{v})\ 0y;. Thus, v;; = uy.

So, for any o € 1k(X,v) we obtain

| Myg(x0),47,<(0)| = [Mx a,<(cU{v})| — 1.

Hence,
d(k(X,v), A", <) < d(X, A, <) — 1.
So, Ik(X,v) is (d(X, A, <) — 1)-collapsible.

By Claim 3.1.2, Claim 3.1.3 and Lemma 2.3.14, X is d(X, A, <)-collapsible.

For our applications, we will use the following simplified version of Theorem 3.1.1:

Theorem 1.1.3. Let X be a simplicial complex on vertex set V. Let S(X) be the
collection of all sets {v1,...,vp} CV satisfying the following condition:

There exist mazimal faces 1,09, ...,0r41 of X such that:
e v; & o; for alli € [k],
e v, cojforalll <i<j<k+1.

Let d'(X) be the mazimum size of a set in S(X). Then X is d'(X)-collapsible.

Proof. Let < be some linear order on the vertex set V', and let A = (01, ...,04,) be the
sequence of maximal faces of X (ordered in any way).

Let i € [m] and let 0 € X with mx 4 <(0) =1i. Let mesx 4 <(0) = (v1,...,vi—1).
Then Mx 4 <(0) = {vi,,..., v} for some iy < --- < iy € [i — 1] (these are exactly
the indices i; such that v;; is new at i;). For each j € [k] we have v;; ¢ oy,. In
addition, since v;; is new at i;, we have v;, € oy, for all ¢ < j. Let ixy1 = ¢. Since
mx, A,<(0) =1 =ripy1, we have o C 0y, ,. In particular, v;, € oy, ,, for all £ <k + 1.

Therefore, Mx 4.<(0) € S(X). Thus, d(X, A, <) < d'(X), and by Theorem 3.1.1,
X is d'(X)-collapsible. O

3.2 Collapsibility of independence complexes

Let G = (V, E) be a graph. The independence complex I(G) is the simplicial complex

on vertex set V whose simplices are the independent sets in G.

Definition 3.2.1. Let k(G) be the maximal size of a set {v1,..., v} C V that satisfies:
o {vj,v;} ¢ E for all i # j € [k],

e There exist u1,...,ur € V such that
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— {wvi,u;} € E for all i € [k],
— {vj,ujt ¢ Eforalll <i<j<k.

Proposition 3.2.2. k(G) =d'(I(G)).

Proof. Let A = {v1,...,v} € S(I(G)). Then, there exist maximal faces o1,...,0%11
of I(G) such that:

o v; ¢ o; for all i € [k],
ey cojforalll <i<j<k+1

Let i € [k]. Since o; is a maximal independent set in G and v; ¢ o;, there exists some
u; € o; such that {v;,u;} € E.

Let 1 <7 < j < k. Since v; and u; are both contained in the independent set o, we
have {v;,u;} ¢ E. Furthermore, since A C 0441, A is an independent set in G. That is,
{vi,v;} ¢ E for all i # j € [k]. So, A satisfies the conditions of Definition 3.2.1. Hence,
|A| < k(G); therefore, d'(I(G)) < k(G).

Now, let k = k(G), and let vy, ..., vk, u1,...,ur € V such that

o {v;,v;} ¢ E for all i # j € [K],
o {v;,u;} € E for all i € [k],
o {vj,u;} ¢ Eforalll <i<j<k. O

Let i € [k], and let V; = {v; : 1 < j < i}. Note that V; U {u;} forms an independent set
in G; therefore, it is a simplex in I(G). Let o; be a maximal face of I(G) containing
Vi U{w;}. Since {v;,u;} € E, we have v; ¢ o;.

The set {v1,...,v;} is also an independent set in G. Therefore, there is a maximal
face oy41 € I(G) that contains it.

By the definition of o1, ..., 0441, we have v; € 0 for 1 <7 < j < k4 1. Therefore,
{v1,...,0} € S(I(G)); so, k(G) =k < d'(I(G)).

Hence, k(G) = d'(I(G)), as wanted.

As an immediate consequence of Proposition 3.2.2 and Theorem 1.1.3, we obtain:

Proposition 3.2.3. The complex I(G) is k(G)-collapsible.

3.3 Complexes of hypergraphs
In this section we prove our main results, Theorems 1.1.1 and 1.1.2.

Theorem 1.1.1. Let H be a hypergraph of rank r. Then Covyy, is ((T”:p) —-1)-
collapsible.
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Proof. Let H be a hypergraph of rank r on vertex set [n], and let
{A1,..., A} € S(Covyp).
Then, there exist maximal faces Fi, ..., Fr11 € Covy,y, such that
o A; ¢ F; for all i € [k,
o Aje Fijforall1<i<j<k+1.

For any ¢ € [k + 1], there is some C; C [n] of size at most p that covers F;. Since F; is
maximal, then, for any A € H, A € F; if and only if AN C; # (). Therefore, we obtain

o A;NC; =0 forallie [k],
e AinCj#Pforalll <i<j<k+1. O

Hence, the pair of families
{Aq,... Ay, 0}

and
{Clv sy Ck7 Ck-i—l}

satisfies the conditions of Lemma 1.1.4; thus, k¥ +1 < (rjfp ) Therefore,

d'(Covy,) < (T i‘p) —1,

and by Theorem 1.1.3, Covyyp, is ((T;fp) — 1)-collapsible.

Theorem 1.1.2. Let H be a hypergraph of rank r. Then Inty is %(T)—collapsz’ble.

Proof. Let ‘H be a hypergraph of rank r and let G be the graph on vertex set H whose
edges are the pairs {A, B} C H such that AN B = (). Then Inty = I(G).

Let k = k(G) and let {Ay,..., Ax} C H that satisfies the conditions of Definition
3.2.1. That is,

. AiﬁAj#@foralli#je k],
e There exist By, ..., B € H such that

— A;NB; =0 for all i € [k],
— AiNnBj#Dforalll <i<j<k.

Then, the pair of families
{Ala"',AkJaBkJa"'aBl}
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and

{Bl,...,Bk,Ak,...,Al}

satisfies the conditions of Lemma 1.1.4; therefore, 2k < (2:). Thus, by Proposition 3.2.3,
Inty = I(G) is 4 (*)-collapsible. O

3.4 More complexes of hypergraphs

Let H be a hypergraph. A set C is a t-transversal of H if |[ANC| >t for all A € H.
Let 7:(H) be the minimal size of a t-transversal of H. The hypergraph H is pairwise
t-intersecting if |[AN B| >t for all A, B € H. Let

Covly, ={F CH: n(F) < p}
and
Inty, = {F C H : F is pairwise t-intersecting}.

The following generalization of Lemma 1.1.4 was proved by Fiiredi in [Fiir84].

Lemma 3.4.1 (Firedi [Fur84]). Let {Ai1,...,Ar} and {Bu,..., By} be families of sets
such that:

o |A;| <r, |B;j| <p forallic k],
o |A,NB;| <t foralliec k],

o [AiNBj| >t foralll <i<j<k.
p < <r+p—2t>‘
- r—t

Theorem 3.4.2. Let H be a hypergraph of rank r and let t < min{r,p} — 1. Then
COV;-J[,;; is ((r+p72t) — 1) -collapsible.

r—t

Then

We obtain the following:

Theorem 3.4.3. Let H be a hypergraph of rank r and let t < r — 1. Then Intgjl 18
% (Q(T_t)) -collapsible.

r—t

Note that by setting ¢ = 0 we recover Theorems 1.1.1 and 1.1.2. The proofs are
essentially the same as the proofs of Theorems 1.1.1 and 1.1.2, except for the use of

Lemma, 3.4.1 instead of Lemma 1.1.4. The extremal examples are also similar: Let

’le{AU[t]:Ae <V+p—t]\m)}

r—t

Hy = {Au 1]: Ae <[2r;_t]t\ [ﬂ)}'
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The complex Covgjll is the boundary of the ((Ttp_ _t%) - 1)—dimensional simplex, hence

it is not ((Ttp__tz'f) — 2)—collapsible, and the complex Ints_J[; is the boundary of the

%(er:tt))—dimensional cross-polytope, hence it is not <%(2(:__tt)) - 1)—collapsible.

Restricting ourselves to special classes of hypergraphs we may obtain better bounds
on the collapsibility of their associated complexes. For example, we may look at r-partite
r-uniform hypergraphs (that is, hypergraphs H on vertex set V =13 U Vo --- UV, such

that [ANV;| =1 for all A € H and i € [r]). In this case we have the following result:

Theorem 3.4.4. Let H be an r-partite r-uniform hypergraph. Then Inty is 27 '-
collapsible.

The next example shows that the bound on the collapsibility of Inty in Theorem
3.4.4 is tight: Let H be the complete r-partite r-uniform hypergraph with all sides
of size 2. It has 2" edges, and any edge A € H intersects all the edges of H except
its complement. Therefore the complex Inty is the boundary of the 2"~!-dimensional
cross-polytope, so it is homeomorphic to a (2"~! — 1)-dimensional sphere. Hence, Inty
is not (277! — 1)-collapsible.

For the proof we need the following Lemma, due to Lovasz, NeSettil and Pultr.

Lemma 3.4.5 (Lovész, Nesetiil, Pultr [LNP80, Prop. 5.3]). Let V =V UVhU--- UV,
be a finite set, and let {A1,..., A} and {By,..., By} be families of subsets of V' such
that:

o ANV =1,|B;NV;| =1 forallie [k] and j € [r],
e A;NB; =0 forallie [k,
o AiNB;£0 forall1 <i<j<k.

Then
k<2,

A common generalization of Lemma 1.1.4 and Lemma 3.4.5 was proved by Alon in
[Alo85].

The proof of Theorem 3.4.4 is the same as the proof of Theorem 1.1.2, except that
we replace Lemma 1.1.4 by Lemma 3.4.5. A similar argument was also used by Aharoni
and Berger ([AB09, Theorem 5.1]) in order to prove a related result about rainbow

matchings in r-partite r-uniform hypergraphs.

3.5 More applications of minimal exclusion sequences

In this section we present further applications of Theorem 1.1.3. We will need the

following simple lemma:
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Lemma 3.5.1. Let F be a field, and let V' be a vector space over F. Let F be a family
of linear subspaces of V. Denote by r(F) the mazimal dimension of a subspace in F.
Let vy,...,vp €V and Uy,..., Uy € F such that

o v; ¢ U; for alli € [k],
ey, cUjforalll <i<j<k+1.

Then k < r(F).

Proof. Let i € [k]. We have v; ¢ U;, but v; € Uj for all i +1 < j < k+ 1. Hence,

k+1 k+1
ﬂj; U; € ﬂj;HUj. So, we have a flag

Ups1 2 Uks1 MU, 2 U NU N Uy 2 -+ 2 NERT;

of length k£ + 1. In particular, we must have dim(Uyy1) > k. Thus, r(F) > k. O

3.5.1 Complexes from projective varieties

Let F be a field, and let V' be a vector space over F. Let F be a family of linear
subspaces of V. Let A C V be a finite set. We define the simplicial complex

Xr[A]={o CA: o0 CU for some U € F}.

Proposition 3.5.2. The complex X z[A] is r(F)-collapsible.

Proof. Let {vi,...,vt} € S(X#[A]). Then, there exist maximal faces o1, ...,054+1 of
Xr[A] such that v; ¢ o; for all i € [k] and v; € ¢j for 1 <i < j < k+ 1. For every
i € [k + 1], there is some subspace U; € F such that o; C U;.

We have v; € U; for all 1 < i < j < k+1, and v; ¢ U; for i € [k] (otherwise,
{vi} Uo; C U;, but then {v;} Uo; € X£[A], a contradiction to the maximality of o;).
So, by Lemma 3.5.1, we have k < r(F). Thus, by Theorem 1.1.3, C(X£[A]) < r(F).O

Remark. A different proof of the fact that X z[A] is r(F)-Leray goes as follows:

First, since, for any A" C A, Xrz[A][A] = Xr[4], it is enough to show that
Hi (X7[A]) = 0 for all k > r(F). Furthermore, we may assume that 0 ¢ A, since
otherwise X z[A] is a cone over 0, and in particular Hj, (X7[A]) = 0 for all k.

Let

F={nuerU: 0 #F C F}

be the set of all subspaces of V' obtained as intersections of subspaces in F. Let X
be the simplicial complex whose vertex set is F, and whose simplices are the sets
{Uy,...,Uy} C F forming a flag U C Uy C - -- C Uy

For u € A, let X, = X[F,], where F, = {U € F: uec U}.
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We have

N({Xu}uea) ={oc CA: 0 CU for some U € F}
={ocCA:0CU forsomeU € F} = Xr[A].

Moreover, for any 0 € N({Xy}ueca), let

Us= (U

UeF:
oCU

be the minimal subspace in F containing ¢. Then, Ny, X, is a cone over the vertex U, .
In particular, Hy, (NyceXu) = 0 for all k. So, by the Nerve Theorem (Theorem 2.2.4),
we have

Hy, (XF[A]) = Hy, (UueaXu)

for all k. Since the trivial subspace {0} is not a vertex of Uyec4 Xy, and dim(U) < r(F)
for all U € F, we have dim(U,eaX,) < 7(F) — 1. Hence,

Hy (X7[A]) = Hy, (UyeaXy) =0

for k > r(F). O

Let P" be the n-dimensional projective space over F. That is, P" is the set of the
lines through the origin in F**! or equivalently, the set (F"*1\ {0})/ ~, where z ~ y
if x = Ay for some A € F\ {0}.

Let p : F*™1\ {0} — P" be the map that sends any vector v # 0 to the line through
the origin containing v. A set W C P" is called a projective subspace if W = p(U) for
some linear subspace U C F". The dimension of W is defined by dim(W') = dim(U) — 1.
For a set A C P", let span(A) be the minimal projective subspace containing A.

Let fi,..., fit € Flzo,...,x,] be homogeneous polynomials. Let
V=V(fi,....fr) ={z €P": fi(x) =0 for all i € [t]} C P".
Let A be a finite subset of V. Define the simplicial complex
Ky[Al={o C A: span(o) C V'}.

Proposition 3.5.3. Let d be the maximal dimension of a projective subspace contained
in V.. Then, the complex Ky [A] is (d+ 1)-collapsible.

Proof. Let A = p~1(A) c F*"'. Let Wy,...,W), C P" be the maximal projective
subspaces contained in V. For each i € [k], there is some subspace U; C F**! such that
W; = p(U;) and dim(U;) = dim(W;) +1 < d+ 1. Let F ={Uy,...,U}.
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For 7 C A and i € [k], we have 7 C Uj; if and only if p(7) € W;. So, T € Xr[A] if
and only if p(7) € Ky [A]. Thus, we have

Xr[A] = p~(Kv[A)).

Therefore, by (the easy direction of) Lemma 2.3.19 and Proposition 3.5.2, we obtain

C(Kv[A]) < C(Xr[A]) <d+1,
as wanted. O

Ezxample 3.5.4. Let F =F,. Let n be even and let f(z1,...,2,) = z1220 + 2324 + - +
Tp—1ZTpn. Let V=V (f). It is well known that the maximum dimension of a subspace
of P! contained in V is % — 1 (see e.g. [VLWO1, Theorem 26.6]). Therefore, by
Proposition 3.5.3, for any U C V/, the complex Ky [U] is F-collapsible.

On the other hand, if U consists of the (equivalence classes of the) points e; =
(1,0,...,0),...,en = (0,...,0,1), then the complex Ky [U] is the boundary of a %-
dimensional cross-polytope (its missing faces are the edges {e1, ea}, {ea, €3}, ..., {en—1,€n}).
So, Ky[U] is homeomorphic to an (% — 1)-dimensional sphere. In particular, Ky [U] is

not (% — 1)—collapsible.

3.5.2 Matrices with bounded maximal rank

Let F be a field. Let A be a finite set of matrices in F™*", For r € N, we defined the
complex

M, = {BCA: p(B) <},
where p(B) is the maximal rank of a matrix in the span of 5.

Theorem 1.1.5. Assume that F is infinite. Then, the complex M, is r(r + 1)-
collapsible.

For the proof we will need the following result by Dieudonné (later extended by
Flanders [Fla62] and Meshulam [Mes85]):

Theorem 3.5.5 (Dieudonné [Die48]). Let F be a field, and let r € N. Let U be a linear
subspace of FUHDX0HD) satistying p(U) < r. Then, dim(U) < r(r + 1).

We will also need the following lemma:

Lemma 3.5.6. Let F be an infinite field, and let r € N. Let By,..., By € F™*™ such
that v(B;) > r for alli € [k]. Then, there exist P € FU+t)*m qnd Q € F*0+1) sych
that r(PB;Q) =r+1 for all i € [k].

Proof. For each i € [k], let p;(P,Q) = det(PB;Q). We consider p; as a polynomial in
(r +1)(m + n) variables.
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Note that, since r(B;) > r + 1, p; is not identically zero: indeed, let eq,...,e,41 be
a basis of F**!, and let vy,...,v,41 be r + 1 linearly independent columns of B;. Let
P e FU+DXm 1o 4 linear transformation that, for each j € [r + 1], maps the vector v}
to the basis vector e;. Then, since the columns {]51)1, .. ,P’UT_H} ={e1,...,ep41} of
PBi are linearly independent, ]SBZ- is of rank r 4+ 1. Hence, the rows wi,...,wyq1 of
PB; are also linearly independent. Let Q € Fr+Dxn be g linear transformation that
maps each w; to the basis vector e;. Then, the rows of PB;Q! are exactly the vectors
€1y Era1. SO, r(]—:’BZ-Qt) =7+ 1, and therefore p;(P, Q") = det(pBiQt) #0.

Now, since F is a field and none of the polynomials p; is the zero polynomial,
then the polynomial Hle p; is also not the zero polynomial. Therefore, since F is
infinite, it is not identically zero. Hence, there exist P € FU+Dxm and @ e Frx(r+1)
such that Hle pi(P,Q) # 0. So, pi(P,Q) = det(PB;Q) # 0 for all 7 € [k]. That is,
r(PB;Q) =r+1 for all i € [k], as wanted. O

Proof of Theorem 1.1.5. Let {Ay,..., Ay} € S(Ma,). Then, there exists maximal
faces Bi,...,Bgt1 of My, such that A; ¢ B; for all ¢ € [k], and A; € B; for all
1<i<j<k+1l

For i € [k + 1], let U; = span(B;). So, for all 1 <i < j < k+ 1, we have A; € Uj.
Moreover, for all i € [k], since A; ¢ B;, we must have p(B; U {A;}) > r (otherwise,
we have p(B; U{A4;}) < r, and therefore B; U {A;} € My, in contradiction to the
maximality of B;). Therefore, there exists a matrix B; € span(B; U {A;}) such that
r(B;i) > r. Moreover, since p(B;) < r, we have A; ¢ U; for all i € [k].

By Lemma 3.5.6, there exist P € FU+Dxm and @ € F**("+1) such that r(PB;Q) =
r+1 for all i € [k].

For i € [k], let A, = PA;Q, and for i € [k + 1], let U] = {PBQ : B € U;}. For
1<i<j<k+1, wehave A; € U;, and thus A} € UJ. Note that, for any B € U;, we
have r(B) < r, and therefore

r(PBQ)<r(B)<r

Thus, p(U]) < r for all i € [k + 1]. Since r(PB;Q) = r + 1, we must have PB;Q ¢ U/.
Hence, since PB;Q € span({A}}) + U/, we must have A} ¢ U] for all i € [k].

By Theorem 3.5.5, dim(U}) < r(r + 1) for all i € [k + 1]. So, by Lemma 3.5.1, we
have k < r(r + 1). Therefore, by Theorem 1.1.3, M 4, is r(r 4+ 1)-collapsible. O

3.5.3 Complexes of graphs with bounded matching number and some
conjectures

Let H be a hypergraph. A matching in H is a set of edges that are pairwise disjoint.
Let v(#) be the maximal size of a matching in H. For v € N let

Maty, ={F CH: v(H) <v}.
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Note that, for v = 1, we obtain
Maty 1 = Inty .

The case when H is a graph has been previously studied: Let K, be the complete
graph on n vertices, and let K. s be the complete bipartite graph with parts of sizes r
and s. The homotopy type of the complexes Matg, , and Mat K, Was determined by
Linusson, Shareshian and Welker in [LSWO0S]:

Theorem 3.5.7 (Linusson, Shareshian, Welker [LSWO08]). The complex Mat., ,, is ho-
motopy equivalent to a wedge of spheres of dimension 3v — 1. The number of spheres in

the wedge is
n—2v—1 2
5 ( I <|Ai|—2>u) ,
{A1,A2,...,Ap_2,_1}€II i=1

where 11 is the set of all partitions of [n — 1] into n —2v — 1 subsets Ay, Aa, ..., An_2,—1
of odd size.

Theorem 3.5.8 (Linusson, Shareshian, Welker [LSWO08]). The compler Matg, . is

homotopy equivalent to a wedge of spheres of dimension 2v — 1. The number of spheres

r—1\/s—1
0
In particular, these results imply that C(Matg,,v) > 3v and C(Matg, ) > 2v.
The bipartite case was solved by Aharoni, Holzman and Jiang in [AHJ19], where
it was shown that C(Matg,,,) = 2v. In [HL20], Holmsen and Lee showed that
L(Matg, ) = 3v.

The complexes M 4, are related to the complexes Matg , by the following results
(see also [Lov89]).

in the wedge is

Theorem 3.5.9 (Edmonds [Edm67]). Let G be a bipartite graph on vertex set A\ B,
where A = {a1,a9,...,a,} and B = {b1,ba,...,b,}.
Let Fg be the n x n matrix defined by

L. T 5 Z'f {aiﬂb'} € G7
FG’(Zaj) = ’ ’
0 otherwise,

where x; ; are variables. Then, the mazimal rank of the matriz Fg (over all possible

substitutions of the variables) is equal to v(Q).

Theorem 3.5.10 (Tutte [Tut47]). Let G be a graph on vertex set [n]. Let T be the
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n X n matriz defined by

T if {Z,]} € G and i < j,
Te(i,j) = § —xiy;  if {i,j} € G and i > j,

0 otherwise,

where x; ;j are variables. Then, the maximal rank of the matriz T (over all possible

substitutions of the variables) is equal to 2v(G).

As a consequence, we obtain:
Proposition 3.5.11. Let Let {e;;}]';_; be the matrices in the standard basis of F"*™.

1. Let G be a bipartite graph on vertex set A\ B, where A = {ay,az,...,a,} and
B= {bl, ba, .. .,bn}. Let Ag = {em' : {ai,bj} S G} Then

M.Ac,k‘ = Matgjk .

2. Let G be a graph on vertex set [n]. Let Aq = {e;j —eji: {i,j} € G}. Then

Mag 26 = Matg g -

In [BK19], Briggs and Kim obtained the following generalization of Aharoni, Holzman

and Jiang’s result:

Theorem 3.5.12 (Briggs, Kim [BK19]). Let r > 1. Let A C F™™ be a finite family

of rank one matrices. Then, M4, is 2r-collapsible.

In fact, Theorem 3.5.12 is a special case of [BK19, Theorem 8|, that bounds the
collapsibility of complexes associated to fractional matchings in a family of matroids.

Based on Proposition 3.5.11 and the results in [HL20], we conjecture the following:

Conjecture 3.5.13. Let r > 2 be an even integer. Let A be a finite family of rank two

ann

skew-symmetric matrices in . Then, My, 1s %r—collapsible.

Note that, since C(M4, ) = C(Matg,,5) > 37, the bound in the conjecture is tight.

We also conjecture:

Conjecture 3.5.14. Letr > 1. Let A be a finite family of rank two symmetric matrices
in F**™. Then, M, is r-collapsible.

We believe that the condition on the size of the field F in the statement of Theorem
1.1.5 is a byproduct of our proof and is not actually necessary. Moreover, we don’t

expect the bound 7(r 4+ 1) to be tight. In fact, the following may be true:
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Conjecture 3.5.15. Let A be a finite family of matrices in F™*™ and let r > 1. Then,
My, is 2r-collapsible.

That is, the bound from Theorem 3.5.12 for rank one matrices may hold also for general

families of matrices.

65



66



Chapter 4

Complexes of graphs with

bounded independence number

This chapter is organized as follows. In Section 4.1 we introduce some basic definitions
and facts about graphs that we will use throughout the chapter. In Section 4.2 we
present several tools for bounding the collapsibility numbers of a general simplicial
complex. Section 4.3 contains the proof of Theorem 1.2.5, dealing with the case of
chordal graphs. Section 4.4 focuses on the class of graphs with bounded maximum
degree. It contains the proofs of Theorems 1.2.6, 1.2.7, 1.2.8, and 1.2.9. Section 4.5 deals
with the Leray numbers of the complexes I,,(G). In particular, it presents extremal
examples determining the tightness of our main results (Theorems 1.2.7, 1.2.8 and 1.2.9),
and examples of 3-regular graphs for which the complexes I,,(G) do not satisfy the

bound in Question 1.2.4 (for various values of n).

This chapter is based on joint work with Minki Kim.

4.1 Preliminaries on graphs

Let G = (V, E) be a simple graph. For a set U C V, the subgraph of G induced by U is
the graph
GlU]=U,{ec E:eCU}).

A set U C V is called a clique in G if the induced subgraph G[U] is the complete graph

on vertex set U.

For any vertex v € V, we define the deletion of v in G to be the induced subgraph
G\v =GV \{v}].

For each v € V, we define the open neighborhood of v in GG as the vertex subset
Ng(v) = {u € V : u is adjacent to v},
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and we define the closed neighborhood of v in G as
Nofv] = {v} U N (w).

For a set A CV, let

Ne(4) = | Na(w).
u€A

A vertex v € V is called a simplicial vertex if Ng[v] is a clique. The degree of v in G is
the number degq(v) = |Ng(v)].

We say G is k-colorable (or k-partite) if we can partition the vertex set V into k
parts so that each part is independent in G. The following is a classical result in graph

theory that states a relation between the maximum degree and the k-colorability of G.

Theorem 4.1.1 (Brooks [Bro4l]). Let G be a connected graph with mazimum degree
k. Then G is k-colorable unless G is the complete graph K1 or an odd cycle.

The complete bipartite graph K 3 is called a claw. A graph is said to be claw-free
if it does not have a claw as an induced subgraph.
We say a graph is chordal if it does not contain a cycle of length at least 4 as an

induced subgraph. Chordal graphs satisfy the following special property:

Theorem 4.1.2 (Lekkerkerker, Boland [LB63]). Ewvery chordal graph contains a sim-

plicial vertex.

4.2 Upper bounds for collapsibility numbers

In this section we present our main technical tools for proving d-collapsibility of a

simplicial complex.

Lemma 4.2.1. Let X be a simplicial complex, and let o = {v1,...,vx} € X. For every
0<i<k,defineo; ={vj: 1<j<i}. Letd>k. If for all0 <i < k —1,

C(Ik(X \ viy1,0:)) < d—1,

and
Ck(X,01)) < d -k,

then C(X) <d.
Proof. We will show that, for any i € {0,...,k},
CK(X, o)) < d —i.
We argue by backwards induction on i. For ¢ = k, C(lk(X,01)) < d — k by assumption.
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Let i < k. By Lemma 2.3.14, we have
C(lk(X, Uz)) S maX{C(lk(X \ Vi+1, O'l')), C(H{(X, Ui—i—l)) + 1}

But C(Ik(X \ viy1,04)) < d —1i by assumption, and C(lk(X,0,41)) <d—i—1 by the

induction hypothesis. Therefore,
C(k(X,0:)) <d—1.
Setting i = 0, we obtain (since o9 = 0),
C(X)=C(k(X,00)) <d—0=d.
As a consequence of Lemma 4.2.1, we obtain:

Proposition 4.2.2. Let X be a simplicial complex on vertex set V. If all the missing

faces of X are of dimension at most d, then

d|V|
CX)< |——|.
(X) < {d + 1J
Moreover, equality C(X) = —fi”rl' is obtained if and only if X is the join of r = —Jl‘ﬁl

disjoint copies of the boundary of a d-dimensional simplex (or equivalently, if the set of

missing faces of X consists of r disjoint sets of size d +1).

Proof. We argue by induction on |V|. If |V| = 0, then X is O-collapsible, and the
inequality holds. Assume |V| > 0. If X is a complete complex, then it is O-collapsible,
and the inequality holds. Otherwise, let 0 = {v1,...,vp41} C V be a missing face of X.
Since all the missing faces of X are of dimension at most d, we have k < d. For each
0<i<k,let o; ={v;: 1< j<i}eX. Let Vj be the vertex set of k(X \ vit1,0;).
Note that for every 0 < i < k,

VicV\oit1.

Therefore, by the induction hypothesis,

d

; i) < | <

(|V|—i—-1).

Since ¢ < k < d, we obtain

?
t+1

d
(i+1) = —=[V|—i.

C(Ik(X \ vit1,04)) d+

< V] -
*d+1| |

Also, since o is a missing face, we have

k(X, o) = k(X \ vkr1,0%),
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and in particular C'(1k(X, o1)) < d%‘ll_l|V| — k. Therefore, by Lemma 4.2.1, we obtain

+
Since C'(X) is an integer, we obtain C'(X) < LMJ
Now, assume C'(X) = ff_ﬂV\. Note that, since C'(X) is an integer and ged(d, d+1) =
1, then d + 1 must divide |V].
Then, there exists some 0 < ¢ < k such that

CORX \vis1,09) = 75 (V] =i 1)

(otherwise, by the same argument as above, we could prove that C'(X) < %\V!). Since
d + 1 divides |V, it must also divide i + 1. Hence, we must have i = k = d. By the

induction hypothesis, the missing faces of
k(X,04) = 1k(X \ vg41,04)

form a set of » — 1 disjoint sets of size d + 1. Therefore, the set of missing faces of X
consists of r disjoint sets of size d + 1 plus, possibly, some additional faces of the form
T U{vg+1}, where 7 € V' \ 0. But the choice of the order vy, ...,v441 on the vertices of
o was arbitrary. Thus, repeating the same argument with a different order (e.g. v} = v;
fori <d—1, v, = vay1, U&H = vg), we obtain that the set of missing faces of X consists

exactly of r disjoint sets of size d + 1. O

Remark. An analogous bound in terms of Leray numbers was proved in [Adal4, Prop.
5.4].

Lemma 4.2.3. Let X be a complex on vertex set V', and let B C V. Let < be a linear
order on the vertices of B. Let P = P(X, B) be the family of partitions (B1, B2) of B
satisfying:

e Bye X.

o For any v € By, the complex
k(X[V\{veBi:u<v},{ueBy: u<v})

158 not a cone over v.

If for every (By, B2) € P,
C(Ik(X[V \ Bi], B2)) < d — |Bal,
then C(X) < d.
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Proof. We argue by induction on |B|. If |B| = 0 there is nothing to prove. So, assume
|B| > 0, and let v be the minimal vertex in B (with respect to the order <). Let
X' = X\ v, and let V' = V \ {v} be its vertex set. Let B = B\ {v}, and let
(B}, B,) € P(X',B’). Define By = B} U{v} and By = B). Then, B € X \ v C X, and

for any u € Bs, the complex

k(X[V\{we B : w<u}],{w € By: w < u})
=1k(X'[V'\{we B} : w<u}],{w e By : w<u})

is not a cone over u (since (B, B) € P(X', B')). Therefore (B, Bs) € P(X, B). So,
C(Ik(X'[V'\ Bi], By)) = C(Ik(X[V \ B1], B2)) < d — |Ba| = d — | By|.

Hence, by the induction hypothesis, C(X \ v) = C(X’) < d.

If X is a cone over v then, by Lemma 2.3.9, C(X) = C(X \ v) < d, as wanted.
Otherwise, let X” =1k(X,v), and let V" C V' \ {v} be its vertex set. Let B” = BNV”,
and let (BY, BY) € P(X"”,B"). Let By = Bf U {v} and B; = B\ Bo.

Since Bj € X" =1k(X,v), we have By = Bj U {v} € X. Let u € By. If u = v, then

k(X[V\{weB1:w<u},{weBy: w<u})=X

is not a cone over u = v. If u > v, then

k(X[V\{w e By: w<u},{we By: w<u})
=1k(X"[V"\{we B : w<u}],{we By : w<u})

is not a cone over u (since (Bf, BY) € P(X", B")). Therefore, (B1, B2) € P(X, B). So,
C(k(X"[V"\ BY], By)) = C(Ik(X[V'\ Bi], Bs)) < d —|Bs| = (d — 1) — |By].

Thus, by the induction hypothesis, C(lk(X,v)) = C(X") < d — 1. Hence, by Lemma
2.3.14, C(X) < d. O

4.3 Chordal graphs

In this section we prove Theorem 1.2.5, which bounds the collapsibility of I,,(G) in the

case that G is a chordal graph. The proof relies on the next result.

Lemma 4.3.1. Let G = (V, E) be a graph, and let v € V be a simplicial vertex in G.
Then, for any n > 2,

CIn(G)) < max{C(In(G \ v)), C(In1(G[V \ Ng[v]])) + 1}
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Proof. Let W C V' \ {v}. Then, W belongs to 1k(I,(G),v) if and only if W \ Ng(v) €
I,—1(G). Indeed, assume that W \ Ng(v) ¢ I,,—1(G); that is, G]W \ N¢(v)] contains
an independent set A of size n — 1. Then, AU {v} is an independent set of size n in G,
and therefore W ¢ 1k(I,,(G),v). For the opposite direction, suppose W ¢ 1k(I,,(G),v).
Then, W U {v} contains an independent set A of size n in G. Since Ng[v] is a clique
in G, A contains at most one vertex from Ng[v]. Thus, A\ Ng[v] C W\ Ng(v) is an
independent set of size at least n — 1. So, W\ Ng(v) ¢ I,—1(G).

It follows that 1k(I,,(G),v) = 2V¢®) « I,, 1 (G[V \ Ng[v]]). By Lemma 2.3.8, we have
Ck(In(G),v)) = C(In1(G[V \ Ng[v]])).
So, by Lemma 2.3.14, we obtain

CIn(G)) < max{C(In(G \ v)), C(Ik(In(G),v)) + 1}
= max{C([,(G \ v)), C(In-1(G[V \ Ng[v]])) + 1}

Theorem 1.2.5. Let G = (V, E) be a chordal graph and n > 1 an integer. Then,
C(I,(G)) <n-—1.

Moreover, if a(G) > n, then C(I,(G)) =n — 1.

Proof. We argue by induction on |V|. For |[V| = 0 the statement is obvious. Suppose
V| > 0. For n =1, C(I;(G)) = C({0}) = 0, so the claim holds. Let n > 2. Since G is

a chordal graph, there exists a simplicial vertex v in G. By the induction hypothesis,
CIn(G—=v)<n-1

and
CIn-1(G[V\ Ng[v]])) <n —2.

Hence, by Lemma 4.3.1,
C(I(G)) <max{C(I,(G\v)),C(L,-1(G[V \ Ngv]])) + 1} <n —1.

Now, let G be a graph with a(G) > n, and let A be an independent set of size n in
G. Then I,,(G)[A] is the boundary of an (n — 1)-dimensional simplex, and in particular
H, 5(I,(G)[A];F) # 0. Hence, C(I,(G)) > L(I,(G)) > n — 1. So, any chordal graph
G with a(G) > n satisfies C(1,(G)) =n — 1.
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4.4 Graphs with bounded maximum degree

In this section we prove our main results about graphs with bounded maximum degree,
Theorems 1.2.6, 1.2.7, 1.2.8, and 1.2.9.

We begin with the following related problem: Let X'(k) be the class of all k-colorable
graphs. In [ABKK19] it was observed that fx)(n) = k(n — 1) + 1. The following

proposition (combined with Proposition 1.2.2) offers an alternative proof for this result.

Proposition 4.4.1. Let G be a k-colorable graph and n > 1 an integer. Then,
C(I(G)) < k(n-—1).

Proof. Take a proper vertex-coloring of G with &k colors. Note that each color class
forms an independent set in G. Let o € I,,(G). Since o contains no independent set
of size n in G, it contains at most n — 1 vertices from each color class. It follows that
|o| < k(n —1). Hence, by Lemma 2.3.5,

C(In(G)) < dim(I,(G)) + 1 < k(n —1).

Next, we present the proof of Theorem 1.2.6. We deal with the case A = 2 separately:

Theorem 4.4.2. Let G = (V, E) be a graph with mazimum degree at most 2 and n > 1
an integer. Then I,(G) is 2(n — 1)-collapsible.

Recall that a graph with maximum degree bounded by 2 is a disjoint union of cycles
and paths. In other to apply an inductive argument, we state the following more general

claim:

Proposition 4.4.3. Let G = (V, E) be a graph with maximum degree at most 2. Let A
be an independent set in G of size at most n — 1 that is contained in the union of all

the components of G that are paths. Then,
C(lk(In(G), 4)) <2(n—1) — [A].

Proof. We argue by induction on the number of cycles ¢ in G.
If ¢ =0, then G is a disjoint union of paths. In particular, it is a chordal graph, and
by Theorem 1.2.5, C(I,(G)) < n — 1. By Lemma 2.3.15, we obtain

Ck(In(G), A)) < C(In(G)) <n—1<2(n—1) — |Al.

Let ¢ > 1, and assume that the claim holds for all graphs with less than ¢ cycles.
Let C = {v1,...,v} be the vertex set of a cycle in G (such that {v;,v;11} € F for all

i € [k], where the indices are taken modulo k). Let

r:mmﬂ’;J,n—w—l},
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and let
U:{'Ugi_li 1§i§7’}.

So, U is an independent set in G of size r.

For each 0 < i < r,let U; = {vgj—1 : 1 < j <i}. Let 0 < i < r—1. The
graph G \ v9;+1 has ¢ — 1 cycles, and the set AU Uj; is an independent set contained in
components of G \ vy;11 that are paths. Therefore, by the induction hypothesis,

C(k(In(G \ vais1), AUT;)) < 2(n — 1) — |A| — 1.

Next, we divide into two cases. First, assume r =n — |A| — 1 < L%J Then 2r +1 < k,

and, by the same argument as before, we obtain
C(k(I,(G\vory1), AUU,)) <2(n—1) — |A| — .

Since r = n — |A| — 1, the set AU U, U {vy,4+1} is an independent set of size n in G;
therefore, v, 41 ¢ Ik(I,(G), AUU,). Hence,

k(I,(G), AU Uy) = k(In(G \ varsr), AUUL).

So,
Ck(I,(G),AuU,)) <2(n—1) — |A| —r.

Now, assume r = L%J Then, U, is a maximum independent set in G[C], and we have
k(I,(G), AU U,) = 29\ «1k(I,_.(G[V \ C]), A).
Therefore, by Lemma 2.3.8, we obtain

C(k(1,(G), AUU,)) = C(Ik(I,—(G[V\ C]), A)) < 2(n—r — 1) — |A]
=2(n—1)—[A[=2r <2(n—1) - |A] -,

where the first inequality follows by the induction hypothesis (since the number of cycles

in GIV\C]isc—1).

In both cases we obtained
C(k(I(G),Aul,)) <2(n—1)—|A|—r.
So, by Lemma 4.2.1, we obtain
C(k(I,(G),A)) <2(n—1) — |4,
as wanted.
Theorem 4.4.2 follows from Proposition 4.4.3 by setting A = (.
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Now we can prove the general case of Theorem 1.2.6:

Theorem 1.2.6. Let G = (V, E) be a graph with mazimum degree at most A andn > 1

an integer. Then,

CIL(G)) < An — 1),

Proof. We argue by induction on n. For n = 1 the claim is trivial. Assume n > 2.

If A =1 then the edges of G are pairwise disjoint. In particular, G is a chordal
graph; therefore, the claim follows from Theorem 1.2.5. If A = 2, the claim follows
from Theorem 4.4.2. Assume A > 3, and let G be a graph with maximum degree
at most A. We will show that C(I,,(G)) < A(n — 1). Let ¢(G) be the number of
connected components of G that are isomorphic to the complete graph Kayi. We argue
by induction on ¢(G).

If ¢(G) = 0, then by Brooks’ Theorem (Theorem 4.1.1) G is A-colorable. Then, by
Proposition 4.4.1, I,,(G) is A(n — 1)-collapsible, as wanted.

Otherwise, assume there exists a component of G that is isomorphic to Kay1, and
let v be a vertex in that component. Note that v is a simplicial vertex in G. Since
¢(G'\ v) = ¢(G) — 1, we obtain by the induction hypothesis

C(I,(G\v)) < A(n—1).
Also, by the (first) induction hypothesis, we have
CLi—1(GV\ Ng[v]])) < A(n—2) < A(n—1) - L.
So, by Lemma 4.3.1, we obtain
C(In(@)) < max{C(In(G \ v)), C(In-1(G[V \ No[v]])) + 1} < A(n — 1),

as wanted. O

4.4.1 The n < 3 case and claw-free graphs

Next, we prove Theorems 1.2.7 and 1.2.8, which give tight upper bounds on the
collapsibility of I,,(G) for graphs G with bounded maximum degree, for n < 3. We also
prove Proposition 4.4.5, bounding the collapsibility of certain subcomplexes of I,,(G),

in the case where G is a bounded degree claw-free graph.

Theorem 1.2.7. Let G = (V, E) be a graph with mazimum degree at most A. Then,

C(12(G)) < [A“} |

2
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Proof. We argue by induction on |V|. For |V| = 0 the bound holds trivially. Assume
|[V| > 0, and let v € V. By Lemma 2.3.14, we have

C(Ix(@)) < max{C(I(G \ v)), C(k(Ix(G), v)) + 1}. (4.1)

Note that 1k(I3(G),v) is a flag complex on vertex set Ng(v). Thus, by Proposition 4.2.2,

e e C(k(Ix(G),v)) < VNG;U)’J = EJ - P;ﬂ -

Also, by the induction hypothesis,

A+1

C(1(G\ v)) < {2] |

Hence, by (4.1), we obtain

C(1x(G)) < [“1] .

2

Lemma 4.4.4. Let G = (V, E) be a graph and n > 2 an integer. Let A be an indepen-
dent set of size n — 1 in G, such that any vertex in V' \ A is adjacent to at most two
vertices in A. Let
B= |J Ne(u)nNa(v).
(wore(d)
Assume that AUB does not contain an independent set of size n (that is, AUB € I,,(G) ).
Then, Ik(I,(G), AU B) is a flag complex.

Proof. Let X =1k(I,(G), AU B), and let 7 be a missing face of X. Then, there exists
an independent set I of G of size n, such that 7 C I C 71U AU B. We may choose
such that |A N I| is maximal. Each vertex in A\ I is adjacent to at least two vertices in
I'\ A: otherwise, assume there exists a € A\ I that is adjacent to at most one vertex in
I'\ A. We divide into two cases:

e If a is not adjacent to any vertex in I\ A, let 7/ = 7\ {u} for any vertex u € 7.

e If a is adjacent to a single vertex u € I \ A, observe that u should be contained
in 7. If not, we can take an independent set I’ = I \ {u} U {a} of size n in G
such that 7 € I’ C 7U AU B. Since |ANTI'| = |ANI|+ 1, this contradicts the

maximality assumption of |A N I|. Hence, u € 7. Now, let 7/ = 7\ {u}.

In both cases, I\ {u}U{a} is an independent set of size n satisfying 7/ C I'\{u}U{a} C
7" U AU B. Tt follows that 7" ¢ X, which is a contradiction to 7 being a missing face.
Let |7| = k and |ANI| =t. Then, |A\ I| = n—t—1; so, there are at least 2(n—t—1)
edges between A and I\ A.
By assumption, each vertex v € I'\ (AU T) is adjacent to at most 2 vertices in A.
Therefore, since |1\ (AUT)| = n—t—Fk, there are at least 2(n—t—1)—2(n—t—k) = 2k—2
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edges between A and 7. But, since 7 C V' \ B, each vertex in 7 is adjacent to at most
one vertex in A. Therefore, we must have 2k — 2 < k; that is, |7| = k < 2. Thus, X is a
flag complex. O

Proposition 4.4.5. Let G = (V, E) be a claw-free graph with mazimum degree at most
A, and let n > 1 be an integer. Let A be an independent set of sizen — 1 in G. Then,

- 1A
Cr(r (@) 4) < | “H2].
Proof. For n =1 the claim holds trivially. Assume n > 2.

Let v € V'\ (AU Ng(A)). Then, AU{v} is an independent set of size n in G; hence,
v ¢ 1k(I,(G), A). So, we may assume without loss of generality that V = Ng(A) U A.
Let

B= |J Ng(u)nNe()
{uv}e(3)

and U = Ng(A) \ B. Since G is claw-free, each vertex is adjacent to at most 2 vertices

in A. Hence, we have

ING(A)| =Y INa(v)| = > [Ne(w)nNe()| = [Na(v)| - |Bl.

vEA {u,v}e(é) vEA

So, since the maximum degree in G is at most A, we obtain
Ul < (n—1)A—2|B|.

Let X = 1k(I,(G),A). We will use Lemma 4.2.3 in order to show that C(X) <

(n=DA |.
)
Let (By, B2) be a partition of B such that By € X = 1k(I,,(G), A). Let G' = G[V\Bi],
and let

Y = k(X[V \ Bi], B2) = k(I,(G)[V \ Bi], AU Bs) = Ik(I,(G"), AU By).

Note that
By= |J Ne(u)nNe(v)
{uv}e(3)

Also, since G’ is claw-free and A is independent in G’, then every vertex in V' \ By is

adjacent to at most 2 vertices in A. Therefore, by Lemma 4.4.4, Y is a flag complex.

The vertex set of Y is contained in U = Ng(A) \ B. Thus, by Proposition 4.2.2, we
obtain U 1)A —2|B A
C(Y) < {';J < V”_ )2 = J < {("_2 ) J —~ By,

[




Therefore, by Lemma 4.2.3,

C(IK(I,(G), A) < V"‘Q”AJ .

Now we are ready to prove Theorem 1.2.9.

Theorem 1.2.9. Let G be a claw-free graph with mazimum degree at most A, and let

n > 1 be an integer. Then,

fa(n) < K? + 1) (n — 1)J +1.

Proof. We argue by induction on n. The case n = 1 is trivial. Now, assume n > 1. Let
t= L(% + 1) (n— l)J + 1 and let Jy,...,J; be independent sets of size n in G. Since
t > L(% + 1) (n— Q)J + 1, then, by the induction hypothesis, there exists a rainbow
independent set A of size n — 1. Without loss of generality, we may assume that
A=A{v1,...,0-1}, where v; € J; for all i € [n — 1].

Let X = lk(I,(G), A). By Proposition 4.4.5, X is |5 (n — 1)]-collapsible.

The family {.J;}n<i<¢ consists of L%(n — 1)J + 1 sets not belonging to X. Thus, by
Theorem 1.2.1, there exists a set R = {vy, ..., v}, where v; € J; for all n < ¢ <t, such
that R ¢ X. Therefore, the set AU R contains a set I of size n that is independent in

G. I is a rainbow independent set of size n in GG, as wanted. O

Proposition 4.4.6. Let G = (V,E) be a graph with mazximum degree at most A.
Let A = {ay,a2} be an independent set of size 2 in G. Assume that there exists an
independent set in G of the form {a1,w,w'}, where w,w" € Ng(az), or there exists an

independent set of the form {ag,v,v'}, where v,v" € Ng(a1). Then,

A if A is even,
A—1 if Ais odd.

Ck(I3(G), A)) <

Proof. Let v € V\(Ng(A)UA). Then AU{v} is an independent set of size 3 in G; hence,
v ¢ 1k(I3(G), A). So, we may assume without loss of generality that V = Ng(A) U A.
Let B = Ng(a1) N Ng(az) and U = Ng(A) \ B. Since the maximum degree of a

vertex in GG is at most A, we have
|Na(A)| = [Na(a1)| + [Na(az)| — [Ng(a1) N Ng(az)| < 2A —|BJ.

So, |U| < 2A —2|B].

Let X =1k(I3(G), A). We will use Lemma 4.2.3 in order to bound the collapsibility
number of X:

Write B = {uy,...,ux}. Let P = P(lk(I3(G), A), B) be the family of partitions
(B1, B2) of B satisfying;:
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e Boe X = lk(Ig(G),A)

e For any u; € Bs, the complex

lk(X[V\{u] €Bi:j <i}],{uj €EB:j< Z})
=1k(I3(G)[V \{u; € B : j <i}],AU{uj € By : j <i})

is not a cone over u;.

Let (By,Bs) € P. Let G' = G[V '\ By], and let
Y = H((X[V \ Bl], Bg) = 1k([3<G) [V \ Bl], AU BQ) = H((Ig(G/), AU BQ)

Note that By = Ngr(a1) N Ngr(az). Also, since A is of size 2, then every vertex in V'\ By
is adjacent to at most 2 vertices in A. Therefore, by Lemma 4.4.4, Y is a flag complex.
The vertex set of Y is contained in U = Ng(A) \ B. So, by Proposition 4.2.2, we
obtain Ul 9A 2B
o) < 01 < 22220
Therefore, by Lemma 4.2.3,

A—|B| <A —|By. (4.2)

C(Ik(I3(G), A)) < A.

Now, assume A is odd. Again, let (B, B2) € P, and let

Y =1k(I3(G)[V \ B1], AU By).
If By # B then, by (4.2),

CY)<A—-|B|<A—-1—|Bs|.

Now, assume By = B. By the equality case of Proposition 4.2.2, we have C(Y) <
A —1— |B| unless Y contains exactly 2A — 2|B| vertices, and its set of missing faces
consists of A — |B| = A — k pairwise disjoint sets of size 2. We will show that this case
cannot in fact hold:

Assume for contradiction that the equality case holds. Then, Y is a simplicial complex
on vertex set U = Uy U Us, where U; = Ng(aq) \ Ng(a2) and Uy = Ng(a2) \ Ng(a1),
and |U;| = |Uz| = A — k (see Figure 4.1).

Claim 4.4.7. Let J be an independent set of size 3 in G. Then J is of one of the

following forms:
o J={a1,v,w}, where v,w € Uy,
o J = {ag,v,w}, where v,w € Uy, or

o J = {u;j,v,w} for some i € [k], where v,w € U.
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Figure 4.1: The sets A, B,U. The vertices in B are adjacent to both a; and as. The
vertices in Uy are adjacent to a; but not to as, while the vertices in U, are adjacent to
as but not to aj.

Proof. Since By = B and (By, B2) € P, we have B € lk(I3(G), A). Thus, any indepen-
dent set J of size 3 in G contains at least one vertex from U. Also, since Y is a flag
complex, at least one vertex in J must belong to AU B (otherwise J is a missing face
of size 3in Y).

Note that since U C Ng(A), each independent set of size 3 contains at most one of
the vertices a; or as.

Assume that a; € J. Then, since all the vertices in B U U; are adjacent to ai, the
two vertices in J \ {a1} must belong to Us, as wanted. Similarly, if ay € J, then the
two vertices in J \ {az} must belong to Uj.

Now, assume that aj,as ¢ J. Then, there exists some ¢ € [k] such that u; € J. For
all j € [k]\ {i}, u; ¢ J, otherwise the unique vertex v in J \ {u;, u;} does not belong to

Y, a contradiction to the assumption that the vertex set of Y is the whole set U. So,

the two vertices in J \ {u;} must belong to U, as wanted. O
(o v v
: o
.?1 .« .. ;O o .. .?k '?,LO [ ] [ ] U1
= : U
.wl . ;u)ZO. .wk ;LU'L'O ° ° U2
L
S e e v b B
Uy Uz - U U

/ /
ty> Wi, }- For

} is also independent.

Figure 4.2: The pairs {v;,w;} (i = 1,...,k), and the additional pair {v
each i € [k], {u;,v;, w;} is independent in G. The set {u;,, v; ,w;,
On the other hand, {u;,v;, w;} is not independent for j < i.

Claim 4.4.8. There exist distinct vertices vy, ...,vr € Uy and w1, ..., w, € Uy such
that:

o For alli € [k], {ui,vi,w;} is an independent set in G.
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o Foralll <j<i<k, {uj,v,wi} is not independent in G.

Proof. We define the vertices vy, ..., v, w1, ..., wy recursively, as follows. Let i € [k],
and assume that we already defined vy,...,v;—1 and wy,...,w;—1. Since (By, Bg) =
(0, B) € P, then the complex

Y =1k(I3(G), AU {u; € B: j < i})

is not a cone over u;. Therefore, there exists a missing face 7 of Y’ containing u;. Since
7 is a missing face of Y, there exists an independent set J of size 3 in G containing 7.
By Claim 4.4.7, J is of the form J = {u;,v;, w;}, for some v;,w; € U.

Note that actually J = 7. Otherwise, assume without loss of generality that
7 = {u;j,v;}. Then w; ¢ Y’'. But then w; ¢ Y, a contradiction to the assumption that
the vertex set of Y is the whole set U.

If both v; and w; belong to Uy, or both of them belong to Us, then {v;, w;} ¢ Y’,
a contradiction to {u;, v;, w;} being a missing face. So, we may assume that v; € U;
and w; € Us. Moreover, for all j < i, {uj,v;, w;} is not independent in G, otherwise
{vi,w;} ¢ Y, a contradiction to {u;,v;, w;} being a missing face.

The pairs {{v;, wi}}ie[k] are missing faces of the complex Y. Hence, they must be

pairwise disjoint. Thus, the vertices vy,...,vg, wi,...,w; are all distinct. ]

Claim 4.4.9. There exist some ig € [k] and vertices v; € Uy \ {v1,..., v}, wj, €

Us \ {w1, ..., wi} such that {u;,, v} ,w; } is independent in G.

Proof. Recall that, by assumption, the missing faces of Y consist of A — k pairwise
disjoint sets of size 2. In particular, each vertex v € U belongs to exactly one missing
face of Y.

Assume for contradiction that the only missing faces of Y of the form {v,w}, where
v € Uy and w € Uy, are the pairs {v;, w;}, i € [k], from Claim 4.4.8.

Then, the A—2k remaining missing faces must be of the form {v, w}, where v, w € Uy
or v,w € Uy. In particular, the set U; \ {v1,...,v;} must be of even size (otherwise,
there exists a vertex v € Uy \ {v1,..., v} that does not belong to any missing face of
Y, a contradiction). But

UL\ {v1...,0}| = A =2k

is odd, since A is odd.
Therefore, there exists some additional missing face of the form {v,w}, where v € Uy,
w € Uy. That is, there is some ig € [k] such that {u;,,v,w} is independent in G. So,

we can choose v;, = v and w; = w (see Figure 4.2). O
Claim 4.4.10. A > 2k + 3.

Proof. By assumption, there exists in G either an independent set of the form {aq, w, w'},

where w,w’ € Ng(az), or an independent set of the form {as,v,v'}, where v,v" €
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N¢g(aq). Assume without loss of generality that the first case holds: there exists an
independent set in G of the form {a;, w,w'}, where w,w’ € Ng(az). Then, the set
{w,w'} is a missing face in Y. Since the missing faces of Y are all disjoint, the vertices

/
io’

wi, ..., wg,w: ,w,w € Uy must be all distinct. Therefore,
A—Fk=|Us| >Fk+3.
Hence, A > 2k + 3.

Let
S ={j ekl \{io}: {vig,u;} ¢ E or {wiy, u;} ¢ E}.

(T 7
U1 Vig Uk Uy,
° .. /t\ - e ° . ° Ul
N , U
'wl'//%' \wk e el
= ///./.// \
up uz U Uy, =2,keS

Figure 4.3: The set S consists of the indices j € [k] \ {40} such that u; is adjacent in
G to at most one of the vertices v;, or w;,. For example, in the picture presented here,
2 and k belong to S, but 1 does not.

(T /
U1 U2 Vi Vg v,
oo---[\--- o & o o [
a1e@ s N\ r U
wy Wy [ w; Wy W,
G2e = ////.// \
A A B
Uy U Ui Uk

Figure 4.4: The bold purple vertices are the neighbours of v;, in G. The vertex v;, is
adjacent to ai, to wgo and to all the vertices in U7 other than itself. In addition, for
each i € [k], it is adjacent to exactly one of the two vertices u; or w;. In particular, for
indices j # i that do not belong to S, v;, is adjacent to u; (and not adjacent to w;);
see Claim 4.4.11.

Claim 4.4.11. There exists a set N1 consisting of exactly one vertex from each pair
{wj,u;}, for all j € S, such that

Na(vig) = {ar} U {uly} U (U0 \ {0 ) U{us : j € K]\ (SU {io})} U M.
In particular, |Ng(vi,)| = A.
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Similarly, there exists a set No consisting of exvactly one vertex from each pair
{vj,uj}, for all j € S, such that

Ne(wip) = {az} U {vi, } U (U2 \ {wip }) U {u; : j € [B]\ (SU{io})} U N,
And, in particular, |Ng(w;,)| = A.

Proof. We prove the claim for v;,. The proof for w;, is identical.

First, since v;, € Uy, then a; is adjacent to v;,. Also, for every v;, # v € Uy, v is
adjacent to vj,, since otherwise the set {ag, v;,, v} is independent in G, but then the set
{v,v;, } is a missing face of Y that intersects the missing face {v;,, w;,}, a contradiction
to the assumption that the missing faces are pairwise disjoint.

The vertex w;, must also be adjacent to v;,, otherwise {u;,, vi,, w;, } is an independent
set in G. But then, {v;,, w] } is a missing face of Y intersecting the missing face {v;,, wy, },
again a contradiction.

By the definition of S, v;, is adjacent to u; for all j € [k] \ (S U {ip}).

Finally, let j € S. If {vj,,u;} ¢ E and {v;,,w;} ¢ E, then {v;,,u;,w;} is indepen-
dent in G; therefore, {v;,,w;} is a missing face of Y, a contradiction. So, v;, is adjacent
to either u; or w;. Let 8" = {j € S: {uj,v;,} € E}. Let

N ={uj: je S u{w;: jeS\S}
Then, N} C Ng(v;,). Let
N = {ar} U{uly} U (U0 {oi ) U g+ j € K]\ (S U io})} U V.
We showed that N C Ng(vs,). Note that
INl=14+14+(A—-k—-1)+(E—|S|—-1)+ S| =A.

Since the maximal degree of a vertex in G is at most A, then we must have Ng(v;,) = N,

as wanted. O

Claim 4.4.12. For all j € [k]\ {io}, wi, is adjacent in G to at least one of the vertices

Uj or w]’.

Proof. Let j # ip. Assume for contradiction that u;, is not adjacent to any of the two
vertices v; and wj. Then {u;,,v;,w;} is independent in G. So, by Claim 4.4.8, we must
have iy > j. Moreover, either {v;,,u;} € E or {w;,,u;} € E (otherwise {u;, vy, w;,} is
independent in G, a contradiction to Claim 4.4.8). Assume without loss of generality
that {v;,,u;} € E. The vertex v;, must be also adjacent to w;, since otherwise the
set {uj,, viy, w;} is independent in G. But then {v;,,w;} is a missing face of Y, a

contradiction to the assumption that the missing faces are pairwise disjoint.

83



But, by Claim 4.4.11, the set of neighbors of v;, in G, Ng(vi,), contains at most
one of the vertices u; or wj, a contradiction.

So, u;, must be adjacent in GG to at least one of the vertices v; or wj. O
Claim 4.4.13. There is some vertex

w e U\({v],w] tJ € S}U{vimwioavéovwl })

10
such that {u;,,w} ¢ E.

!/

Proof. Let U' = U\ ({vj,w; : j € S} U {vig, wiy, vj,, Wi,
in G to both a; and as (since u;, € B = Ng(a1) N Ng(az)). Also, by Claim 4.4.12,
it is adjacent to at least |S| vertices from the set {v;,w; : j € S}. By the definition

w; }). The vertex u;, is adjacent

of S, for each j € S, u; is not adjacent to one of the vertices v;, or w;,. Thus w;,
must be adjacent in G to u; (otherwise, one of the sets {u;, u;,, viy} or {uj, wiy, wi,} is
independent in G, in contradiction to Claim 4.4.7).

So, u;, is adjacent to at least 2|S| 4+ 2 vertices outside of U’. Since the degree of u;,
is at most A, u;, is adjacent to at most A — 2 — 2|S| vertices in U’.

But |U'| = |U| —2|S| — 4 = 2A — 2k — 2|S| — 4. So, u;, is not adjacent to at least
A — 2k — 2 vertices in U’. By Claim 4.4.10, A > 2k + 3. Therefore, u;, is not adjacent

to at least one vertex w € U’. O

Assume without loss of generality that the vertex w from Claim 4.4.13 belongs to Us.
If {vi,,w} ¢ E, then {u;,,v;,, w} is independent in G. But then, {v;,, w} is a missing
face of Y intersecting {v;,,w;, }, a contradiction to the assumption that all the missing
faces are disjoint. So, w € Ng(vj,). But this is a contradiction to Claim 4.4.11.

Therefore, C(Y) < (A — 1) — |B|; so, by Lemma 4.2.3, lk(I3(G), A) is (A — 1)-
collapsible.

Proposition 4.4.14. Let A > 2. Let G = (V, E) be a graph with mazimum degree at
most A, and let a; € V. Then,

A+1  if Ais even,
A if A is odd.

C(lk([g(G), al)) S

Proof. Let d = A+ 2 if Ais even, and d = A + 1 if A is odd. Let V' be the vertex set
of Ik(I3(G), a1). We argue by induction on |[V'|. If |V’| < A, then by Proposition 4.2.2,

2|V’ 2A
C(k(I3(G),a1)) < ;/‘ < =5 <d-1,

as wanted. Otherwise, let |V’| > A. We will show that there exists a vertex as ¢ Ng(a1)
such that C(lk(I3(G),{a1,a2})) < d —2. We divide into three different cases:
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Case 1:

Case 2:

Case 3:

There exists an independent set in G of the form {u,v,as}, where u,v € Ng(a1)

and az ¢ Ng(a1). Then, by Proposition 4.4.6, we have

C(lk([g(G), {al, ag})) S d— 2.

There exists a triple {u,v,a2} C V' such that u,v,as ¢ Ng(a1), {u,v} ¢ E,
{u,as} € E and {v,as} € E. Then, {a;,u,v} is an independent set in G, and
u,v € Ng(az). Thus, by Proposition 4.4.6,

C(k(I5(G), {a1,a2})) < d — 2.

Assume none of the two first cases holds. Since |[V/| > A, there exists a vertex
as € lk(I3(G), a1) such that as ¢ Ng(a1) (otherwise degg(a1) = [Ng(a1)| > A, a

contradiction).

Note that the set Ng(a2)\Ng(a1) is contained in the vertex set of Ik(I3(G), {a1, az2}).
We will show that there are no missing faces of lk(I3(G), {a1, az}) contaning ver-
tices from Ng(a2) \ Ng(a1):

Assume for contradiction that there exists a missing face 7 of the complex
k(I3(G), {a1, a2}) that contains a vertex w € Ng(az2) \ Ng(a1). First, assume
that 7 = {u,v,w} is an independent set of size 3. Then, both u and v must belong
to Ng(a1). Otherwise, assume without loss of generality that v ¢ Ng(ai). Then
{w,v,a;} is an independent set in G, and therefore {v,w} ¢ lk(I3(G),{a1,a2}), a
contradiction to 7 being a missing face. But then, the existence of the independent

set {u,v,w} is a contradiction to the assumption that Case 1 does not hold.

Now, assume 7 = {v, w} is of size 2. Then there exists an independent set J of size
3 such that 7 C J C 7U{ay,a2}. Since w € Ng(az), we must have J = {a1,v, w}.
In particular v ¢ Ng(a1). So, we must have v € Ng(az). But then, the triple
{ag,v,w} satisfies as,v,w ¢ Ng(a1), {v,w} ¢ FE, {az,v} € E and {az,w} € E.

This is a contradiction to the assumption that Case 2 does not hold.

Therefore, there are no missing faces of 1k(I3(G), {a1, az}) containing vertices in
Ng(az2) \ Ng(a1). Let U = Ng(a1) U{ai,az}. Then, we have

Ik(I3(G), {a1, az}) = 2Na(@N\Na(@) 4 1k (15(GQ[U)), {ay, az}).
So, by Lemma 2.3.8, we have
C(k(I3(G),{a1,a2})) = C(Ik(I3(G[U]), {a1, az})).

By Proposition 4.2.2, we obtain

CONI(G), an, ) < 2V < 28
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Note that % < A, and % < A —1 for A > 3. Hence, we obtain

C(k(I3(G),{a1,a2})) < <d-2

24
3
for all A > 2.

For any of the three cases we have C(lk(I3(G \ a2),a1)) < d — 1 by the induction
hypothesis. Also, we showed that C(lk(I3(G),{a1,a2})) < d— 2 in all three cases. So,
by Lemma 2.3.14,

C(Ik(I3(G),a1)) < max{C(Ik(I3(G \ az2),a1)), C(Ik(I3(G),{a1, a2})) + 1}
S d— 17

as wanted. 0
Theorem 1.2.8. Let G = (V, E) be a graph with mazimum degree A. Then,

A+2 if Ais even,
A+1  if Ais odd.

C(I3(G)) <

Proof. For A =1 the claim holds by Theorem 1.2.6. Assume A > 2.

Let d = A+ 2if Aiseven, and d = A+ 1 if A is odd. We argue by induction
on |V|. If [V| = 0 the claim holds trivially. Otherwise, let a; € V. By the induction
hypothesis, C(I3(G \ a1)) < d. Also, by Proposition 4.4.14, C(lk(I3(G),a1)) < d—1.
So, by Lemma 2.3.14,

C(I3(G)) < max{C(I3(G'\ a1)), C(kk(I3(G),a1)) + 1} < d,

as wanted. O

4.5 Lower bounds on Leray numbers

In this section we present some examples establishing the sharpness of our different
bounds on the collapsibility of ,,(G). Also, we present a family of counterexamples to
the conjectural bound presented in Question 1.2.4, in the case of graphs with maximum

degree at most 3.

4.5.1 Extremal examples

Let n be an integer, and £ be an even integer. Let Gy, be the graph obtained from a
cycle of length (g + 1) n by adding all edges connecting any two vertices of distance at
most % in the cycle. Note that Gy, ,, is a k-regular graph, i.e. every vertex has degree

exactly k. Moreover, Gy, , is claw-free.
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In [ABKK19] it is shown that fg, ,(n) > (% + 1) (n—1)+1. In particular, this shows
the tightness of Theorem 1.2.9, in the case that k is even. Moreover, by Proposition
1.2.2, we obtain

CIn(Crn)) > o (n) 1> (S + 1) (n—1).

This shows that the bound in Question 1.2.4, whenever it holds, is tight. A different

way to show this is as follows.

Proposition 4.5.1.

_ F oifi=E+1)(n-1) -1,
Hi(In(Gk,n)§F) = (2 )
0  otherwise.

In particular, L(1,(Ggp)) > (% +1) (n—1).

Proof. Let t = % —+ 1. It is easy to check that there are precisely ¢ independent sets of
size n in G}, and they are pairwise disjoint. Therefore, I,,(G} ) can be described as
the join of t disjoint copies of the boundary of an (n — 1)-dimensional simplex. Since
the boundary of an (n — 1)-dimensional simplex is an (n — 2)-dimensional sphere, we
obtain by Theorem 2.2.3:

- F ifi=tn—1)—1,
Hi(I,(Gyn); F) =

)

0 otherwise.

Thus, L(I,(G)) > t(h —1) = (5 + 1) (n — 1). O

Therefore, we obtain
k
CUGu) = LG = (5 +1) 00 1),

On the other hand, I,,(Gy) is a ((£ +1) (n — 1) — 1)-dimensional complex, and there-
fore it is (& + 1) (n — 1)-collapsible. So,

CIn(Gron)) = (’; + 1) (n—1).

Proposition 4.5.1 also shows that the bound in Proposition 4.4.1 is tight, since
Gok—2r is a k-partite graph with C(1,(G2x—2)) = k(n — 1). Another such extremal
example is the complete k-partite graph K, ,. In this case, it easy to see that
I(Kn,..;n) = In(Gok—2n)-
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4.5.2 A negative answer to Question 1.2.4

Let G = (V, E) be the dodecahedral graph. It will be convenient to represent G as a
generalized Petersen graph (see [Wat69]), as follows:

V:{al,...,alo,bl,...,blg}

and
E = {{aiabi}a {aivai-f—l}v {biabi-‘r?} D= 1’27 ceey 10}7

where the indices are taken modulo 10.
Every vertex in G is adjacent to exactly 3 vertices; that is, G is 3-regular. The

maximum independent sets in G are the sets
I; = {ai,aiy2, aiy5,ai17,bi—2,b;_1,b;13,bi14}

for i = 1,...,5 (also here, the indices are to be taken modulo 10). In particular,
a(G) =8.

Proposition 4.5.2. Let G = (V, E) be the dodecahedral graph. Then,

_ F*  ifi =15,
H;(Is(G); F) =
0 otherwise.

In particular, L(Ig(G)) > 16.

Proof. Let F ={V \ 1,V \ I2,...,V\ I5}. The family F is the set of maximal faces of
I3(G)V. So, by the Nerve Theorem (Corollary 2.2.5),

H;(N(F);F) = H;(Is(G)";F)

for all i > —1. So, by Alexander duality (Corollary 2.2.11),

H;(N(F);F) = FI|V\71'73(IS(G)§F) = Hy7—i(Is(G); F) (4.3)

for all —1 <14 < |V|—2=18. We have
N(}‘):{AC[5]: ﬂV\Ii;&@}:{AC[S]: Uzﬁév}.
i€EA 1€A

It is easy to check that N(F) is the complete 2-dimensional complex on 5 vertices. So,

- F*  ifi =2,
Hi(N(F);F) =
0 otherwise.
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Thus, by (4.3),
_ F* if i = 15,
0 otherwise,
as wanted. O
We obtain C'(Is(G)) > L(Is(G)) > 16 > 2- (8 — 1) = 14. Therefore, I3(G) does

not satisfy the bound in Question 1.2.4. However, this is not a counterexample for
Conjecture 1.2.3. Indeed, it is not hard to check that fg(8) = 11.

4.5.3 Leray number of the disjoint union of graphs

The following result will help us in constructing more examples of complexes that do

not satisfy the bound in Question 1.2.4:

Theorem 4.5.3. Let G be the disjoint union of the graphs Gi,...,Gp,. Fori € [m],
let t; = a(G;) and let £; = L(1;,(Gi)). Lett = " ti = a(G) and £ = L(I;(G)). Then,

E:i&—i—m—l.
=1

The proof relies on the following result.

Proposition 4.5.4. Let G be the disjoint union of the graphs G1,...,Gy,. Fori € [m],
lett; = a(Gy). Lett =31 t; = a(G). Then, Hi(I(G);F) = 0 if and only if for every
choice of integers ki, ..., kny satisfying > " ki =k —2m + 2, ]:Ikl.(lti(Gi);IF) =0 for
all i € [m)].

Proof. For all i € [m], let V; be the vertex set of G;, and let V = [JI; V; be the vertex
set of G. Let N; = |Vj| for all i € [m], and N = |V|=>"", N;.

A set U C V contains an independent set of size ¢ in G if and only if U NV} contains
an independent set of size ¢; in G; for all 7 € [m]. That is, U ¢ I;(G) if and only if
UNV; ¢ I,,(G,;) for all i € [m]. Equivalently, a set W C V belongs to I;(G)"" if and
only if WNV; € I,(G;)V for all i € [m]. Thus, we have

L(G)Y =1,(G)Y *--- %I, (Gn)".

Note that for every i € [m], V; ¢ I;,(G;) (since G; contains an independent set of size
t; = a(G};)). Similarly, V' ¢ I,(G). So, by Alexander duality (Corollary 2.2.11), we have

Hj(I;,(G;)";F) = Hy,—j—3(I;,(G;); F)
for all i € [m| and —1 < j < |V;| — 2, and
B (1(G)Y F) = Hx—j-s(1(G); )
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for all -1 <j <|V|-2.
Therefore, by Theorem 2.2.3, we obtain

Hy—j-3(1(G);F) = H;(I,(G)";F)

= $ Hj, (1, (G1)VsF) ® - - @ Hj,, (I, (Gm) Vs F)
tebimej—me1
= & Hyy—jy 315 (G1);F) @ -+~ @ Hy,p,—j,—3(It,, (Gin); F).

it m=j—mt1

Setting k = N — j — 3 and k; = N; — j; — 3 for all ¢ € [m], we obtain

Hy(I:(G); F) = &y Hy, (It (G1); F) © - - ® Hy,,, (It,,, (G ); F).
Koy 4ot ke =k —2m 42

In particular, Hj, (I:(G);F) = 0 if and only if for every choice of ki, ..., ky, satisfying
S ki =k —2m + 2, Hy, (I;;(G;); F) = 0 for all i € [m].

Proof of Theorem 4.5.3. For all i € [m], let V; be the vertex set of G;, and let V =
Ui~ Vi be the vertex set of G.
Since L(I;(G)) = ¢, there exists a set U C V such that

Hy_1(1,(G[U]); F) # 0.

Let G’ = G[U] and G}, = G;[UNV;] for all i € [m]. Note that I;(G’) is not the complete
complex, since it has non-trivial homology; hence, a(G’) = t. Since G’ is the disjoint
union of the graphs G, ..., G, we must have a(G}) = t; for all ¢ € [m]. By Proposition
4.5.4, there exists ki, ..., kn, satisfying Y ;" k; = ¢ — 2m + 1 such that

In particular, ¢; = L(It,(G;)) > k; + 1. Summing over all i € [m], we obtain

Zei EZki—i—m:E—m—l—l.
i=1 i=1
Now, let i € [m]. Since ¢; = L(I3,(G;)), there exists a set U; C V; such that
Hy, -1 (I, (Gi[U3]); F) # 0.

Let G} = G;[U;]. Note that I;,(G?) is not the complete complex, since it has non-trivial
homology. Therefore, a(G}) =t;. Let U = Uy U---U Uy, and let G’ = G[U]. Then, G’

is the disjoint union of G, ..., G},. By Proposition 4.5.4, we have

Hym (g, —1yrom—2(I(G');F) = Hym g o(1i(G'); F) # 0.
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Thus, £ = L(L(G)) > > £ +m — 1.

Corollary 4.5.5. Let Gy be the union of k disjoint copies of the dodecahedral graph.
Then,
L(Isk(Gy)) > 17k — 1.

Proof. Let Hy,...,Hy be k disjoint copies of the dodecahedral graph. Then, by Propo-
sitions 4.5.2 and 4.5.3, we obtain

L(ng(Gk)) = L(ng(Hl UHoU---U Hk))

k
= L(s(Hi))+k—1>16k+k—1=1Tk— 1.
=1

Note that the graphs Gy are 3-regular, and

LI(Gy) . 1Th—1 1
> — .
k-1 —sh_1 23”72

Thus, the complexes Isx(Gy) do not satisfy the bound in Question 1.2.4.
Note that the graphs G are not counterexamples for Conjecture 1.2.3. This can be

shown by the following observation.

Proposition 4.5.6. Let G be the disjoint union of two graphs Gy and Gy with o(G1) =
t1 and o(Ge) = ta. Then,

fa(ti +t2) < max{fq,(t1), fa,(t2) +t1}.

Proof. Let Vi and V5 denote the vertex sets of G; and Go respectively. Let ¢ =
max{ f¢, (t1), fa, (t2) + 1}

Let A = {A,..., A} be a family of independent sets of size t; +t2 in G. Note that
any independent set of size t; + t2 = a(G) in G has t; vertices in V; and ty vertices in
Va.

Thus, Ay NV, Ao N Vi, ..., 4, NV} is a family of ¢t > fg, (t1) independent sets of
size t1 in (G1. Hence, it contains a rainbow independent set R; of size ;. Without
loss of generality, we may assume that Ry = {ay—¢,+1,...,at}, where a; € A; for all
ie{t—ti+1,...,t}.

The family A1 NVa, AoNVa, ..., Ay, NVa is a family of t —¢; > f,(t2) independent
sets of size t9 in G9; therefore, it contains a rainbow independent set Ry of size to.

Then, the set R; U Ry is a rainbow independent set of size t1 + to in G with respect
to A, as wanted. d

Applying Proposition 4.5.6 repeatedly, we obtain that fg, (8k) < 8k + 3 < 16k — 1.
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Chapter 5

Leray numbers of tolerance

complexes

This chapter is organized as follows. In Section 5.1 we present some auxiliary topological
results that we will use later. In Section 5.2 we prove our main result, Theorem 1.3.5. In
Section 5.3 we prove Theorem 1.3.6 about the Leray number of the 1-tolerance complex
of a 2-collapsible complex. In Section 5.4 we describe Montejano and Oliveros’ example
of a d-representable complex whose 1-tolerance complex is not <[(di23)2J — 2) -Leray.

This chapter is based on joint work with Minki Kim.

5.1 Some topological preliminaries
In this section we prove some auxiliary results that we will later need. Let F be a field.

Lemma 5.1.1. Let X be a simplicial complex on vertex set V', andY C X a subcomplex.
Assume that there is some o € X and subcomplezes W C Z C X[V \ o] such that

X\Y={nUo:neZ\W}

Then,
Hk (X7Y7]F) = ka|a'\ (Z7W7F)

for all k.
Proof. For all k, let ¢ : C(X,Y;F) = Cy_|5(Z, W;F) be defined by

dr(nUo)=n

and extended linearly. Note that the maps ¢y, are linear isomorphisms. Denote by 0
the boundary operator of C(X,Y;F) and by 0;, the boundary operator of Cy(Z, W;F).
We are left to show that ¢ is a chain map. That is, for any n € Z(k) \ W(k), we want
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to show that
Drtlo|=1 (D10 (MU 7)) = O (Phy|o (N U 0)).

Let n = {ug,...,ux}. Foranyi € {0,...,k}, let n; = {uo,...,ui—1,Ujt1,-..,ur}. Then,

since any subset of n U o belonging to X \ Y must contain o, we have

OppioinUo) = Y (~Dipuo= Y (-1)'nUo
1€{0,...,k}: 1€{0,...,k}:
niUogY nigw

Hence,

Bt lol—1 Do) (@UM) = > (=1)'mi = 0(n) = h(Ppsjo) (MU 7).
1€{0,....k}:
nigWw
So Cx(X,Y;F) and Cy_(Z, W;F) are isomorphic as chain complexes, and in particular

have isomorphic homology groups. O

Lemma 5.1.2. Let Xy,...,X,, be simplicial complexes, and let X = U™, X;. If for

all I C [m] of size at least 2, the complex Nic1 X; is non-empty and acyclic, then
~ m ~
Hy, (X;F) = P Hy (X5 F).
i=1
for all k > —1.

Proof. We argue by induction on m. For m = 1 the claim is trivial. Assume m > 1.
Since N;erX; is non-empty and acyclic for every I C [m — 1], we obtain, by the induction

hypothesis,

-1

Hy, (U1 X35 F) Hy (X4 F)
1

3

i
for all k£ > —1.
Since X = (U?i_llXi) U X, we have by Mayer-Vietoris (Theorem 2.2.1) a long exact

sequence

o= Hy (U XG0 XG)s F) — éﬁk (X F) —
i=1
; Hy, (X5F) = Hyoy (UPN (XN X); F) — -
Hence, it is enough to show that
Hy, (Ur XN X)) F) =0
for all k > —1.
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By the assumptions of this lemma, the nerve N = N({X;NX,,}7,') is the complete

complex on vertex set [m — 1]. Moreover, for all I C [m — 1], the complex
Nicr(Xs N X,) = Nieru{m)Xi
is acyclic. Therefore, by the Nerve Theorem (Theorem 2.2.4), we obtain
Hy, (U H(X N X0n); F) 2 Hy, (N;F) =0

for all £ > —1. Thus,
Hy, (X;F) = P Hy. (X5 F)
=1

for all £ > —1, as wanted. O

Remark. We can give a shorter proof of Lemma 5.1.2 by applying the stronger version
of the Nerve Theorem, Theorem 2.A.2: By the assumption of the Lemma, the nerve
N =N{Xi,...,Xmn}) is the complete complex on vertex set [m], and in particular is

acyclic. By Theorem 2.A.2, we have a long exact sequence

m
coo = Hip1 (N;F) — @D Hi (Xi5F) = Hy (X3 F) — Hi (N;F) — -
=1

Therefore, we obtain Hy, (X;F) = @i, Hy (X;;F) for all k > —1.

5.2 Proof of Theorem 1.3.5

In this section we prove our main result, Theorem 1.3.5.

Note that the construction of the tolerance complexes depends on the vertex set of
the original complex. Let K be a complex on vertex set V. Let U C V and o € K. For
the construction of tolerance complexes, we will consider the vertex set of the induced
subcomplex K[U] to be the set U, the vertex set of cost(K, o) to be V, and the vertex
set of Ik(K, o) to be V' \ 0.

Lemma 5.2.1. Let K be a simplicial complex on vertex set V, and let o € K. Then,

Ti (K)\T; (cost(K, o))

= UUﬁineﬁ(lk(KJ))\ U 7;—|0’| (lk(K[V\J/],U\U/))

o'Co:
1<|o’|<t

Proof. Let 7 € Ty (K) \ T¢ (cost(K,0)). Since 7 € T; (K), we can write 7 = 7/ U 7|
where 7/ € K and |7"| < t. Moreover, we must have 7/ D 0. Otherwise, 7 € cost(K, o),
a contradiction to 7 ¢ T; (cost(K, 0)).
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Let n = 7\ 0. Then, we can write n = (7' \ o) U7". Since 7"\ ¢ € k(K, o), we
obtain n € T; (Ik(K,0)). We claim that

n¢ |J T KKV oo\ o).

o'Co:

1<|o’|<t

Assume for contradiction that n € T;_ |,/ (Ik(K[V \ 0], 0 \ ¢')) for some ¢/ C 0, 1 <
|o’| <t. Then, we can write

n=mUn,

where my No =0, n U (o \ o) € K and || <t — |o’|. Hence, we obtain

T=oUn=(mU(o\o)) U (o’ Un).

Since 0 ¢ m U (0 \ ¢') and |0/ Una| < t, we have 7 € T; (cost(K, o)), which is a
contradiction to the assumption 7 € T; (K) \ T; (cost(K, 0)).

For the opposite direction, let 7 = o Un, where

n e T (k(K,0))\ U Ticor) (IK(K[V \ 0'], 0\ o))
1<|a/|<t
We claim that 7 € T;(K) \ T¢(cost(K,0)). Since n € T¢ (Ik(K,0)), we can write
n=mn1Un, where 1 No =0, ;; Uo € K and |ne| < t. Therefore, 7 = (g Uo) Ung €
Ti (K). We are left to show that 7 ¢ T; (cost(K,0)). Assume for contradiction that
T € T; (cost(K,0)). Then, we can write 7 = 71 U 7o, where 11 € K, 0 ¢ 71 and |r»| < t.

Let 0/ = No. Since o ¢ 71 and o C 7, we must have ¢’ # (). Then,

n=1\o=(n\(e\o)U(r2\0)

Since 71 \ (¢ \ ¢/) € Ik(K[V \ ¢],0\ ¢') and |2 \ ¢/| < t —|0'|, we have n €
Ti—jor) Ik(K[V \ ¢'],0 \ 0’)). But this is a contradiction to the assumption on 7. This

completes the proof.

By Lemma 5.2.1 and Lemma 5.1.1, we obtain:

Corollary 5.2.2. Let K be a simplicial complex, and let o € K. Then, for all k, we

have

Hy, (T (K) , Ty (cost(K, o)) ; F)

=~ Hy, o | 70 k(K 0)), T (Ik(K, 0)) N U Tijo) K(K[V\ 0'],0\ ")) | ;F

g CO'
1<|o’|<t
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Proposition 5.2.3. Let K be a simplicial complex, and let o € K such that o 1is

contained in a unique mazimal simplex c UU € K, where U # (). Then, for all k,

Hy, (T: (K), T¢ (cost(K, 0));F)

= @ -Hk:—|a\—1 U 7;—‘0”| (lk(KaU\U/)[UUW]) ;F

WcV\(eUU): o' Co:
W=t 1<|o’|<t

Proof. Let
U T (k(K[V\0'],0\ o).

o'Co:
1<lo’|<t
By Corollary 5.2.2, we have
Hy (Tt (K), T (cost(K, 0));F) = Hy_ ) (Tt (Ik(K, 0)) , Tt (Ik(K,0)) NY;F).

By Theorem 2.2.6, we have a long exact sequence

+o = Hyy_ o) (T: (Ik(K, 0)) ;F) = Hy_jo) (T (k(K, 0)) , T; (Ik(K,0)) N Y;F) —
= Hy_ o1 (Te (K, 0)) NY3F) = Hy_ o1 (T (Ik(K, 0)) s F) — - -

Note that 1k(K, o) = 2Y; therefore,
T (k(K,0)=2"«{r cV\(UuUo): |r| <t}.
In particular, since U # 0, T; (Ik(K,0)) is contractible. Hence,
Hye—jo| (Tt (6(K, 0)) . Ty (IK(K, 0)) N Y3 F) 2 Hy_jo) 1 (Te k(K 0)) VY F).

We can write

T (k(K,o)nYy= ) 2""nvy= ) Y,
WcCV\(oUU): WCV\(eUU):
W=t |W|=t

where
Y =Y[UUW] = U Tijor| (Ik(K, 0\ o) [UUW]).

e CO’
1<|o’|<t

Let m > 1, and let Wy,...,W,,, C V' \ (¢ UU) be distinct sets, such that |W;| =t for
all i € [m]. Then,

() Yw U Tictor) (K(K, 00\ o) [U U (N, W5)]) -

=1 o'Co:
1<‘0/|<t
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Since | N™, W;| <t — 1, we have, for any v € o,
UU (N2 Wi) € Temr (Ik(K, 0\ {oH)[U U (N2, W5)]) -

In particular,
m
UU (N2 W) € () Y,
i=1

and hence, we conclude

m
ﬂ YW — 2UU(ﬂ§l1Wi).
i=1

Since U # 0, the intersection (-, Yy, is non-empty and acyclic. Therefore, by Lemma
5.1.2,

Hy o1 (KK, 0))NY;F) 2 € Hy_ o1 (Yu; F)

WcV\(cUU):
W=t

~ P Hep U Tijor) k(K 0\ o")[UUW]);F [,

WcV\(cUU): o'Co:
|W|=t 1<]o’ 1<t

as wanted. O

Recall that h(t,d) is defined as follows: h(0,d) = d for all d > 0, and for t > 0,
min{¢,d} d
h(t,d) = h(t —s,d)+1 d.
wo=| 3 (§)oe-sasn]|+
Lemma 5.2.4. For d =1, we have

h(t,1) =2t + 1.

Fort =1, we have
h(1,d) = d* + 2d.

For fixed t, we have
h(t,d) = O(d"™).

Proof. First, we show that h(t,1) = 2¢t + 1. We argue by induction on ¢. For t = 0 we
have h(0,1) =1 =2t + 1. Now, assume ¢ > 0. Then, by the definition of h(¢,d) and the

induction hypothesis, we obtain
h(t,1)=h(t—1,1)+14+1=2(t—1)+3=2t+ 1.
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Next, we show that h(1,d) = d? + 2d. Indeed,
h(1,d) = d(h(0,d) + 1) + d = d* + 2d,

as wanted.

Finally, we show that, for fixed ¢, h(t,d) = O(d't!). We argue by induction on t.
For t = 0 we have h(0,d) = d = O(d). Let t > 1. We will show that there is some
constant C; such that, for large enough d, h(t,d) < Cid'™!. By the definition of h(t, d)

and the induction hypothesis, we have,

h(t,d) = (Z <;l> (h(t — s,d) + 1)) +d

s=1

t
ds )
< (Z Q(Ct_sdt g 1)) +d

s=1
t

_ Cis \ 11 e
SCtdtJrl

for C; > S0, C’;js and large enough d. So, for fixed t, we have h(t,d) = O(d'™!). O

Theorem 1.3.5. Let K be a d-collapsible complex on vertex set V and let t > 0. Then,
T (K) is h(t,d)-Leray.

Proof. We will show that Hy (7; (K);F) = 0 for k > h(t,d). This is sufficient to prove
the statement of the theorem, since 7; (K) [W] = T; (K[W]) and, by Lemma 2.3.6, K[WV]
is d-collapsible for every W C V.

We argue by induction on t. If ¢t = 0 the statement obviously holds, since every

d-collapsible complex is d-Leray.

Let t > 1. We argue by induction on the size of K, that is, the number of simplices
in K. If dim(K) < d, then dim(7; (K)) < d 4+t < h(t,d), so the statement holds.
Otherwise, by Lemma 2.3.18, there is some o € K such that |o| = d, o is contained in a

unique maximal face 7 # o of K, and cost(K, o) is d-collapsible.

Let U = 7\ 0. By Theorem 2.2.6, the following sequence is exact:

oo = Hy, (T; (cost(K, 0));F) = Hy, (T; (K)); F) = Hy, (T; (K) , T; (cost (K, o)) ; F) — - --

By the induction hypothesis, Hj, (T; (cost(K, o)) ;F) = 0 for k > h(t,d). Therefore, it is
sufficient to show that Hy, (T; (K),T; (cost(K,0));F) =0 for k > h(t,d).

By Proposition 5.2.3, it is sufficient to show that, for every W C V'\ (c UU) of size
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t, the homology group

H | |J T (K, 0\ o) UUW]);F

o'Co:
1<lo’|<t

is trivial for & > h(t,d) —d— 1. Note that, for any ¢’ C o, by Lemma 2.3.15 and Lemma
2.3.6, the complex lk(K, o \ ¢/)[U UW] is also d-collapsible. Hence, by Theorem 2.2.13

and the induction hypothesis, the above homology group is trivial for

min{¢,d}

d
k> h(t—|o'|,d)+1] —1= h(t—s,d)+1)| -1
2| X -l s > ()t —sd
1<]07 <t
=h(t,d)—d—1,
as wanted. 0

5.3 Improved bound for d =2,1t=1

By Theorem 1.3.5 and Lemma 5.2.4, for any d-collapsible complex K, the 1-tolerance
complex 77 (K) is (d? + 2d)-Leray. This is of the same order of magnitude, but larger,
than the conjectural bound n(d + 1,2) — 1 = L(%)ZJ — 1. In this section we prove
Theorem 1.3.6, which gives a tight bound for the Leray number of 77 (K), in the special
case that K is 2-collapsible.

For the proof we will need the following Lemma:

Lemma 5.3.1. Let K be a 2-collapsible complex on vertex set V. Let o0 = {u,v} € K
such that o is contained in a unique mazimal face cUU, where U # 0 . Letw € V\(UUo).
Then,

Hy, (Ik(K,v)[U U{w} UI(K,u)[UU{w};F)=0
for k> 2.

Proof. Let A = 1k(K,v)[U U{w}] and B = 1k(K,u)[U U {w}]. By Mayer-Vietoris

(Theorem 2.2.1), we have a long exact sequence
+-+ = Hy (A;F) @ Hy, (B;F) — Hy, (AU B;F) - Hy—y (AN B;F) — -+

Since K is 2-collapsible, then, by Lemma 2.3.6 and Lemma 2.3.15, A and B are also
2-collapsible. In particular, Hy, (A;F) = Hy, (B;F) = 0 for k > 2. Therefore, it is enough
to show that

Hy(ANB) =0
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for k> 1. If w ¢ AN B, then
ANB=2Y,

and the claim holds. Otherwise, assume w € AN B. By Theorem 2.2.2, we have a long

exact sequence
oo = H,((ANB)\w;F) - H, (AN B;F) = H_y (Ik(AN B, w);F) — --- .

Note that (AN B)\ w = 2Y; hence, Hy (AN B)\ w;F) = 0 for all k. Thus, it is enough
to show that

H; (Ik(AN B,w);F) = Hy, (Ik(K, {v,w})[U] N1k(K, {u,w})[U];F) = 0

for k > 0. Let
Z = 1k(K, {v,w})[U] NIk(K, {u,w})[U].

We will show that Z is in fact a complete complex.

Note that a set 7 C U is a missing face of Z if and only if it is either a missing
face of Ik(K, {v, w})[U] or a missing face of Ik(K, {u,w})[U]. Moreover, 7 C U is a
missing face of k(K {v, w})[U] if and only if there is some n C {v,w} such that 7 Un
is a missing face of K. Similarly, 7 is a missing face of Ik(K, {u,w}) if and only if there
is some 1 C {u,w} such that 7 U7 is a missing face of K.

Assume for contradiction that Z contains a missing face 7 C U of size at least two.

Recall that, since K is 2-collapsible, all the missing faces of K are of size at most 3.
Then, since U € lk(K, {u,v}), 7 must be of the form 7 = {x,y}, where {z,y, w} is a
missing face of K.

Now, we look at the induced subcomplex L = K[{u,v,w,z,y}]. By Lemma 2.3.6, L
is 2-collapsible. The missing faces of L are exactly the two sets {u, v, w} and {x,y, w}. It
is easy to check (for example by applying Theorem 2.2.12) that Hy (L;F) # 0. Therefore,
L is not 2-Leray. This is a contradiction to L being 2-collapsible. So, Z is a complete
complex, and therefore Hj, (Z;F) =0 for all k£ > 0. ]

Theorem 1.3.6. Let K be a 2-collapsible complex. Then, T1 (K) is 5-Leray.

Proof. The proof is exactly the same as the ¢ = 1 case of the proof of Theorem 1.3.5,
except that we replace the use of the Kalai-Meshulam bound (Theorem 2.2.13) by
Lemma 5.3.1. O

5.4 Examples of 1-tolerance complexes

Let d > 2. The following example was presented in [MO11, Theorem 3.2]: Let 1 <n <
d — 1, and write R? = R"® x R, Let z1,...,2,41 C R” be affinely independent. Let
Yy Ydens1 C R be affinely independent, and let A = conv({y1, ..., Yq—n+1})
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For i € [n+ 1], let
Ai = conv ({xl, ey =1y Lty e e - ,$n+1}) x A.
Forie[n+1]and j € [d—n+1], let

Bij = conv({(zp,yq) : p € [n+1],q € [d—n+1], (p,q) # (i,4)})

Let C = {A;}1 U {Bij}(ij)em+1]x[d—n+1]- Note that |C| = (n 4 1)(d —n + 2).

Let K = N(C). For i € [n + 1], we will denote the vertex of K corresponding to A;
by v;, and for (i,j) € [n+ 1] x [d —n + 1], we will denote the vertex of K corresponding
to B;j by u; ;.

Lemma 5.4.1. The missing faces of K are the sets {vi,...,vn41} and

{111, ey Vi1, Vi1 - oo, Ungp1, U1y - - - 7Ui,dfn+l}

forie [n+1].

Proof. First, note that ﬂ?jllAi = (). Therefore, {v1,..., 041} ¢ K.
For any i € [n + 1], we have N4 A = {x;} X A. Let (z5,9) € {25} X A = Mgz Ay
Assume that

(zi,y) = Z pq(Tp; Yq),

(p,q)€[n+1] X [d—n+1]

where a4 > 0 for all p, ¢ and Z( apq = 1. Then, since z1,...,Zn41

p,@)E€n+1]X[d—n+1]
are affinely independent, we must have oy, 4 = 0 for p # i. So, we have

d—n+1
(zi,y) = Z (@i, Yj).
j=1
In particular, y = Z?;?H Q; jYi. Since Y1, ..., Yd—n+1 are affinely independent, this is

the unique way to write (z;,y) as a convex combination of the points {(x, ¥¢) } (p.q)€[n-+1]x [d—n-+1]-
We will show that (z;,y) ¢ ﬂ‘;;?“Bm-. Indeed, if (z;,y) € B;; for some j €

[d —n + 1], we must have «; ; = 0. Hence, if (z;,y) € ﬂ?;?“BLb we obtain «; ; = 0

d—n+1
i=1

Therefore, (Mg Ak) N <ﬂ?;?+lBi7j> = (). That is,

for all j, a contradiction to > a;; = 1.

{’Ul, ce s Ui—1, U541, - - .,Un+1,ui’1, e ,ui’d,nJrl} ¢ N(C) = K

On the other hand, let B be a set that does not contain any of the sets {v1,...,vp11}
or {v1,...,Vi—1,Vit1,-+, Untl, Ui, -, Uidnt1} for ¢ € [n+ 1]. Then, there must be
(1,7) € [n+ 1] x [d —n + 1] such that v;, u; ; ¢ B. Since

(xi,95) € (MkiAk) O (Np.g)2Gi.5) Broa) »
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we have B € N(C) = K. Therefore, the missing faces of K are the sets {vi,...,vp4+1}

and

{Ulv L) )’Uiflavl?i»la e ey Un+17u’i,17 o e 7ui,d—n+1}

for i € [n+1]. O

Note that the set A = {v;}7" ! U {uij} i j)em+1)x[d—n+1) 18 not a simplex in Ty (K),
since even after removing any vertex from it, it contains a missing face. On the other
hand, for any ¢ € [n+ 1], the set A\ {v;} belongs to 71 (K), since, for any j € [d—n+ 1],
A\ A{vi,u;;} € K. Similarly, for any (4,j) € [n+ 1] x [d — n + 1], the set A\ {u;;}
belongs to 71 (K). Therefore 77 (K) is the boundary of a simplex on (n+ 1)(d —n + 2)
vertices. That is, it is a ((n 4+ 1)(d — n + 2) — 2)-dimensional sphere. Hence, it is not
((n+1)(d —n+2) — 2)-Leray.

Since

max{(n+1)(d—n+2): 1<n<d-1}= {(CZ—;S>2J,

we obtain for suitable n a d-representable complex such that its 1-tolerance complex is
not Q(%)QJ — 2>—Leray.

For d = 2, we have the following additional example of a 2-representable complex
whose 1-tolerance complex is not 4-Leray:

Let T C R? be a triangle. Let v, v, v3 be its vertices and eq, es, e3 be its edges
(where for each i € [3], v; is the vertex disjoint from e;). For each i € [3], let p; be the
midpoint of the edge e;.

For each i € [3], let H; be a line parallel to e; separating v; from the quadrilateral
spanned by the four vertices {v;,p;};-i, and let Hf be the half-plane defined by H;
that contains e;.

Let C = {e1, e, e3, Hi, Hy , Hy } and let K = N(C).

For i € [3], let w; be the vertex of K that corresponds to e; and let u; be the vertex
that corresponds to H;r It is easy to check that the missing faces of K are the sets

{w1, w2, ws}, {wr,wa, us}, {wr, ug, w3}, {u1, we,ws}.

Now, note that the set A = {w1, we, w3, u1, us, uz} does not belong to 7 (K), since
even after removing any vertex from it, it contains a missing face. On the other hand,
for any 7 € [3], the set A\ {w;} belongs to T (K), since A\ {w;,u;} € K. Similarly, the
set A\ {u;} belongs also to 77 (K). That is, 71 (K) is the boundary of a simplex on 6

vertices. In particular, it is a 4-dimensional sphere, and therefore it is not 4-Leray.
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Figure 5.1: A family of convex sets in the plane C = {ey, eq, e3, H;", Hy , H3 } such
that 71 (N(C)) is not 4-Leray.
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Chapter 6

Representability and boxicity of

simplicial complexes

This chapter is organized as follows. In Section 6.1 we prove some simple results about
the missing faces and the representability of intersections of complexes. Section 6.2
contains the proof of Theorem 1.4.3. In Section 6.3 we prove Theorem 1.4.4. In Section
6.4 we prove our main result, Theorem 1.4.2. In Section 6.5 we present some related

open problems.

6.1 Intersection of simplicial complexes

In this section we prove some basic results about the missing faces and the representability

of intersections of complexes.

Proposition 6.1.1. Let Xy,..., Xy be simplicial complexes on vertex set V, and X =
NF_, X;. For each i € [k], let M; be the set of missing faces of X;, and let M be the set
of missing faces of X. Then, M is the set of inclusion minimal elements of Ui-“:l./\/li.

As a consequence, we obtain

Proof. Let 7 € M. Since 7 ¢ X, then there exists some j € [k] such that 7 ¢ X;. Let
o C 7. Since 7 is a missing face of X, we have 0 € X = ﬂleXi. In particular, o € Xj.
Hence, 7 is a missing face of X;. That is, 7 € M, C Ulej\/li. Moreover, 7 does not
contain any other face of U¥_; M;. Otherwise, there exists some r € [k] and o € M,
such that o C 7. Since 0 ¢ X,., then o ¢ X. But this is a contradiction to 7 being a
missing face of X.

Now, let 7 be an inclusion minimal element of Ule/\/li. Then 7 € M; for some
J € [k]. In particular, 7 ¢ X;, and therefore 7 ¢ X. Now, let 0 C 7. Assume for
contradiction that o ¢ X. Then, there exists some r € [k] such that o ¢ X,. So, there
exists some 1 € M, such that n C ¢ C 7. This is a contradiction to 7 being inclusion

minimal in Ule/\/li. So, o0 € X. Therefore, 7 is a missing face of X.
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Since M C UF_, M;, we obtain h(X) < max;e(x) h(X;). O

Lemma 6.1.2. Let X1,..., Xy be simplicial complexes on verter set V. If X; is d;-
representable for each i € [k], then NE_, X; is <Zf:1 di) -representable.

Proof. For i € [k], let {C?},cv be a representation of X; in R%. For v € V, let
C,=ClxC?x...xCk

We will show that C = {C,},ev is a representation of N¥_, X; in R% x ... x R% =
R+

Note that the sets C, are convex, and for any ¢ C V,

QC::O]q>xum<fwﬁ> (6.1)

veo veo vET

Let 0 C V. If ¢ € N¥_, X;, then o € X; for all i € [k]. Hence, Nye,C! # O for all
i € [k]. So, by Equation (6.1), Nye,Cyy # 0. If o ¢ NF_, X, then there exists some i € [k]
such that o ¢ X;. Therefore, N,e,C? = (). Thus, by Equation (6.1), Nye, C, = 0. Hence,

C is a representation of N¥_, X; in Ré++dx, O

6.2 Lower bounds on d-boxicity

In this section we prove Theorem 1.4.3. For the proof we will need the following simple

lemma, which is a generalization of [Wit80, Lemma 3]:

Lemma 6.2.1. Let A, B be two finite sets, such that |A| = |B| = d+1, and |[ANB| < d.
Let V. = AUB. Let X be a simplicial complex on vertex set V that has A and B as
missing faces, and such that for any other missing face 7 of X, TUA=V and TUB =V
Then, there exists some k > d such that Hy(X;F) # 0.

Proof. Let M be the set of missing faces of X. Let I'(X) be the simplicial complex

Nm:{NcM:UT¢V}

TeN

By assumption, AU B =V, and for any missing face 7 € M\ {A,B}, AUT =V and
B U7t = V. Therefore, both A and B are isolated vertices of the complex I'(X). In
particular, I'(X) is disconnected. That is,

Ho(T(X); F) # 0.
By Theorem 2.2.12, we have
Hyy|-3(X;F) = Ho(T(X);F) # 0.
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Since |AN B| < d, we have
V| -3=|A|+|B|-]ANB|-3>2(d+1)—(d—1) -3 =d.

Hence, we have Hy(X;F) # 0 for some k > d. O

Theorem 1.4.3. Let X be a complex whose set of missing faces is a partial Steiner
(d,d + 1,n)-system M. Then, X cannot be written as the intersection of less than
|M| d-Leray complexes. On the other hand, the d-boxicity of X is at most |[M|. As a
consequence,

bozg(X) = |M]|.

Proof. Assume we can write X as
S

where, for all i € [s], X; is a d-Leray complex. For each i € [s], let M; be the set of
missing faces of X;.

By Proposition 6.1.1, M is the set of inclusion minimal elements in Uj_; M;. Since
all the elements of M are of size d + 1, and all the elements of M; are of size at most
d+ 1 (since, by Theorem 2.4.2, the missing faces of a d-Leray complex are of dimension

at most d), we must in fact have
M - UleMZ

(Otherwise, assume there exists some 7 € U;_; M; \ M. Then, there is some n € M
such that n C 7. But since all the elements of M are of size d + 1, we obtain |7| > d +1,
a contradiction).

Assume for contradiction that s < |M|. Then, by the pigeonhole principle, there
exist two distinct sets 71, 72 € M such that 7 and 79 are both missing faces of X; for
some ¢ € [s]. Let 71 and 7o be such a pair with intersection 71 N 75 of maximal size.

Let us look at the induced subcomplex
Y = Xi[Tl @] TQ].

We will show that Y satisfies the conditions of Lemma 6.2.1: Note that 7 and m are
missing faces of Y, the vertex set of Y is 7y Uy and |11| = |m2| = d+ 1. Moreover, since
M is a partial Steiner (d,d + 1,n)-system, we have |7 N ma| < d. It is left to show that
any other missing face 7 of Y (if such a missing face exists) satisfies TU 71 = 71 U Ty
and TU 1 = 11 UTy:

Let 7 # 71,79 be a missing face of Y. That is, 7 is a missing face of X; that is

contained in 7y Ume. Let k= | Nme|, t =|mNmN7|, t1 = |7\ 7| and to = |7\ 71].
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Since T € M; C M, we obtain, by the maximality of |7 N 72|,

t+t=|rnm| <k

and
to+t=|TNm| <k
We obtain
d+1=|r| =t +to+1t<2k—t.
That is,
t<2k—d-—1.
Hence,

T\ (nNm)|=ti+to=d+1—t>d+1-2k+d+1=2(d+1—k).

So, 7\ (11 N 72) is a subset of size t1 +t2 > 2(d + 1 — k) of the set (11 Um2) \ (11 N 72).
But [(11 Ume) \ (11 N2)| =2(d+ 1 — k). Therefore, 7\ (11 N712) = (11 Uma) \ (11 N72).

Hence, we have
TUn =T \(nNn)Un=((nUm)\(riNm)Un =71 UrTs,
and similarly
TUR=T\(nNn)Un=((nnUmn)\(rnNmn)Umn="7UrT.

So, by Lemma 6.2.1, H,(Y;F) # 0 for some r > d. But this is a contradiction to the
fact that X; is d-Leray.

Since any d-representable complex is d-Leray, we obtain:
boxq(X) = [M].

On the other hand, it is easy to show that boxy(X) < |[M|: Let V be the vertex set
of X. For each 7 € M, let X, be the simplicial complex on vertex set V whose only
missing face is 7. It is easy to check that the complex X is d-representable (for example,
we may assign to each vertex in 7 one of the facets of a simplex P in R?, and assign
to all of the vertices in V' \ 7 the simplex P itself). Since X = N;cpmX,, we obtain
boxg(X) < |M]. O

6.3 Upper bounds on representability

In this section we prove Theorem 1.4.4. We will need the following simple lemma:

Lemma 6.3.1. Let P C R% be a convex polytope. Let Fi, ..., F,, be faces of P, and
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let p1,...,pi be points in P such that p; ¢ F; for alli € [k] and j € [m]. Then, there
ezists a convex polytope P’ C P such that P’ N Fj =0 for all j € [m], and p; € P for
all i € [k].

Proof. Let P = conv({p1,...,pr}). Let j € [m], and let H be a hyperplane supporting
Fj. That is, HN P = F}, and P is contained in one of the closed half-spaces H defined
by H.

Now, since the points p1,...,py belong to P\ Fj, they must all lie in the interior of
HT. Therefore, their convex hull P’ is also contained in the interior of HT. Since F)
lies on the boundary H of Ht, we have P’ N F; = (), as wanted. O

Theorem 6.3.2. Let X be a simplicial complex on vertex set V. Let U C V such that
U ¢ X and for any missing face T of X, |7\ U| < 1. Then, X is (|U| — 1)-representable.

Proof. Let d = |U| — 1. Let P be a simplex in R%. Assign to each vertex u € U a facet
F, of P. For o C U, let
Fo = NyeoFu

(where we understand that Fjy = P). Note that, unless o = U, F;, is a non-empty face
of the simplex P. For ¢ C U, let p, be a point in the relative interior of F,;. Then, for
any n CU and 0 C U, p, € I, if and only if n C o.

Now we build a representation {F’},c1 of X in R?, as follows:

We divide into two cases:

1. Let u e U. Let n C U and 0 C U such that u € 0Ny, n ¢ X and 0 € X. Note
that F, is a face of Fy, and p, € F,. Also, since X is a simplicial complex, we
must have 1 ¢ o, and therefore p, ¢ F;,. Hence, by Lemma 6.3.1, there exists a
convex polytope F, C F, such that F;, N F, = () for all n C U such that u € n and
n ¢ X, and p, € F), for all 0 C U such that v € o0 and 0 € X.

2. Let ve V\U. Let n C U and 0 C U such that nU {v} ¢ X and o U {v} € X.
Since X is a simplicial complex, we must have ¢ o; hence, p, ¢ F,,. Therefore,
by Lemma 6.3.1, there exists a convex polytope F}, C P such that F, N F, = () for
all n C U such that nU{v} ¢ X and p, € F) for all 0 C U such that o U{v} € X.

We will show that the family {F]},cy is a representation of X.
First, let 0 € X. Let 0y = o NU. Since 01 € X and U ¢ X, we have 01 C U. So,
for any u € o1, we have
po, € F.

Moreover, for any v € o \ 01, since o3 U{v} C 0 € X, we have
po, € F),.

Hence,
pg'l 6 m’l)EO'F'l/)‘
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In particular, Ny, F), # 0.
Now, let o C V such that o ¢ X. Then, there exists some missing face 7 of X such

that 7 C 0. By assumption, we have |7\ U| < 1. We divide into two cases:

1. Assume 7 C U. Then, on the one hand, we have
NuerFy, C Nyer By = Fr.
On the other hand, for all u € 7, by the definition of F),, we have
F'NE, =1.

Hence,
ﬂueTF,LIL - @

2. Assume that |7\ U| = 1. Let w be the unique vertex in 7\ U. Then,
Nuer\fw} Fo C Nuer\fw} Fu = Fr\fuw}-
But, since (7 \ {w}) U{w} =7 ¢ X, we obtain, by the definition of F),
F{U N F.,.\{w} = 0.

Hence,
m’UETFv/ = F{U N (muET\{w}F;) - Fi/v N FT\{U)} =0.

In both cases we obtain Nye,F), = 0, and therefore
mvEJF'LI; - OUETF'LI; =0.

So, {F!},cv is a representation of X in R = RIVI=1 as wanted. O

The proof of Theorem 6.3.2 is based on ideas developed by Wegner in his thesis
[Weg67] (as presented in [Eck93, Tanl3]). Indeed, we can think of Theorem 6.3.2 as an

extension of the following result of Wegner:

Theorem 6.3.3 (Wegner [Wegb67]). Let X be a simplicial complex with n vertices.
Then X is (n—1)-representable. Moreover, if X is not the complete (n — 2)-dimensional

complex, then it is (n — 2)-representable.

Proof. If X is the complete complex, then it is trivially O-representable. Otherwise,
let U =V. Since V ¢ X and |7\ V| = 0 < 1 for any missing face 7 of X, then by
Theorem 6.3.2, X is (n — 1)-representable. If X is not the complete (n — 2)-dimensional
complex, then there exists some U C V of size n — 1 such that U ¢ X. Since |V \U| < 1,
then |7\ U| <1 for any missing face 7 of X. Hence, by Theorem 6.3.2, X is (n — 2)-

representable. O
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Theorem 1.4.4. Let X be a simplicial complex on vertex set V. Let Vi,...,V} be
subsets of V' satisfying V; ¢ X for all i € [k], such that for any missing face T of X there

exists some i € [k] satisfying |7\ Vi| < 1. Then, X can be written as an intersection
X =n,X;,

where, for all i € [k], X; is a (|V;| — 1)-representable complex. In particular, X is
(Zf:1(|‘/2| — 1)) -representable.

Proof. For i € [k], let M; be the set consisting of all the missing faces 7 of X such that
|7\ Vi] <1. Let
Xi={oCV:7¢goforall T € M;}.

Note that X = ﬂleXi. Indeed, if 0 € X, then o does not contain any missing face of X;
in particular, for all i € [k], o does not contain any 7 € M;. Therefore, o € N*_; X;. On
the other hand, if o ¢ X, then 7 C ¢ for some missing face 7 of X. By the assumption
of the theorem, there exists some i € k such that 7 € M,;. So, 0 ¢ X;, and therefore
od¢nk X,

Let i € [k]. The set of missing faces of X; is exactly M;. Moreover, since V; ¢ X,
there is some missing face 7 of X such that 7 C V;. Since |7\ V;| = 0 < 1, we have
T € M;; therefore, V; ¢ X;. So, by Theorem 6.3.2, X; is (|V;| — 1)-representable.

Finally, by Lemma 6.1.2, X is (Zle(\VJ - 1)>—representable. O

Remark. In [HW14, Theorem 1.2], an upper bound similar to the one in Theorem 1.4.4
is proved for the Leray number of a simplicial complex. Since L(X) < rep(X) for any

complex X, we can see Theorem 1.4.4 as a generalization of that result.

6.4 Boxicity of complexes without large missing faces

In this section we prove our main result, Theorem 1.4.2.

First, we will need the following simple results about Steiner systems:

Lemma 6.4.1. Let F C 2V be a partial (d,d + 1,n)-Steiner system. Then

a5

Moreover, if | F| = ﬁ (), then F is a Steiner (d,d + 1,n)-system.

Proof. Since F is a partial Steiner (d,d + 1,n)-system, then any subset of V' of size d is
contained in at most one element of 7. On the other hand, since each ¢ € F contains

exactly d + 1 subsets of size d, we obtain
(d+1)|F| < <Z> (6.2)
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Therefore,

|7 (0)]

Now, assume that |F| = ﬁ(g) Then, equality must hold in (6.2). Thus, each subset
of V' of size d must be contained in exactly one set of F. That is, F is a Steiner

d,d+ 1,n)-system. I
( ¥

Lemma 6.4.2. Let F C 2V be a (d,d + 1,n)-Steiner system. Let T C V be a set of

size at most d + 1 that is not contained in any set of F. Then,
HoeF:|r\o|=1}|>d+ 1.

Proof. Since F forms a Steiner (d,d + 1,n)-system, then any set of size at most d is
contained in at least one set of F. Therefore, we must have |[7| = d + 1. Now, let
Ti,...,Tq+1 be the subsets of 7 of size d. Again, since F is a Steiner system, there exists
O1y...,0441 € F such that 7; C o; for all i € [d + 1].

Since 7 is the only set of size d + 1 containing two or more of the sets m,..., 7411,
but 7 ¢ F, we must have o; # o; for all i # j. Thus,

Hoe F:|r\o|=1} > {o1,...,0401} =d+ 1.
O

The last ingredient needed for the proof of Theorem 1.4.2 is the following result:

Proposition 6.4.3. Let X be a simplicial complex on vertex set V of size n, satisfying
h(X) < d. Lett be the minimum size of a family {o1,...,01} of subsets of size d+ 1 of
V' satisfying o; ¢ X for all i € [t], such that for any missing face T of X, there exists
some i € [t] such that |7\ o;] < 1. Then,

= | ()

Moreover, if h(X) =d > 2, then t = ﬁ(g) if and only if the set of missing faces of X

forms a Steiner (d,d + 1,n)-system.

Proof. Let M be the collection of all subsets of V' of size d 4+ 1 that are not simplices of
X.

Let A C M be a maximal (with respect to inclusion) partial Steiner (d,d + 1,n)-

system. By Lemma 6.4.1, we have

=7 )]

We will show that for any missing face 7 of X, there exists some o € A such that

|7\ 0| < 1. Assume for contradiction that there exists some missing face 7 of X
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such that |7\ 0| > 1 for all 0 € A. Let op be some set in M containing 7. Then
loo\ o] > |\ o|>1foraloe A Let A= AU{op}. Let n C V be a set of size d.
If n ¢ 09, then, since A is a partial Steiner (d,d + 1,n)-system, 7 is contained in at
most one set in A’. If  C 0p, then assume for contradiction that n C o for some o € A.
Since |og \ o| > 1, we have |og N o| < d — 1. But this is a contradiction to the fact that
7 is a set of size d contained in o9 N o. So, 7 is not contained in any set of A. In both
cases, 7 is contained in at most one set of A’. Therefore, A’ C M is a partial Steiner
(d,d + 1,n)-system. But this is a contradiction to the maximality of A.

Therefore, for any missing face 7 of X there exists some o € A such that |7\ o] < 1.

t<|Al < inl(Z)J

Now, assume ¢t = ﬁ(g . Then, we must have |A| =t =
A is a Steiner (d,d + 1, n)-system.

Assume that h(X) = d > 2. We will show that A is exactly the set of missing faces
of X:

We may assume that n > d 4+ 2. Otherwise, since h(X) = d, X must contain a

Hence,

Wll(Z)' By Lemma 6.4.1,

unique missing face of size d + 1 (that is, X is a Steiner (d,d + 1,d 4 1)-system).
First, we will show that A = M. Assume for contradiction that there exists some
7€ M\ A. By Lemma 6.4.2, there exist 01,09 € A such that |7\ 01| = |7\ 02| = 1.

Since |7| = d + 1, we also have |01 \ 7| = |02 \ 7| = 1. Let
A =AU {7~'} \ {0’1,02}.

Let 7 be a missing face of X. We will show that there exists some o € A’ such that

|7\ o| < 1. We divide into the following cases:

1. If 7 is not contained in any set of A, then, by Lemma 6.4.2, we have

Hoe A :|r\o|=1}>{ce A: [T\ o| =1} -2
>d4+1-2=d—1>1.

Therefore, there exists some o € A’ such that |7\ o = 1.
2. If 7 is contained in some o € A\ {01,02} C A, then |7\ o|=0<1.
3. If 7 is contained in o; for some i € {1,2}, then

T\ 7| <oy \ 7| = 1.

Since |A’| =t — 1, this is a contradiction to the minimality of ¢. Hence, we must have

A=M.
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Finally, assume for contradiction that there exists some missing face 7 of X of size
|7] < d. Let n be a set of size d containing 7. Then , since we assumed n > d + 2, we
have

HoCV:lol=d+1,nCo}=n—d>2.

Note that any o C V such that |o| = d+ 1 and  C o is not a simplex of X (since it
contains the missing face 7), and therefore belongs to M = A. Hence, 7 is contained in
at least two sets of A, a contradiction to A being a Steiner (d,d + 1, n)-system. Thus,
the set of missing faces of X is exactly A. O

Theorem 1.4.2. Let X be a simplicial complex with n vertices, satisfying h(X) < d.

Then )
boza(X) < LHl (;’)J .

Moreover, if h(X) = d, then bozy(X) = d—_}_l(Z) if and only if the missing faces of X

form a Steiner (d,d + 1,n)-system.

Proof. Let {V1,...,V;} be a family of minimum size of subsets of size d + 1 of V such
that V; ¢ X for all ¢ € [t], and such that for any missing face 7 of X, there exists
some i € [t] satisfying |7\ V;| < 1. By Theorem 1.4.4, we have boxy(X) < t. So, by

Proposition 6.4.3, we obtain

boxa(X) < t < Ll—lkl (Z)J .

Now, assume that h(X) = d, and the set of missing faces of X does not form a Steiner
(d,d+1,n)-system. If d = 1, then it is proved in [Wit80, Theorem 1] that box;(X) < 5.
If d > 2 then, by Proposition 6.4.3, we have

P
d+1\d)’

boxq(X) <t < 1<Z>.

and therefore

d+1

Finally, assume that the missing faces of X form a Steiner (d,d + 1,n)-system M.
Then, by Theorem 1.4.3, we have

boxa(X) = [ M| = (Z)

as wanted. O

Remark. In the case d = 1, the proof of the upper bound in Theorem 1.4.2 reduces to
the proof of Theorem 1.4.1 presented by Cozzens and Roberts in [CR83, Corollary 3.7].
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6.5 Representability of complexes without large missing

faces

Let X be a simplicial complex. By Lemma 6.1.2, we have for any d > 1,
rep(X) < d-boxg(X).

In particular, for d = 1, we obtain as a corollary of Theorem 1.4.1:

Proposition 6.5.1. Let G be a graph with n vertices, and let X (G) be its clique complez.

Then,
n

< |=1.
rep(X(@)) < | 7
Moreover, rep(X (G)) = § if and only if G is the complete 5-partite graph with all sides
of size 2.

The fact that rep(X(G)) = 5 if G is the complete F-partite graph with sides of size 2

does not follow directly from Theorem 1.4.1. However, it is easy to check that in this
case X (G) is the boundary of the §-dimensional cross-polytope; in particular, it has
non-trivial (% — 1)-dimensional homology group. Thus, X (G) is not (% — 1)-Leray, and
therefore is not (% — 1)—representable.

We conjecture that for d > 1, the following extension of Proposition 6.5.1 holds:

Conjecture 1.4.5. Let X be simplicial complex with n vertices, satisfying h(X) < d.

Then,
dn
< | —.
rep(X) < Liqt 1J

Moreover, rep(X) = % if and only if the missing faces of X consist of # pairwise
disjoint sets of size d + 1.

Analogous bounds are known to hold for Leray numbers (see [Adal4, Proposition
5.4]) and for collapsibility (see Proposition 4.2.2). Conjecture 1.4.5, if true, would imply
both of these results.

The results presented here do not seem suitable for dealing with Conjecture 1.4.5.
One of the simplest examples where our methods fail is the complex X5 7, the complex
whose set of missing faces forms a Steiner (2,3, 7)-system (usually referred to as the
Fano plane). Since any two vertices in Xp 7 are contained in a missing face, the best
bound we can obtain from an application of Theorem 6.3.2 is rep(Xsz7) < 5, which is
larger than the conjectured bound L%?J = 4. This bound can be proved, however, by

the following simple method:

Lemma 6.5.2. Let X be a d-representable simplicial complex on vertex set V. Let
01,09 C V such that o1 Noy € X. Then, the compler X' = X U271 U292 js (d+ 1)-

representable.
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Proof. Let ey, ...,eqq1 be the standard basis for R, We identify R? with the hyper-
plane H = {x € R : x.¢4,1 = 0} in R,

Let P = {P,},cv be a representation of X in R%. Let 2 € Nyeoynon Py C H (note
that Nyeoy oy Py 7# 0 since o1Noy € X and P is a representation of X). Let 1 = x+e441
and x9 = x — eq11.

For v € V, we define

conv(P, U{z1} U{x2}) ifveorNoy,

P conv(P, U {z1}) if veo\ oo,
b conv(P, U {za}) if veo\ oy,
P, if v ¢ oq Uoy.

We will show that P’ = { P} },cv is a representation of X’ = X U271 U292,
First, let o € X'. If 0 € X, then

meEJP'LI; D) m’UEO'PU 7& @7

since P is a representation of X. Otherwise, either o C 01 or ¢ C 09. Assume without

loss of generality that o C o1. Then,
T € ﬂUEUP{M

$0 Nyeo P # 0.

For the second direction, we will need the following claim:

Claim 6.5.3. Let v € V. Then,
P/ NH=P,.

Proof. If v ¢ o1 N o9, then the claim follows immediately from the definition of P).
Assume that v € o1 Noy. It is clear that P, C P, N H. We will show that P, N H C P,:

Let y € P, N H. We can write y = ap + fx1 + ya2, where p € P, a, 8,7 > 0 and
a+ B +v=1. Since y € H, we have

O0=y-eqr1 =ap-eqq1 + Br1-eqge1 +y22 - eqp1 = B — 1.

Hence,
y=ap+ B(x1 + x2) = ap + 2px.

Since p,z € P, and P, is convex, we obtain y € P,. So, P, N H = P,, as wanted. = [J

Now, let ¢ C V such that o ¢ X’. In particular, 0 ¢ o1 and 0 ¢ 03. Let u € 0 \ 01
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and w € o\ 02. Then, we have P, C H~ and P), C H*, where
HY ={z R z.¢4.1 >0}

and
H™ ={z e R : z.¢e4,1 <0}

Therefore,
Nveo P CHTNH™ = H.

So, by Claim 6.5.3, we have
mvEUP{; = mUEO’-P'L/) NH = mUEO'PU = @,

where the last equality follows since P is a representation of X and o ¢ X.

Hence, P’ is a representation of X’ in R4+, O

Proposition 6.5.4.
rep(Xo7) < 4.

Proof. We identify the vertex set of Xp7 with the set [7] = {1,2,...,7}. Then, the set

of missing faces of X7 is the set
M = {{17 27 3}? {17 47 5}’ {1’ 6’ 7}7 {27 47 7}7 {37 47 6}7 {27 57 6}? {3? 57 7}}

It is easy to check that the set of maximal faces of X3 7 is the set whose elements are

the complements of the sets in M:

{{4,5,6,7},{2,3,6,7},{2,3,4,5},{1,3,5,6},
{1,2,5,7},{1,3,4,7},{1,2,4,6}}.

Let X be the complex on vertex set [7] whose set of maximal faces is:

{{1,2,4},{2,3,4,5},{4,5,6,7}}.

It can be checked that the following is a representation of Xy in R':

Plz[ovl]a P2:[172]7
Py =[2,3], Py =[0,5],
Py =[2,5), Ps=Pr=[4,5].

Let X, = Xou 21257 y2ll246} Since {1,2,5,7} N{1,2,4,6} = {1,2} € X; then, by
Lemma 6.5.2, X; is 2-representable.
Let X, = X; U2{b3t 22367 Since {1,31 N {2,3,6,7} = {3} € X, then, by

Lemma 6.5.2, X5 is 3-representable.
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Finally, let X3 = XoUu2{1:3:56} y2{l347  Since {1,3,5,6}N{1,3,4,7} = {1,3} € X,
then, by Lemma 6.5.2, X3 is 4-representable. But it is easy to check that X3 is in fact
the complex X 7. O

Lemma 6.5.2 gives non-trivial bounds only for complexes with a small number of
maximal faces, so it seems unlikely that such a method will be useful in more general

cases of our problem.

We conclude with the following problem, whose solution may be a (very modest)

step towards Conjecture 1.4.5:

Conjecture 6.5.5. Let Xo9 be the simplicial complex whose missing faces form a
Steiner (2,3,9)-system (that is, they are the lines of the affine plane of order 3). Then,

rep(Xa9) < 5.
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Chapter 7

Complexes of line-free sets in

finite affine planes

This chapter is organized as follows. In Section 7.1 we present an outline of the proof of
Theorem 1.5.2. In Section 7.2 we prove Theorem 1.5.3 about stable and strongly stable
blocking sets. In Section 7.3 we study the homology of certain subcomplexes of the
complexes X, and Xq; this is the last step in the proof of Theorem 1.5.2. Section 7.4
deals with complexes of hyperplane-free sets in n-dimensional finite affine spaces. We
present a conjecture about the top-dimensional homology groups of these complexes,
extending Theorem 1.5.2. We present a possible direction for proving this conjecture,
involving a conjectural characterization of strongly stable blocking sets in finite affine

spaces, generalizing Theorem 1.5.3.

7.1 Proof outline

Let L1,...,Lg41 C Fg be the lines throught the origin. For ¢ € [¢ + 1], let L;; =
L;i,L;sa,...,L;q be the translates of L;.

For any set V', we define the simplicial complex OV as
oV={SCcV:S#V}

The complex 9V is the boundary of the simplex V'; Therefore, it is homeomorphic to a
(|V| — 2)-dimensional sphere.
Fori € [¢g+ 1] and j € [q], let

KiJ = 8L7,,1 * 8Ll72 k... k 8L7;7j_1 * aLZ,]—Fl kK ooos ok 8Li,q'

Note that all the sets in K ; are line-free. Therefore, K;; C X, for i € [¢ + 1] and
J € lq], and K;1 C Xq for i € [¢ + 1]. Moreover, the complex Kj;; is homeomorphic
to a (¢ — 2q)-dimensional sphere. Also, note that the sets in K; ; are exactly the

complements of the blocking sets of size 2¢ — 1 containing the line L; ;.
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Let Y, = U?:ll U?Zl K;; and }A/q = Ug;rlle. Note that Y, is a subcomplex of X,
and Y; is a subcomplex of X,.

The first step in the proof of Theorem 1.5.2 consists on relating the top-dimensional
homology of X, and Xq to the top-dimensional homology of the subcomplexes Y, and

Yq, respectively.

Proposition 7.1.1. Let g be a prime power. Then,
f{q272q(Xq) = ﬁqngq(Y;J)a

and

Hyp 9y(Xy) = Hyp gy(Yy).

The proof of Proposition 7.1.1 relies on the study of blocking sets in Fg having
certain stability property.
By Proposition 7.1.1, it is enough to compute the top-dimensional homology of the

subcomplexes Y, and Yq:

Proposition 7.1.2.

A if q=2,
Hpo_py(Yy) = 4 Z1 if =3,

74@t)  otherwise.

Proposition 7.1.3. For q = 2, we have

. 72 ifi=0,

0 otherwise.

For q > 3,
Z ifi=q—1,
Hi(Y)) = Z4+ ifi=¢% 2,

0 otherwise.

Note that, in the case of }A/q, we understand the homology in all dimensions.

Theorem 1.5.2.
VA ifg=2,
Hq?ﬂq(Xq) =qZ" if ¢ =3,
79D if g > 3,
and
- z? if q=2,
79Tt if g > 2.



Proof. The claim follows immediately from Propositions 7.1.1, 7.1.2 and 7.1.3. O

7.2 Stable blocking sets

Our main goal in this section is to prove Proposition 7.1.1. In order to do this, we need
to study blocking sets satisfying certain stability property:

Let B be a blocking set in IF% of size 2¢ — 1. Recall that B is called stable if for
every point v ¢ B there is some u € B such that BU{v} \ {u} is also a blocking set. B
is called strongly stable if 0 € B and for every point v ¢ B there is some u € B\ {0}
such that BU {v} \ {u} is also a blocking set.

Our main goal in this section is to prove the following characterizations of stable

and strongly stable blocking sets:

Theorem 1.5.3. Let B be a blocking set in Fg of size 2q — 1. Then, B is stable if and
only if B contains an affine line, and it is strongly stable if and only if it contains a

line through the origin.

Before proceeding to the proof of Theorem 1.5.3, let us see how it implies Proposition
7.1.1:

Proof of Proposition 7.1.1. Since Y, C X, we have Z2_o,(Yy) C Zp2_9,(X,). We are
left to show that Z2_o,(X,) C Zj2_9,(Yy).

Let 0 # 2z € Zp2_9,(X,), and let o € X,4(q* — 2q) be a simplex in the support of z.
We will show that o € Yj:

Note that for any v € o, there exists a vertex u € F; \ o such that o\ {v} U{u} € X,.
Otherwise, the simplex o \ {v} must belong to the support of 9z, a contradiction to
0z = 0.

This is equivalent to the set B = Iﬁ‘g \ o being a stable blocking set. Hence, by
Theorem 1.5.3, B contains an affine line. That is, o € Y. So, Z2_5,(Xy) C Z2_9,(Yy).

We obtain

HqQ—Qq(Xq) = ZqQ—Qq(Xq) = Zq2—2q(Yq) = Hq2—2q(YZJ):

as wanted.
The proof of H, 2_2q(Xq) = I:qu_gq(ffq) is similar. O

For the proof of Theorem 1.5.3, we will need the following equivalent definitions for
stable and strongly stable blocking sets:

Let B C Fg be a blocking set of size 2¢ — 1. We say that an affine line L is tangent
to B at the point u if BN L = {u}. Note that for any u € B, there is at least one line
tangent to B at u (otherwise B\ {u} is a blocking set, a contradiction to the minimality
of B).
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Let
By ={u € B: there is a unique line tangent to B at u},

and
By =B\ By ={u € B: there are at least two lines tangent to B at u}.

For u € By, let Lp(u) be the unique line tangent to B at u.

Lemma 7.2.1. Let B C Fg be a blocking set of size 2¢ — 1. Letu € B and v € Fg \ B.
Then, B = B\ {u} U{v} is a blocking set if and only if w € By and v € Lp(u).

Proof. The set B’ is a blocking set if and only if v is contained in all the lines tangent
to B at u. But, since through every two points passes a unique line, v can be contained
in at most one line tangent to B at u. Therefore, B’ is a blocking set if and only if
u € By and v € Lp(u).

Lemma 7.2.2. Let B C Fg be a blocking set of size 2q — 1. Then, B is stable if and
only if

U Ls(w) >F2\ B.
u€EB;

If 0 € B, then B is strongly stable if and only if

U Lsw)>F\B
u€B1\{0}

Proof. Follows immediately from Lemma 7.2.1. O

Lemma 7.2.3. Let B C Fg be a blocking set of size 2q — 1. Let B’ C By such that

U Ls(w) D F;\ B.
ueB’

Then, there exists an affine line L such that B\ B' C L C B.

For the proof of Lemma 7.2.3 we will need the following dual version of the Jamison-

Brouwer-Schrijver Theorem:

Theorem 7.2.4 (Jamison [Jam77], Brouwer-Schrijver [BS78]). Let £ be a family of
affine lines in Fa. If UperL = F2\ {u} for some u € F2, then |L| > 2(q —1).

We will also need the following simple results about lines tangent to blocking sets:

Lemma 7.2.5. Let B C IF% be a blocking set of size 2g—1. Then, every v ¢ B intersects

at least three different lines tangent to B.
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Proof. Let v ¢ B. Let £1,...,0441 be the lines passing through v. For i € [¢ + 1],
let A; = ¢; \ {v}. Note that the sets Ai,..., A411 are pairwise disjoint. Since B is a
blocking set, and v ¢ B, we have BN A; # () for all i € [¢ 4 1]. Let ¢ be the number of
lines through v that are tangent to B. That is,

t=Hiel¢g+1]: |[AinB| =1}

Then, we have

q+1

2 —1=|B| > ‘Bﬂ(U?LlAi) =3 Bn4|>t+2(g+1-1)
=1

We obtain ¢t > 3, as wanted. O

Corollary 7.2.6. Let B C Fg be a blocking set of size 2¢ — 1. Then, there are at least
3(q — 1) lines tangent to B.

Proof. There are ¢> — (2¢ — 1) = (¢ — 1) points in FS\B. By Lemma 7.2.5, there are at
least three tangents to B passing through each one of them. Each tangent to B contains
exactly ¢ — 1 points in F2 \ B. Therefore, there are at least 3(¢ —1)%/(¢ — 1) = 3(¢ — 1)
lines tangent to B. O

Lemma 7.2.7. Let ¢ > 3 be a prime power. Let B be a blocking set of Fg of size 2q — 1.
Then, By # (. Moreover, if |Bo| = 1, then B is the union of two lines passing through

the unique point in By.

Proof. Assume for contradiction that By = (). Then, we have B = B;. That is, for each
point u € B there is a unique line tangent to B at u. But then, there must be exactly
2q — 1 lines tangent to B. Since ¢ > 3, we have 2g — 1 < 3(¢ — 1), a contradiction to
Corollary 7.2.6.

Now, assume that |By| = 1. Let u be the unique point in By. By Lemma 7.2.5,
there are at least 3(¢ — 1) lines tangent to B. Since for any w € B\ {u} there is exactly
one line tangent to B at w, then there must be at least ¢ — 1 lines tangent to B at u.
Denote these lines by L}, ..., L;, where t > ¢ — 1. Denote the rest of the lines through
wby Ly g, Ly

Since U?:llL; =F2 and BN L = {u} for i € [t], we have

B\{ubc |J Li\{u}

t+1<i<q+1
Thus, since |B| = 2q — 1, we have
20-2=B\{u}| <| |J Li\{u}|=(¢+1-0)(—1).
t4+1<i<q+1
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We obtain t < ¢ — 1. Therefore, we have t = ¢ — 1 and B C Lf] U L:1+1' Since
|Bl =2¢—1=|L,ULy,,l|, we have in fact B = LU L; . That is, B is the union of
two lines passing through the unique point in By. O

Proof of Lemma 7.2.3. For ¢ = 2 the claim holds trivially. Therefore, we will assume
that ¢ > 3.

By Lemma 7.2.7, since By C B\ B, we have B\ B’ # (). We divide into two cases:

Assume that |[B\ B’| = 1. Since () # By C B\ B’, we have in fact |By| = |B\ B'| = 1.
Let u be the unique point in By = B\ B’. Then, by Lemma 7.2.7, B is the union of two
lines passing through u. In particular, B contains a line L that contains B \ B’ = {u}.

Now, assume that |B \ B’| > 2. First, we will show that there is a line L such that
B\ B'C L. If |B\ B’| = 2, this holds trivially. Otherwise, assume that |B\ B’| > 3,
and assume for contradiction that the points in B\ B’ are not contained in a line. Then,
there are three points u1,u2,u3 € B\ B’ such that the line L’ that passes through u
and uy does not contain ug. For each v € B\ (B U{u1,u2,us}), let L), be a line passing

through u that does not contain us. Then, the family
L={Lp(u)}uep U{L, : ue B\ (B"U{ui,uz,uz})} U{L'}

is a family of lines satisfying

U =75\ {us}.

lel

By Theorem 7.2.4, we must have
L] = 2(q = 1).
On the other hand, we have
L] =B+ (IB\B'|-3)+1=[B|-2=2¢-3<2(q—1),

a contradiction. Therefore, all the points in B \ B’ are contained in some affine line L.

Next, we show that L is contained in B. Let W = L\ B. We want to show that
W = . Let £ be the set of lines parallel to L (other than L). Let T C L consist of the
lines tangent to B and A/ C L consist of the lines that are not tangent to B.

For w € W, let T,, be the set of lines tangent to B at w. By Lemma 7.2.5, |T,| > 3.
Note that L ¢ Uyew Tw, since |[L N B| > |B\ B’| > 2. Therefore, each line in Uyew Toy
intersects B at some point in B\ L.

Any two lines in Uyew Ty intersect B \ L at a different point; otherwise, assume
there exists L', L"” € Uyew Ty that intersect at the point w € B\ L. Then, since there
are at least two lines tangent to B at u, we have u € By. But By c B\ B' C L, a
contradiction to u € B\ L.

Moreover, each line L’ € Uyew Ty must intersect B\ L at a point lying in one of the
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lines of . Otherwise, let v be the unique point in BN L/, and assume that u € L”, for
some L” € T. Then, both L' and L” are lines tangent to B at u. Thus, u € By, again a
contradiction to By C L.

Let t be the number of points of B that are contained in one of the lines in A/. Then,
we obtain
t > |Upew Tw| = 3[W|.

Also, since each line in A/ contains at least 2 points of B, we have
t > 2|N],

On the other hand, we have

t <|B\L|=|T|=[B| = |L| + L\ B| = [T]
=(2¢=1) =g+ W|=[T|=[W|+(@—-1=[T]) = W[+ N]|.

We obtain
2IN| + 3|W ] < 2t < 2|N| + 2|W].
Therefore,
|[W| <0.
Thus, W = (), as wanted. O

Proof of Theorem 1.5.3. First, assume that B contains an affine line L. Let L}, ..., L} 4

be the lines parallel to L (other than L). Then, we must have B = L U {ul}f;ll , where
u; € L} for all i € [¢ —1]. Let v ¢ B. Then, v € L} for some i € [q¢ — 1], so the set
B U{v}\ {u;} is also a blocking set. Hence, B is stable.

Similarly, if B contains a complete line through the origin, it is strongly stable.

Now, assume that B is stable. By Lemma 7.2.2,

U Ls(w) >F2\ B.
u€ By

By Lemma 7.2.3, there exists an affine line L such that L C B.

Finally, assume that B is strongly stable. Then, by Lemma 7.2.2,

U Is(w)>F\B

ueB1\{0}
By Lemma 7.2.3, there exists an affine line L such that B\ (B; \ {0}) C L C B. In
particular, 0 € L. That is, L is a line through the origin. O
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7.3 The homology of the subcomplexes Y, and Y,
In this section we prove Propositions 7.1.2 and 7.1.3.

Proof of Proposition 7.1.2. If ¢ = 2 then Y5 consists of just 4 isolated vertices; hence,
Hy(Y3) = Z3. For ¢ = 3 and ¢ = 4, it may be verified by computer that Hz(Y3) = Z!!
and Hg(Yy) = 720,

Let ¢ > 5. Let m = ¢ — 2¢. Let Z be the subcomplex of Y, whose maximal faces
are the simplices of the form IE‘Z \ (LUL"), where L and L' are two non-parallel lines in
F.

Claim 7.3.1. Leti € [¢q+ 1] and j € [q]. Let L be the set of affine lines that are not
parallel to the line L; j. Then,

20k, = | ) 25\,
LeLl

Proof. First, note that IFg \ (Lij UL) € ZN K;; for every L € L. Hence, ZN K;; D
UL6£2F3\(LZ-J-UL).

On the other direction, let 0 € ZNK; ;. Then, since o € Z, we have 0 C Fg\(L’UL”)
for some non-parallel lines L', L”. Moreover, since ¢ € K;;, we have c N L;; = 0.
That is, o € F2\ (L' UL" U L; ). At least one of the lines L' or L” is not parallel
to L; ;. Assume without loss of generality that L’ is not parallel to L;;. Then,

o CF2\ (LijUL) € Upep 250\ FaYD) Thus, Z N K, j © Upep2fa\Fish), O

Claim 7.3.2. Let k be an integer, and let L', LY, ..., L}, L} be a family of affine lines,
such that L, # LI for all i € [k]. Then,

ﬁj (Uf:12]Fg\(L§UL2/)) =0
for 7 > m — 1. In particular,
Hy(Z) =0

and (by Claim 7.3.1)

H;j(ZNK;y)=0
forj>m—1,i€[¢g+1] and r € [q].
Proof. We argue by induction on k. For k = 1, the complex 9FA\LIVULY) ig contractible.
In particular, ij(2]F3\(L,1ULI1,)) =0 for all j.

Let &k > 2. Let
K = Uiﬁf:lQF?\(LQUL?)

and
1 k—1oF2\(L,ULY
K’ = Ul 1oFa\ (UL,
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By the induction hypothesis, we have ﬁj(K’) =0 for j >m—1.
We may assume that {Ly, L}.} # {L;, L;} for all i < k (otherwise K = K’, and
by the induction hypothesis the claim holds). By the Mayer-Vietoris exact sequence

(Theorem 2.2.1), we have a long exact sequence
o H(K') @D Hy (2PN 5 H(K) — H_y (K7 0 250 OED) o

Let 0 € K' N 2F\ZLYLY) | Then, o C F2\ (L; U L} U L} U LY) for some i < k. Since
{L}, L} # {L}, L7}, then at least three of these lines are distinct. Without loss of

generality, assume that L, L, L} are pairwise distinct lines. Then,
ol < F2\(LjULf UL < ¢*—3¢+3=m—q+3.

Hence, dim(K’' N QFZ\(%UL@) <m—q+2<m-—3. In particular, for j > m — 1, we
have
H; 1(K'n QFE\(LZULZ)) =0.

By the induction hypothesis, we have, for j > m — 1,
Hy(K') @ ;25\ FHPED) = o,
Therefore, we obtain H;(K) = 0 for j > m — 1, as wanted. O

Claim 7.3.3. We have
H,, (Yy) = Hy, (Y, 2)

and, fori € [q+1], j € [q],
H, (Ki,ja ZN Ki,j) = 7.

Proof. We have a long exact sequence of a pair (Theorem 2.2.6)

o= Hy(Z) = Hp(Yy) — Hi (Y, Z) — Hy1(Z) — -+
By Claim 7.3.2, H,,(Z) = H,,_1(Z) = 0. Therefore, we obtain
Hy (Y, Z) = Hun(Yy).
Similarly, we have a long exact sequence
o= Hyp(ZNKj) = Hy(Kij) = Hy (Kij, ZNKij) = Hy 1 (Z0 K ) — -+
By Claim 7.3.2, H,,(Z N K; ;) = Hy,—1(Z N K, ;) = 0. Therefore, we obtain

Hy (Kij, ZN K j) = Hp(Kij) 2 Z.
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Claim 7.3.4. Let (i1,71),- .., (ix, jr) be a family of pairwise distinct pairs of indices,
such that i, € [q+ 1] and j, € [q] for all v € [k]. Then,

Hy, (u’:leimjr, Uk K 0 Z) = 7",

rsJr

In particular,
Hp, (Yy, Z) = 7a(a+1)

Proof. We argue by induction on k. For k = 1 we have, by Claim 7.3.3, H,,, (K;, j,, Z N Kj;, j,) =

7, as wanted. Let k > 2. Let
K = Uff:lKian
and
K'= U1K,
By the induction hypothesis, we have H,, (K', K' N Z) = ZF1,

By the relative version of Mayer-Vietoris (Theorem 2.2.7), we have the long exact

sequence:
-— H,, (K, N Kik,jmK, N Kik,jk N Z) —
— Hy, (K',K'NZ) @ Hp (Kiy s Kip g, N Z) —
— Hyy (K,KNZ) = Hypo1 (K'NK;, j, K'NK;, j,NZ) =+ (7.1)

Let 0 € K' N K, j,. Since 0 € K', there exist some r < k such that o € K;,_j.. In

particular, ¢ C F2\ L;, j,. Similarly, since o € K; we have o C F2\ L;, j, . Therefore,

kJk?
o C ]Fg \ (Lirvjr U szajk)

If dim(o) = m, then L; ;. and L; ;.
contradiction to dim(o) = m), and therefore o € Z. Thus, (K’ N K, j,) \ Z does not

contain m-dimensional simplices. Hence,

must be non-parallel (otherwise |o| < m, a

H,, (K,ﬂKi K,ﬂKik’jkﬂZ):O.

koJk?
Assume that dim(c) = m — 1. Also in this case the lines L;, ; and L;, j, must be
non-parallel; otherwise, since |o| = m = ¢ — 2¢, we must have o = Iﬁ‘g \ (Li, j, U Li, ji )

a contradiction to ¢ € Kj, j . Therefore, L; j; and L are non-parallel and o =

iksJk
F2\ (Li, j, U Ly, j, U{p}) for some p € F2\ (L, j, U Li, j, ). In particular, o € Z. Thus,
(K'N K, j,.) \ Z does not contain (m — 1)-dimensional simplices either. Therefore, we
have

Hpo1 (K'NK

ik,jkaK/ﬁKi ﬂZ) =0.

k:Jk
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Hence, by (7.1) and the induction hypothesis, we obtain

Hy (K,KNZ)=Hy (K',\K'0Z) P Hn (Ki, 5, Kip.j, N 2) 2 2 Pz = 7F,

ksJk >
as wanted. ]
Finally, by Claim 7.3.3 and Claim 7.3.4, we obtain H,,(Yy) & H,, (Y, Z) = 244t 0

Proof of Proposition 7.1.3. If ¢ = 2, then Y5 consists of just 3 isolated vertices; hence,

) 72 ifi=0,

0  otherwise.
Now, assume that ¢ > 3. For i € [q + 1], let
Zi = Uj<ilj1.

Note that Z; = Kl,la Zq+1 = }A/q and Z; = Z; 1 U K@l for 2 <i<gqg+1.
First, we will show that for i < g,

. 7t if j = q¢% —2q,
0  otherwise.
We argue by induction on i:

For i =1 the claim holds, since Z; = K11 is a (¢*> — 2q)-dimensional sphere.

Now, assume that ¢ > 1. We have

ZiaNK;q = U;;ll(Kj,l N Ki,1)~

For all 0 # I C [i — 1], NjerK;1 N K; 1 is just the complete complex on vertex set
Fg \ Ujerugiy Lj- In particular, it is either empty or acyclic. Therefore, by the Nerve
Theorem (Theorem 2.2.4), the homology groups of Z;_; N K;; are the same as those of

the nerve

N({K',l N Kz’l};;ll) ={o C [Z — 1] P Njeo K1 N K1 #* {@}}
={oC[i—1]: (UjesL;) UL; #F2}.

Let 7 C [¢ + 1]. The lines {L;};er cover Fg if and only if 7 = [¢ + 1]. Therefore, since
2 <14 < g, we have
N({Kj1 N KiyiZy) =201

In particular, N({K;1 N Kll};;ﬁ) is contractible. Therefore, we obtain
I‘i’j(Zi,1 N KiJ) =0
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for all j. By Mayer-Vietoris (Theorem 2.2.1), we have a long exact sequence:
—)fI](ZZ 1ﬂKll —)H Zi 1 @H (Z)—)Hj 1(ZZ'_1QKZ'71)—>

So, we obtain
Hy(Z) = Hy(Zi1) P Hy(K
for all j. Using the fact that K; is a (¢*> — 2¢)-dimensional sphere and the induction
hypothesis, we obtain
. 7t if j = q¢* —2q,
0  otherwise,

as wanted.

Now, let ¢ = ¢ + 1. Similarly as before, we have
Zg N Kqi1,1 = Ui (K N Kgy,)-

By the Nerve Theorem (Theorem 2.2.4), the homology groups of Z, N K41, are the

same as those of the nerve

N{Ej1 N Kqratjoy) ={o C gl NjeoKja N Kygpaa # {0}}
={o Cla: (UjesLsj) U Lgp1 #Fg} ={o Cla] - o # [g]}-

That is, the nerve is the boundary of a (¢ — 1)-dimensional simplex; so, it is a (¢ — 2)-

dimensional sphere. Hence,

. Z ifj=q-2,
Hj(Zg N Kqt11) =
0 otherwise,

By the long exact sequence

— Hj(ZNKyi11) = Hi(Zg) @@ Hj(Kgi11) = Hj(Zg11) = Hj1(ZNKgq11) = -+
(7.2)

we obtain
Hi(Zg11) & @ Hj(Kq411)
for j ¢ {g—2,9 —1}. Since Kgy11 is a (q2 — 2¢)-dimensional sphere, we obtain
Hf12—2q(Zq+1) =77+
(note that, since ¢ > 3, we have ¢ — 2¢ > ¢ — 1), and

Hj(Zq+1) =0
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fOI‘j ¢ {q_laq_Qaq2_2Q}
Since ¢% — 2¢ > ¢ — 1, we have }EIj(Zq) @Hj(KqH,l) =0 for j < ¢— 1. Hence, we

obtain from the same exact sequence

Hj(Zq—i-l) = Hj—l(Zq N Kq+1,1)

for j € {¢ —1,q — 2}. That is,

Hq—l(ZqH) =7

and
ﬁq—Q(anLl) =0.
Thus,
Z ifi=q—1,
Hi(Yy) = Hi(Zg1) = S 291 if i = ¢ — 2q,
0 otherwise,
as wanted. O

Remark. Using the stronger version of the Nerve Theorem, Theorem 2.A.2, we can
obtain a shorter proof of Proposition 7.1.3:

Assume ¢ > 3. We have Y, = U?-I}ijl. Let N =N ({Kﬂl}g%) For I C [q+ 1]
such that |I| > 2, the complex N;er /K is just the complete complex on vertex set
F?I\(UigLi). In particular, we have Hj, (NierK; 1) = 0. Moreover, since Fg\(uigLi) =0
if and only if I = [¢+ 1], we have N = {0 C [¢+ 1] : 0 # [¢+ 1]}. Thatis, N is a
(¢ — 1)-dimensional sphere.

By Theorem 2.A.2, we have a long exact sequence

q+1
o Hi (N) = @D Hy (Ki) — Hy (1@) S H(N) = -
=1

Note that this is essentially the same as the exact sequence (7.2). Hence, the rest of the
proof follows similarly as before.
7.4 Complexes of hyperplane-free sets

Let g be a prime power and n > 2 an integer. A set o C Fy is called hyperplane-free if
it does not contain any affine hyperplane.

We define the simplicial complex
Xgn={0C F7\ {0} : o is hyperplane-free} .
Note that, for n = 2, Xq,g = Xq.
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A blocking set in IFy is a set that intersects all the affine hyperplanes. One can build
a blocking set of size n(q¢ — 1) + 1 by taking the union of all the lines passing through

some point. In fact, there are no smaller blocking sets:

Theorem 7.4.1 (Jamison [Jam77], Brouwer-Schrijver [BS78]). The minimum size of

a blocking set in Ty is n(q — 1) + 1.

Note that a set o C Fy \ {0} is hyperplane-free if and only if its complement is a

blocking set containing the origin. Therefore, by Theorem 7.4.1, we have

A

dim(Xy,) =¢" —n(g—1) — 2.
For ¢ = 2 we understand the homology of these complexes completely:

Proposition 7.4.2.

SN ZQ(E) ifi=2"—n—2,
H;i(Xop) =
0 otherwise.

For the proof we will need the following result:

Theorem 7.4.3 (Solomon-Tits (see [CL82|)). Let Fl, 4 be the simplicial complex whose
vertices correspond to the non-trivial linear subspaces of Fy and whose simplices are the
sets {Vi,...,Vi} that form a flag V3 C Vo C -+ C V. Then,

@
R L A

0 otherwise.

Proof of Proposition 7.4.2. We look at the Alexander dual of Xg,n:
)A(;/n ={o CcF53\ {0} : Fy \ (¢ U{0}) contains an affine hyperplane }.
Since the complement of a hyperplane in [} is also a hyperplane, we obtain
X;Vn ={o CcF3\ {0} : 0 C H for some linear hyperplane H }.

So, Xg/ ,, is the simplicial complex on vertex set 5 \ {0} whose maximal faces are the

linear hyperplanes in F3.

Now, we can write

Fl, o = U st(Fl,, 2, span(u)).
uelF3\{0}
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Note that, for any o C F4 \ {0},
st(Fl, 2, span(o if span(o) # F7,
Pl (s = | 1P i) spanio) £
uo {0} if span(o) = Fy,

st(Fl, 2,span(c)) if o is contained in a linear hyperplane,

{0} otherwise.

Therefore,
N ({St(Fln,z,Span(u))}uewg\{o}) = X7,

Moreover, since st(Fl,, 2, span(o)) is contractible for any o C Fy\ {0} with span(c) # 3,
we obtain by the Nerve Theorem (Theorem 2.2.4),

Hy(Xy,) = Hi(Fl,2)
for all k. By Theorem 7.4.3, we obtain

ey 228 fi—n_2,
Hi(X2,n) =

0 otherwise.
Thus, by Alexander duality (Theorem 2.2.10), we obtain

3)

ZQ( ifi=2"—n-2,

ﬁi(XZn) =
0 otherwise.

Since the cohomology of Xg’n is torsion-free, we obtain by Lemma 2.2.9,

_ 22(3) ifi=2"—n—-2,
H;i(X2,) =
0 otherwise,

as wanted. O

Remark. The fact that ﬁ*()?g/n) >~ H,(Fl,2) is a special case of Folkman’s Cross-Cut
Theorem (see [Fol66]).

For g > 3, we focus again on the top-dimensional homology groups. We conjecture

the following.

Conjecture 7.4.4. Let ¢ > 3 be a prime power. Then,

~ n -1
Hq”—n(q—l)—2(Xq,n) = zll=
Note that, for n = 2, this is the statement of Theorem 1.5.2.
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We propose an approach similar to the one used for Theorem 1.5.2: Let F;, be the
collection of all flags F' = {Vi,...,V,_1}, where V; is an i-dimensional linear subspace
of Fy for all i € [n —1]. Let F' = {Vi,...,V,1} € Fyp. For each i € [n — 1], let
{V/}jelq-1) be the affine i-dimensional subspaces of Iy parallel to V; (other than V;)
that are contained in Vj;1 (where, for i =n — 1, we define V;y; = V,, = IFZL)

We define the subcomplex Kp C )A(q,n as
Kp =, (*?;}6‘/10 .
The complex K is homeomorphic to a (¢" —n(q — 1) — 2)-dimensional sphere. Let

Y;],’n = U KF'
FeFqn

Conjecture 7.4.4 would follow from the following two conjectures:

Conjecture 7.4.5. Let ¢ > 3 be a prime power and n > 2 be an integer. Then,

~ A~ ~ A~

Hq"—n(q—l)—? (qu) = an—”(q_l)_Q(Y:]’”)'

Conjecture 7.4.6. Let ¢ > 3 be a prime power and n > 2 be an integer. Then,

Hq”fn(q71)72(}>;1»n) — gl

We propose the following approach for proving Conjecture 7.4.5:

Let B C Fy be a blocking set of size n(q — 1) + 1 containing the origin. B is
called strongly stable if for every point v € Fy \ B there is some u € B\ {0} such that
B uU{v} \ {u} is also a blocking set. We conjecture the following characterization of
strongly stable blocking sets, generalizing the characterization in the n = 2 case in
Theorem 1.5.3:

Conjecture 7.4.7. Let B C Fy/ be a blocking set of size n(qg — 1) + 1 containing the
origin. Then, B is strongly stable if and only if there is a flag V1 C Vo C --- C V4
of linear subspaces of Fy such that dim(Vy) = k and |BNVi| = k(g — 1) + 1 for all
ken—1].

Finally, we will need the following simple Lemma:

Lemma 7.4.8. Let B C Fy be a blocking set of size n(q — 1) + 1 containing the origin.
Let FF = {Vi,...,Vh_1} be a flag such that Vi C Vo C -+ C V1 and dim(Vy) = k
for all k € [n —1]. Then, Fy \ B € Kp if and only if [BNVy| = k(g — 1) + 1 for all
ken—1].

Proof. Let B C Fy be a blocking set of size n(q — 1) + 1 containing the origin, and let
F={V,...,V,_1} be a flag such that V; C Vo C --- C V,,_1 and dim(V}) = k for all
ke ln—1].
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First, note that, by the definition of K, if Fy \ B € Kp then |[BNVy| = k(g—1)+1
for all k € [n —1].

Now, assume that |[BN V| = k(g — 1)+ 1 for all £ € [n — 1]. We will show that
Fy \ B € Kp. We argue by induction on n. For n = 2 the claim holds: if F' = {V1},
where V7 is a line through the origin, we have Fg \ B € Ky if and only if B contains
the line V1, that is, if and only if [ BNVi|=1-(¢—1)+1=gq.

Let n > 3. Let F' = {V4,...,V,_2}. Note that, by the definition of Kp, we have
F?\ B € Kp if and only if V1 \ (BNV,_1) € K and |[BNV)_ ;| = 1for all j € [¢—1].

Since |B| = n(¢—1)+1and |[BNV,_1| = (n—1)(¢—1)+1, we obtain |B\V,,_1| = ¢—1.
Since B is a blocking set, it must intersect each of the hyperplanes Vg_l, for j € [q¢ —1].
Therefore, we must have |B N qufﬂ =1for je[qg—1].

BNV,_1 is a blocking set in V,,_1: otherwise, assume for contradiction that BNV,,_1
is not a blocking set in V;,_1. Then, there is some (n —2)-dimensional subspace U of V,,_
that is disjoint from BNV,,_;. Let Hi, ..., H, be the linear hyperplanes in Fy containing
U, other than V;,_;. Since B is a blocking set and BNV,,_1NH; = BNU = () for all i € [q],
we must have (B\V,,—1)NH; # 0 for all i € [¢]. The sets H;\'V,,—1 = H;\U are pairwise
disjoint, therefore we must have |B \ V,,_1| > ¢, a contradiction to |B\ V,,—1| = ¢ — 1.

So, BN V,_1 is a blocking set of size (n —1)(¢ — 1) +1 in V,—; = F}~', and
(BNVy—1)NVi| = |BNVi| =k(g—1)+1 for all k& € [n — 2]. So, by the induction
hypothesis, Vi,—1 \ (BN V,-1) € Kpr. Thus, Fy \ B € Kp. d

From Conjecture 7.4.7 and Lemma 7.4.8 it follows that, for a blocking set B C Fy of
size n(q — 1) + 1 containing the origin, B is strongly stable if and only if Fy \ B € Kp for
some flag F' = {V1,...,V,,_1}. Hence, Conjecture 7.4.5 would follow from Conjecture

7.4.7 (following the same argument as in the proof of Proposition 7.1.1).
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Chapter 8

Laplacian eigenvalues of

complexes of flags

This chapter is organized as follows. In Section 8.1 we present some facts about ¢-
binomial coeflicients that we will need later. In Section 8.3 we introduce the “subspace
inclusion matrices” A;;, we study some of their properties and explain their relation to
the Laplacian matrix L§ (Fl, 4). In Section 8.3.1 we finish the proof of our main result,
Theorem 1.6.2.

8.1 ¢-Binomial coefficients

Let g be a prime power, and let a,b be integers. We define the g-binomial coefficient
(Z)q to be the number of b-dimensional subspaces contained in Fy. More explicitly, we

have

b ¢ - DI -1 TI (@ —1)

ifa>b>0, and (Z)q = 0 otherwise.

<a) _ = [Tii(¢’ — 1) _ [T e piid’ —1) (8.1)
q i=1

Lemma 8.1.1. Let 0 <r < k <n. Let U be an r-dimensional subspace of FZ. Then,

the number of k-dimensional subspaces of ¥y that contain U is (Z::)q.

Proof. The number of k-dimensional subspaces of Fy containing U is equal to the
number of (k — 7)-dimensional subspaces of /U = F;~". Hence, there are (Z::)q such

subspaces. O

We will need the following simple results about the behavior of the g-binomial

coeflicients as ¢ tends to infinity.

Lemma 8.1.2. Let a,b > 0 be integers. Then,

a+b
lim ( b )q

q—00 q“b

=1.
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Proof. By Equation (8.1), we have

(azrb)q f(q)

g 9(q)’

where f is a monic polynomial of degree

a+b 1 1
d = FbRa+b+1) =ab+ Sb(b+1)
i=a+1

and g is a monic polynomial of degree

b
1
ab+2i:ab+§b(b+l).

=1

Therefore, we have

f(q)

(a+b)
lim bqulim—zl,
g=o0 q° a—o0 g(q)

as wanted. O

Lemma 8.1.3. Let k < b < a. Then

a—Fk a
nm< )/(> 0.
g—oo \b—k q b g

Proof. By Lemma 8.1.2, we have

. Gr), . (7K, glave
g—o0 (Z)q ey q(afb)(bfk) (Z)q

-q_(a_b)k'zl-l-O:O.

We will also use the following inversion formula due to Carlitz:

Lemma 8.1.4 (Carlitz [Car73]). Let {an})'y and {by}"_ be two sequences such that

()

k=0

for all 0 <n < m. Then,

for all0 <n <m.
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8.2 The weight function

Let Vi C Vo C--- C Vi be a flagin Fy, and let 0 = {V1,...,Vi} € Fl,, 4. Recall that
we defined the weight function w(o) to be the number of complete flags extending o
or, equivalently, the number of maximal faces of Fl, , containing o. In this section we
discuss some useful properties of the weight function w.

Let GL(n, ) be the group of invertible n x n matrices over F,. For g € GL(n,q)
and a subspace V' C Fy, let gV = {gv : v € V'}. Note that gV is also a subspace of Fy
and that dim(gV') = dim(V).

Let F be the flag V1 C V5 C -+ C Vi. Then, we denote by gF the flag

gV1 S gVa C - C gVk.

First, we show that w depends only on the dimensions of the subspaces forming the

flag:

Lemma 8.2.1. Let V1 C Vo C - C Vg and Wi C Wa C -+ C Wy, be two flags in Fy.
Let o = {Vi,..., Vi } and o' = {Wh,...,Wi}. If dim(V;) = dim(W;) for alli € [k], then

w(o) = w(d’).

Proof. Let e1,. .., e, be a basis of F such that, for any i € [k], the first dim(V;) vectors
in the basis form a basis for V;. Similarly, let v1,..., v, be a basis of Fy such that, for
any i € [k], the first dim(W;) = dim(V;) vectors in the basis form a basis for W;.

Let g € GL(n, q) be the linear isomorphism that maps e; to v; for all i € [n]. Then,
for any i € [k], we have gV; = W;.

Let F be the set of complete flags extending o, and let ' be the set of complete
flags extending ¢’. We have a map g : F — F' defined by §(F) = gF for any
F € F. Since F = g~ 'gF, § is injective. Hence, |F| < |F’|. By symmetry, we have
w(o) = |F| = |F| =w(d). O

Lemma 8.2.2. Let k be an integer. Let Vi C --- C Vi1 C Vi1 ©--- C Vi be a flag
in By, and let T = Vi, Vic1, Vigr, ..., Vi }. Let dim(V;—1) < d < dim(Vj41). Let U
be the set of d-dimensional subspaces U C Fy satisfying Vi-1 CU C Viq1. For U € U,
let oy ={V1,...,Vie1,U, Vig1,..., Vi }. Then, we have

w(r) =Y wlov).
veld
Proof. Notice that, for any U € U, any complete flag extending oy extends also 7.
Moreover, each complete flag extending 7 extends exactly one of the flags oy. Therefore,

we have

w(r) = Y wlov)

veu

as wanted. O
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Lemma 8.2.3. Let k be an integer, and 1 <i < k. Let Vi C --- C Vi be a flag in Fy.
Let o = {Vl, ce ,Vk} and T = {Vl, ‘e .,‘/;_1,‘/;4_1, - .,Vk}. Let V() = {0} and Vk+1 = IFZL.
Letr =dimV;y1 —dimV;_; and t =dim V; — dim V;_1. Then,

Proof. Let U be the family of subspaces U C Fy satisfying V;_1 C U C Vi1 and
dim(U) = dim(V;). By Lemma 8.1.1, we have [U| = (:)q.

For any U € U, let oy = {V1,...,Vi1,U,Vit1,...,Vi}. Then, we have 0 = oy,
and, by Lemma 8.2.1, w(oy) = w(o) for all U € U.

Therefore, by Lemma 8.2.2, we have

w(r) = 3 wlow) = - w(e) = () -wio)

veu

We obtain Z’)E:g = (’;)q_l, as wanted. O

Lemma 8.2.4. Let 0 € X, 4(k). Then
Ly (Fl,g)(0,0) =n—k — 2.

Proof. Let 0 = {V1,...,Viy1}, and let d; = dim(V;) for all ¢ € [k 4 1].
By Lemma 2.2.15, we have

L)) = 3 w(wo)
vElk(Fly,q,0)
= w(lo') Z Z w(vo).

defn—1],  velk(Fly,q,0)
dé{dy,....dps1} dim(v)=d

S

~—

By Lemma 8.2.2, we have for any d € [n — 1]\ {d1,...,dk41}:

Z w(vo) = w(o).

VEIK(Fln.q,0)
dim(v)=d

So, we obtain

L2<Fln,q><a,a>=w(10) > S o)

den—1], wvelk(Fl, q,0)
d¢{d1,...7dk+1} dlm(’l)):d

:w(la) Z w(o)=n—k—2,

de[n—1],
d¢{di,....dy1}

as wanted. O
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8.3 Subspace inclusion matrices

For i € {0,...,n}, denote by S(i) the collection of subspaces of Fy of dimension i.

Let 1 <i<n—1and U € S(i). Define the cochain 1y € C°(X,,,) as

1 U=V,
(V)=
0 otherwise.

We call the basis U "{1y : U € S(i)} the standard basis for C°(X,, ,).
Let 0 <i,j <n. Let A;; be the S(i) x S(j) matrix

1 ifUcCVoVcCU,
Ai;(U V) =

0 otherwise.

Note that A;; = AEZ-, and that A;; is just the identity matrix Ig(;). Also, for all0 < j < n,

Apj € RI*S0U) = R9U) is the all-1 vector.

Using the matrices A;;, we can give the following explicit description for L(‘)F(Flmq):

Lemma 8.3.1. Let L = LJ (Fl,,). We identify L with its matriz representation with

respect to the standard basis. Then, we can write L as an (n — 1) x (n — 1) block matrix

Lip -+ Lina

Lp11 -+ Lp—ina

where, for (i,7) € [n — 1] x [n— 1], Ly; is the S(i) x S(j) matriz

(n—=2)I ifi=7j,
Ly =3 =07, Ay ifi<i.
_(;);1141] ifi> 3.

Proof. Let i,j € [n—1], and let U € S(i) and V' € S(j). Then, by Corollary 2.2.16 and

Lemma 8.2.4, we have

n—2 iU =1V,
LU, V) = _% fUCVorVCU,
0 otherwise.

By Lemma 8.2.3, we have



if U C V and

itV cuU.

So, for ¢ = j, we obtain

n—2 ifU=YV,
LU, V) = =(n—-2)I(U,V),
0 otherwise

where I is the S(i) x S(i) identity matrix.

For ¢ < j, we obtain

-1

— (7t ifUcCV, — N\t

L(U,V) = G, = —<” ?) Ay (U, V).
q

0 otherwise j—i
For i > j, we obtain
AN
—(%) itV cU, A
L(U,V) = 77q = —( > A (U, V),
0 otherwise

as wanted. O

We will need the following results regarding products of subspace inclusion matrices:

Lemma 8.3.2 (Kantor [Kan72]). Let k < j <i. Then

1 —k
AyAjy, = A
Tk (j—k>q k

Proof. Let U € S(k). Then,

AAply = A | DD 1| = > Aglv= > > 1w

VesS(y): Ves(y): VeS(y): WeS(i):
ucv ucv vcv vVcw

Let W € S(i) such that U € W. By Lemma 8.1.1, the number of j-dimensional

subspaces of W containing U is (;:]Z) . So, we obtain
q

i —k 1—k
AijAplo = ) (j _ k>q1W = <j _ k>ink1U-

WeS(i):
ucw

ThllS7 AijAjk = (;:]Z)quk ]
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Lemma 8.3.3. Let 0 < k <4, and let U € S(k). Then, for any sequence {om, }* we

m=0>
can write
k k
doom D D lw=) Banlw, (8.2)
m=0 VeS(m): WeS(s): m=0  WeS(i):
VcU VW dim(UNW)=m
where

Bm = Z <T:> Ay
r=0 q

for all0 <m < k.

Proof. Let 0 < m < k, and let W € S(i) such that dim(U N W) = m. The coefficient of
1y on the right-hand side of Equation (8.2) is f,.

Let 0 <r < k. The number of r-dimensional subspaces of U "W is (T)q ifr<m
and 0 otherwise. Therefore, the coefficient of 1y on the left-hand side of Equation (8.2)

is
m
m
> (") an
r=0 r q
We obtain

mef ()

r=0
for all 0 < m < k, as wanted. OJ

Lemma 8.3.4. Let 0 <k <i<j<n. Then,
k
AijAje = CijemAim Amk,
m=0
where, for all 0 < m <k, the coefficients c;jrm satisfy the relations
m .
m n—i—k+m
Z(r> Cijkr:<._i_k+m)- (8.3)
r=0 q J q
Proof. Let U € S(k). Then, we can write

AAply = > > 1y

VeS(j): WeS(4):
ucv wcv

Let 0 <m < k and let W € S(i) such that dim(U N W) = m. Then, by Lemma 8.1.1,
since dim(U + V) = dim(U) + dim(W) — dim(U N W) = k + i — m, the number of

J-dimensional subspaces of Fy containing both U and W is
(n—(k—i—i—m)) B <n—i—k+m>
j—(k+i-m)), \j—i—k+m),
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So, we can write

n—i—k+m
m=0 WeS(): q
dim(UNW)=m

Using Lemma 8.3.3 and the fact that ) yecgm): 2wes@): Iw = AimAmrly, we obtain

VCU vVcw
n—it—k+m
AUAJklU_Z Z <j—z'—k—|—m> Lw
= wes(i q
dlm(UmW)
k
= caen D, >, lw
m=0 VeS(m): WeS(i):

vcu vcw

k
= CijmAim Ami 1,

m=0
where the coefficients c;jp,, satisfy the relations
i(m)c (n—i—k—}—m)
1,9,k — . .
—\r/, j—it—k+m q

forall0 <m <k. ]

Remark. Let 0 <m < k <i<j<n. By Lemma 8.1.4, we have the following explicit

formula for the coefficient c; g,

oo = 3 (1) 5 H(E) = <m> (7? Sk ) (8.4)

= j—i—k+r

We will need the following Lemma about the asymptotic behaviour of the numbers

Cijkm-

Lemma 8.3.5. Let k<i<j<n-—k. Then, for all0 <m <k,

. Cijkm .
j—i—k+m q

Proof. We argue by induction on m. For m = 0 we have, by Equation (8.4):

S n—i—k
i7k0 — j—i—k‘ q>
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so the claim holds trivially. Now, let m > 0. Since

n—i—k+m\ (n—j+(G—i-k+m)
j—i—k+m/), .

j—i—k+m
by Lemma 8.1.2, Equation (8.5) is equivalent to

. Cijkm _
qli\rgo q(N—j)(j_i_k+m) =1L

By Equation (8.3), we have

1

n—i—k+m m
Cijkm — (jikﬁ+m>q_ Z (T>qcijk7“

r=0

Dividing by ¢("=)U—i=k+m) e obtain

(kb )
Cijkm joi—ktm/g Z 1 r)q Cijkr
q(n=)G—i=k+m) — (n—3)(G—i—k+m) o g(m=r)(n—j—r) glm=r)r g(n—j)(j—i—k+r)’

Sincer <m—1<k—1<n—j—1, weobtain (by the induction hypothesis and Lemma
8.1.2),

. Cijkm _
G b

as wanted.

Fori € {0,1,...,n}, let

E' =span({ly : U € S(1)}).

We will need the following Theorem of Kantor:

Theorem 8.3.6 (Kantor [Kan72]). Let 0 <k < |%| and k <i<n—k. Then

rank(Ag) = |S(k)| = (Z)q

In particular, the linear map Ay, - E¥ — E' is injective.
Let EY = EY and, for 1 < k < L%J , let E* be the orthogonal complement in E¥ of

the subspace Akvk_lEk_l.

Proposition 8.3.7. Let 0 <i <n. Then,

E' = S A E".

0<k<| 5], k<i<n—k
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Proof. Assume first i < L%J We argue by induction on ¢. For ¢ = 0 the claim holds

trivially. Let ¢ > 0. Note that, by Lemma 8.3.2, we have for k <i—1,
Aii 1 Ai o wEBY = Ay E".
By the induction hypothesis, we obtain

E'=A B PE

=Aii1 @ Aiq 1 EF @ E

0<k<| % | k<i—1

| @ | DE

0<k<| 2|, k<i-1

= P AnEF= &y A EF.

0<k<| %, k<i 0<k<| % |, k<i<n—k
Now, let ¢ > L%J By Lemma 8.3.2, we have for k <i<n —k,
AjpiAp—i B* = Ay EBF.
By Theorem 8.3.6, we have B = Az-,n_iE”*i. Therefore, since n — i < L%J, we obtain

. . .
E'=A;n i E""' = Ajpi @ Ap_inE
0<k<| % |, k<i<n—k

= @ A E*.

0<k<| 2|, k<i<n—k

Lemma 8.3.8. Let 0 <k < LgJ and let v € EF. Then, Ajrv =0 for all0 < j < k.

Proof. By definition, we have
V(Ag g—1u) =0

for all w € E*~1. Hence, VA z—1 = 0. That is,
Ak—l,kv = (UAkyk_l)t =0.

Now, let 0 < j <k — 1. By Lemma 8.3.2 we have

b
App—1Ap-1,j = <k iy i 1) Apj.
q
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Transposing the equation, we obtain

k-5 \ '
Ajpv = (k: il 1>q Aji—1(Ag—11v) =0,

as wanted. ]
Lemma 8.3.9. Let 0 <k < L%J Let 0 <i< k<j<n. Letv € E*. Then,
AijAjk'U = 0.

Proof. By Lemma 8.3.4, we have

AkjAji = Chjim Am Ami.

m=0

Transposing the equation, we obtain
i
AijAjrv = Crjim Aim Ampv.
m=0
By Lemma 8.3.8, we have A, v = 0 for all m < i < k. Therefore, we obtain
AijAij == 0,

as wanted. O

8.3.1 Proof of Theorem 1.6.2

For 0 <k < L%J, let By, be a basis for E¥. Then, by Proposition 8.3.7,

5]
B = U U {Ajv: max{l,k} <i < min{n—1,n — k}}
k=0 veBy

is a basis for C%(X,, ).

Theorem 8.3.10. Let L = LI (Fl,,). Then, the matriz representation of L with

respect to the basis B is a block diagonal matriz

Lo

with blocks



where Ly is the (n — 1) x (n — 1) matriz with entries

_ n—2 ifi=j
(Lo)ij = T (8.6)

-1 if i # 7,
Jor1<i,j<n—1, and, for1 <k <|%], Ly, is the (n — 2k +1) x (n — 2k + 1) matriz

with entries

n—2 if i =7,

(Li)ij = § —euwn (7)), ifi < (8.7)
i— i —1 p o .
_(jfi)q(j)q ifi>]

fork <i,j<n-—k.

Proof. Let 0 < k < |%]|. Let v € By and max{1,k} < j < min{n — 1,n — k}. By

Lemma 8.3.1, we have

Jj—1 N —1 n—1 N\ —1
q q

- M Tt i=j+1
Let 1 <i<n-—1.If i <k, we have by Lemma 8.3.9,
AijAij = 0.
Next, let ¢ > n — k. Then, we have n —i < k < j < n — k < i. So, we have, by Lemma
8.3.4 (after transposing the equation),
n—i
Ap_iiAij = Z Cjin—imAn—imAm;-
m=0
Therefore, by Lemma 8.3.9, we obtain
n—i
Ap_iiAijAjpv = Z Cjin—imAn—imAmjAjrv = 0.
m=0

Since A,,—;; is invertible (by Theorem 8.3.6), we obtain
AijAjk’U = 0.

Now, assume k < i <n — k. If i < j, we have by Lemma 8.3.4 and Lemma 8.3.8,

k
AijAjv = § CijkmAim Amiv = CijrrpAigv.

m=0
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If ¢ > j, we have by Lemma 8.3.2,

i —k
i/} ]—]{3 .

Therefore, we obtain
Jj—1 n—i\ !
LAjkv = — Z Cijkk (] B ’L) A;pv + (TL — 2)Ajkv
q

i=max{1,k}

min{n—1,n—k} ; -1 ik
- Z : o Ajgv.
i=j+1 I g N 7R/
Thus, the subspace spanned by the vectors
{Ajxv : max{1,k} <i<min{n —1,n—k}}

is invariant under L, and the matrix representation of the restriction of L on this
subspace is exactly Lj (for the case k = 0, note that, by Equation (8.4), we have
Cijkk = (’;:Z)q) Therefore, the representation of L with respect to the basis B is the

diagonal block matrix
Lo

where

forall 0 <k < L%J

Now we can prove our main result, Theorem 1.6.2.

Theorem 1.6.2. Let n > 3 and let q be a prime power. Then, for any € > 0 there is
an integer qo such that, for ¢ > qo, any eigenvalue A # 0,n — 1 of Lar(Fln,q) satisfies

A= (n—2)| <e

That is, as q tends to infinity, all nonzero eigenvalues of L(J)r(Fln,q) either are equal to

n—1 or tend ton — 2.

Proof. By Theorem 8.3.10, the set of eigenvalues of L = Lg (Fl,4) is the union of the
sets of eigenvalues of the matrices Ly, for 0 < k < L%J
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First, let £k = 0. By Equation (8.6), we have for 1 <i,j <n —1,

~ n—2 ifi=j,
(Lo)ij = o
-1 if ¢ # j.

So, for all ¢, the eigenvalues of Ly are 0 with multiplicity 1, and n — 1 with multiplicity
n— 2.
Now, let k£ > 1, and let k <i,j < n — k. Then, by Equation (8.7) and Lemma 8.1.3,

we have for ¢ > j

Thus, the matrix Lj, tends element-wise to the upper triangular matrix:

n—2 ifi=j
qh_{glo(Lk)ij =4 -1 if i < 7,
0 ifi> .

Therefore, as ¢ — oo, all the eigenvalues of Ly, tend to n — 2. That is, for any € > 0 there
is an integer qo such that for ¢ > qo, any eigenvalue \ of Ly satisfies IA—(n—-2)| <ed

Another consequence of Theorem 8.3.10 is the following bound on the number of

distinct eigenvalues of L (Fl,, ).

Corollary 8.3.11. For any prime power q > 2, the number of distinct eigenvalues of
L& (Fly ) is at most L”{J +2.

Proof. By Theorem 8.3.10, the set of distinct eigenvalues of Lg (Fl, ) is the union of
the sets of eigenvalues of the matrices L, for 0 < k < L%J The matrix Lo, defined by

. n—2 ifi=j
~1 if i £ 7,

has only two distinct eigenvalues. For 1 < k < L%J, the matrix Ly, is an (n—2k+1) x

(n — 2k 4+ 1) matrix, and therefore it has at most n — 2k + 1 distinct eigenvalues. Hence,
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the matrix Lg (Fl, ) has at most

2o S 2k =2 2] (1 [2) 2]+ 2]

-2+ 5] (13 - 51 5] 2= ] -

distinct eigenvalues. O

w3

We can see Corollary 8.3.11 as a first step towards the k£ = 0 case of the first part of

Conjecture 1.6.1. Based on this result, we make the following refined conjecture:

Conjecture 8.3.12. For any prime power q > 2, the number of distinct eigenvalues of
L (Flyq) is ezactly L"%J + 2.
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Chapter 9

Conclusion

In this chapter we summarize the open problems and possible directions for further

investigation arising from our work.

9.1 Collapsibility of complexes from families of matrices

and graphs

Let F be a field, and let A be a finite family of m x n matrices over F. In Chapter 3 we
studied the complex M 4, whose simplices correspond to families B C A such that any
matrix in span(B) is of rank at most r. We showed that, if F is an infinite field, the
collapsibility of M 4, is at most 7(r+ 1) (Theorem 1.1.5). We don’t expect the condition

on [ to be necessary or the bound to be tight. In fact, we conjecture the following:

Conjecture 3.5.15. Let A be a finite family of matrices in F™*™ and let r > 1. Then,
My, is 2r-collapsible.

It may be interesting to study the collapsibility of M 4, for special families of matrices.
For example, we conjecture that if 4 consists of skew-symmetric matrices of rank two,
the bound on the collapsibility may be reduced to 377" (Conjecture 3.5.13), and if A
consists of symmetric matrices of rank two, the bound on the collapsibility may be
reduced to r (Conjecture 3.5.14).

In Chapter 4 we studied the collapsibility of I,,(G), the simplicial complex whose
vertices are the vertices of the graph G = (V| E) and whose simplices are subsets
U C V that do not contain an independent set of size n in G. Our main concern
was on the question whether, for a graph G with maximum degree A, the bound
C(I,(G)) < [%1 (n — 1) holds (Question 1.2.4). We answered this question in the
affirmative in the special cases n < 3 or A < 2, but found examples showing that in
general the answer is negative. It would be interesting to decide for which values of A
and n the bound in Question 1.2.4 holds. The combinatorial conjecture stating that
fa(n) < L(é +1) (n—1)] + 1 for graphs with maximum degree A (Conjecture 1.2.3)

2
remains open.
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A weaker property which may hold is the following;:

Conjecture 9.1.1. Let G = (V, E) be a graph with mazimum degree at most A, and

let n > 1 be an integer. Let A be an independent set of size n — 1 in G. Then,

Clk(n (@) ) < | “5H2].

For the subclass of claw-free graphs, this is proved in Proposition 4.4.5. Conjecture
9.1.1 would imply the bound fg(n) < L(% +1)(n—1)] + 1 (by the same argument as
the one used to prove Theorem 1.2.9), settling Conjecture 1.2.3 in the case of even A.

Another possible direction is to focus on the family of claw-free bounded degree
graphs. We showed in Theorem 1.2.9 that Conjecture 1.2.3 holds for graphs in this
family when A is even. In the case of odd A, although we obtain good upper bounds
for fa(n), the question remains unsettled. It would also be interesting to prove the
corresponding tight upper bound on the collapsibility number of I,,(G), at least for the
case of even A.

We know, by Proposition 4.5.2, that the bound in Question 1.2.4 does not hold for

graphs with maximum degree at most 3. The following problem arises:

Problem 9.1.2. Find the smallest positive integer g(n) such that the following holds:

for every graph G with mazimum degree at most 3,

C(In(G)) < g(n).

By Theorem 1.2.6 and Proposition 4.5.1 we have 2(n — 1) < g(n) < 3(n — 1) for all
n > 1, and, by Corollary 4.5.5, g(8k) > 17k — 1 for all £k > 1. Improving either the

upper or lower bounds for g(n) may be of interest.

9.2 Leray numbers of tolerance complexes

Recall that given a complex K on vertex set V and an integer ¢t > 0, the t-tolerance
complex T; (K) is the simplicial complex on vertex set V' whose simplices are the sets
U C V that contain a simplex o € K of size |o| > |U| —t.

In Chapter 5 we showed that for any d and ¢ there exists an integer h(t, d) such that
if K is d-collapsible, then 7; (K) is d-Leray (Theorem 1.3.5). It would be interesting
either to weaken the condition on K from being d-collapsible to being d-Leray (see
Conjecture 1.3.3), or strengthening the conclusion on the tolerance complex to give a
bound on its collapsibility (see Conjecture 1.3.4).

Furthermore, we don’t expect the bound h(¢, d) to be tight (except in the case d = 1).

In particular, in the case t = 1 we conjecture the following:

Conjecture 9.2.1. Let K be d-collapsible. Then, Ty (K) is ([(%)QJ — 1) -Leray.
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The bound in the conjecture is of the same order of magnitude, but smaller, than
the bound proved in Theorem 1.3.5, h(1,d) = d? + 2d. We were able to verify this
conjecture only for d < 2 (see Theorem 1.3.6).

9.3 Representability of complexes without large missing

faces

In Chapter 6 we presented the following conjecture:

Conjecture 1.4.5. Let X be simplicial complex with n vertices, satisfying h(X) < d.
Then,
dn
X)<|—|.
SSHEY
Moreover, rep(X) = % if and only if the missing faces of X consist of # pairwise

disjoint sets of size d + 1.

For d = 1 this follows almost immediately from Roberts’ theorem on the boxicity
of a graph (see Proposition 6.5.1). For d = n — 1 this is a result of Wegner (Theorem
6.3.3).

As an interesting special case, we propose to focus on the family of complexes whose
missing faces form a Steiner triple system. In fact, even solving the following particular

case may be of interest:

Conjecture 6.5.5. Let Xog9 be the simplicial complex whose missing faces form a
Steiner (2,3,9)-system (that is, they are the lines of the affine plane of order 3). Then,

rep(Xa9) < 5.

9.4 Complexes of hyperplane-free sets and stability of block-

ing sets in finite affine spaces

Let g be a prime power and n > 2 an integer. In Chapter 7 we defined qu to be the
simplicial complex on vertex set Iy \ {0} whose simplices are the subsets that do not

contain any affine hyperplane. We conjecture

Conjecture 7.4.4. Let g > 3 be a prime power. Then,
~ ~ n g -1
Hyn—n(g-1)-2(Xgn) = zHi==r

The n = 2 of the conjecture follows from Theorem 1.5.2.

Recall that a set B C Fy is a blocking set if it intersects all the affine hyperplanes,
and it is called strongly stable if for every point v € Fj/\ B there is some u € B\ {0} such
that BU{v} \ {u} is also a blocking set. We conjecture the following characterization
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of strongly stable blocking sets of size n(q — 1) + 1, generalizing the characterization in

the n = 2 case in Theorem 1.5.3:

Conjecture 7.4.7. Let B C Fy be a blocking set of size n(q — 1) + 1 containing the
origin. Then, B is strongly stable if and only if there is a flag V1 T Vo C --- C V4
of linear subspaces of Fy such that dim(Vy) = k and |BNVi| = k(g — 1) + 1 for all
ken—1].

In addition to its interest for its own sake, we expect Conjecture 7.4.7 to be an

important step towards a solution of Conjecture 7.4.4.

9.5 Papikian’s conjecture on the eigenvalues of complexes

of flags

Recall that Fl,, is the simplicial complex whose vertices correspond to non-trivial
linear subspaces of Fj; and whose simplices correspond to flags. Let L;: (Fl,,4) be the
k-dimensional weighted upper Laplacian on Fl,, ;. In [Pap16], Papikian conjectured the

following;:

Conjecture 1.6.1 (Papikian [Papl6]). Let n > 3 and let q be a prime power. Let
0 <k <n-—3. Then, as q tends to infinity, the positive (i.e nonzero) eigenvalues of
L (Fl, ) tend to the integers

n—k—2n—-k—-1n—-%k,...,n—1.

Or, more formally: for any € > 0 there exists an integer qo such that, for ¢ > qo, for any
eigenvalue X of L:(Fln,q) there is somem € {n—k—2,n—k—1,...,n— 1} such that

A —m| <e.

In Chapter 8 we prove this conjecture in the special case k = 0 (Theorem 1.6.2). A
possible direction for future research is to try to extend the methods in Chapter 8 to
prove the general case of the conjecture, or at least some other special cases, such as
the case k = 1.
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