RIGIDITY AND d- DIMENSIONAL
ALGEBRALC CONNECTIVITY OF GRAPHS
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RIGIDITY

Question: Is the structure rigid or
flexible?

Or: Is there a continuous motion of the
vertices that preserves the lengths of all
edges, except translations and rotations?
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0 1 |12
U3 0 —1/v2




INFINTTESIMAL RTGIDITY

Facts:



INFINTTESIMAL RTGIDITY

Facts:

-rank (R(G,p)) < dn — (d_ZH)



INFINTTESIMAL RTGIDITY

Facts:

-rank(R(G, p)) < dn — (d-;l)

- 1f rank(R(G,p)) = dn — (“;') then (G,p)

is rigid.



INFINTTESTMAL RTGIDITY

A framework (G,p) in R* 4is dinfinitesimally
rigid if rank(R(G,p)) =dn — (d'gl) ,



INFINTTESTMAL RTGIDITY

A framework (G,p) in R* 4is dinfinitesimally
rigid if rank(R(G,p)) =dn — (d‘gl)

Theorem (Gluck ¢75, Asimow—-Roth ¢79):

(G,p) is infinitesimally rigid |$| (G,p) is rigid




INFINTTESTMAL RTGIDITY

A framework (G,p) in R* 4is dinfinitesimally
[ ] [ ] ° R d+1
rigid if rank(R(G,p)) =dn — ( 2 )

Theorem (Gluck ¢75, Asimow—-Roth ¢79):

(G,p) is infinitesimally rigid |::;>|(G,p) is rigid

If p is generic (dn coordinates are algebraically
independent over the rationals) then:



INFINTTESTMAL RTGIDITY

A framework (G,p) in R* 4is dinfinitesimally
[ ] [ ] ° R d+].
rigid if rank(R(G,p)) =dn — ( 2 )

Theorem (Gluck ¢75, Asimow—-Roth ¢79):

|(G,p) is infinitesimally rigid |::;>|(G,p) is rigid |

If p is generic (dn coordinates are algebraically
independent over the rationals) then:

|(G,p) is infinitesimally rigid | @ |(G,p) is rigid |




RIGIDITY OF GRAPHS

A graph G 1is called d-rigid if there
exists p:V—=R? such that (G,p) is
infinitesimally rigid.



RIGIDITY OF GRAPHS

A graph G 1is called d-rigid if there
exists p:V—=R* such that (G,p) is
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Theorem (Asimow-Roth ¢79):

|G is d-rigid | < |(G,p) is rigid for all generic p
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R(G,p) = Incidence matrix of G
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LAPLACTAN MATRIX

The Laplacian matrix: L(G) — N(G)N(G)T

L(G)is PSD (positive semi-definite), smallest eigenvalue A1 (L(G)) =0

Algebraic connectivity of G: a,(G) — )\2 (L(G))
a(G) > (0 <——> 6 is connected

Large algebraic connectivity implies that G is “strongly
connected”.



STIFFNESS MATRIX AND ALGEBRAIC CONNECTIVITY

Let (G,p) be a d-dimensional framework.

L(G,p) = R(G,p)R(G,p)T € Réxdn



STIFFNESS MATRIX AND ALGEBRAIC CONNECTIVITY

Let (G,p) be a d-dimensional framework.

L(G,p) = R(G,p)R(G,p)T € Réxdn

L(G,p) s PSD, and rank(L(G,p)) = rank(R(G,p)) < dn — (*}")



STIFFNESS MATRIX AND ALGEBRAIC CONNECTIVITY

Let (G,p) be a d-dimensional framework.

L(G,p) = R(G,p)R(G,p)T € Réxdn

L(G,p) is PSD, and rank(L(G,p)) = rank(R(G,p)) < dn — (d—;l)
Therefore: Aj (L(G,p)) == A(dﬂ) (L(G,p)) =0



STIFFNESS MATRIX AND ALGEBRAIC CONNECTIVITY

Let (G,p) be a d-dimensional framework.

L(G,p) = R(G,p)R(G,p)T € R
L(G,p) is PSD, and rank(L(G,p)) = rank(R(G,p)) < dn — (d;d)

Therefore: Aj (L(G,p)) == A(szrl) (L(G,p)) =0

Spectral gap: )\<d+1)+1 (L(G7p))

2



STIFFNESS MATRIX AND ALGEBRAIC CONNECTIVITY

Let (G,p) be a d-dimensional framework.

L(G,p) = R(G,p)R(G,p)T € R
L(G,p) is PSD, and rank(L(G,p)) = rank(R(G,p)) < dn — (d;rl)

Therefore: Aj (L(G,p)) == A(d_zﬂ) (L(G,p)) =0

Spectral gap: )\<d+1)+1 (L(G7p))

2

d-dimensional algebraic connectivity of G (Jordan-Tanigawa ¢22):

aq(G) = sup {)\(d+ )+1 (L(G,p))’p V= Rd}

9




STIFENESS MATRIKAND ALGERRAIC CONNECTVIY
i
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I

Let (G,p) be a d-dimensional framework.

For d=1:

L(G7p) — R(G7p)R(G7p)T E Randn L(G,p) is the

Laplacian matrix of G.

(G,p) 1s , and rank(L(G, — rank(R(G, < dn— (31!
L(G,p PSD (L(G,p)) (R(G,p)) <dn— (%) () = al(@)

Therefore: A (L(G,p)) - A(d;1> (L(G,p)) =0 the algebraic
connectivity (a.k.a
Laplacian spectral
Spectral gap: A<d+1)—i—1 (L(G,p)) gap) of G.
2

d-dimensional algebraic connectivity of G (Jordan-Tanigawa ¢22):

aq(G) = sup {)\(dH)H(L(G,p))’p V= Rd}

2
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MOTIVATION

-We can think of this as a quantitative measure of rigidity
ad((?)2> 0 ‘<:::i> G is d-rigid

Jordan-Tanigawa (¢22):

-If ad((?):> k, then G remains d-rigid after removing any k
vertices.

-If ad((;) is large enough, then G remains d-rigid (with
positive probability) even after removing some of the edges of
G uniformly at random.
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D-DIMENSIONAL ALGEBRATC CONNECTIVITY OF COMPLETE GRAPHS

~What s aq(K,)?

a1 (K,)=n
Jordan-Tanigawa (¢22), Zhu (¢13): az(}( )::7@/2
L-Nevo-Peled-Raz (¢23): For d > 3, %L%J < aq(Ky) < 3(321) +%
ai(Kg1) =1

Conjecture (L-Nevo-Peled-Raz ¢22+):

1 if d+1<n<2d,

) ={ % 5in
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Lower bound:

If p maps the vertices of Kd+1 into the vertices of a regular
simplex in R®, then the spectrum of L(Kgy1,p) is:

{o[(d?)] = d+1” d+ 10

Y Y

/The lower stiffness matrix: [~ (G, p) = R(G,p)TR(G,p) c REXB

2 e =¢€, €
L,, = cos(d) lene|=1, <)
0 otherwise e

N /
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Upper bound:

d=3 case:

o 070 R?, M(L(Ky,p)) < ZEE <1

For general d, argue by induction using eigenvalue interlacing
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MINIMALLY D-RIGID GRAPHS

Conjecture (L-Nevo-Peled-Raz ¢22+): “Generalized paths”
have minimal d-dimensional algebraic connectivity
(among all n-vertex d-rigid graphs).

Pua =[], {{i-j}: 1<i<j<n,j—i<d}

L-Nevo-Peled-Raz ¢22+: ad( ) ()d( )
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RIGIDITY EXPANDERS

A family of graphs {Gz — (V;,E) i—1 with lim; ‘V| o0
is a family of d-rigidity expander graphs if there is € > 0
such that Chj((;i) > € for all 1.

For d=1, we know there exist families of 3-regular expander
graphs (and there are no 2-regular expanders).

What happens for d>1?
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RIGIDITY EXPANDERS

Theorem (L-Nevo-Peled-Raz ¢22+):

For any d > 1, there exist families of (2d+1)-regular
d-rigidity expander graphs.

Conjecture (Jordan-Tanigawa ‘22, L-Nevo-Peled-Raz ¢22+):

For any ci;z 1, there do not exist families of 2d-regular
d-rigidity expander graphs.
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A LOWER BOUND ON D-DIMENSIONAL ALGEBRAIC CONNECTIVITY

Let G=(V,E) be a graph, and V =A4,U-.--UA,; a partition of -its
vertex set.

1f G[A;] s connected for all 1<4<d and G(4;,4;) is connected
for all 1<i<j<d, we call this a strong d-rigid partition of G.

Theorem (L-Nevo-Peled-Raz ¢22+):
aa(G) = min ({a(GA])}, U {3a(G(4,4)},;) -

In particular, if G admits a strong d-rigid partition, 1t
is d-rigid.
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LOWER BOUND FOR COMPLETE GRAPHS:

Partition vertex set into d sets of size \‘EJ or {E-‘ each.

G[Az] are complete graphs a(G|4;]) > {%J

G(AZ,A]) are complete bipartite graphs a(G(4;,A4;)) > {%J

By the theorem:

aq(Ky) > 3 L%J
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CONSTRUCTION OF RIGIDITY EXPANDERS

Need to choose
the subgraphs
so that the
(total) degree
of each vertex
is 2d+1
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. . log n+log log n+w(n
Jackson, Servatius, Servatius ‘06: If P > 8 808 ()

n
then G(n,p) is 2-rigid with high probability (whp).
log n+log log n—w(n)

If p< - then G(n,p) is whp not 2-rigid.
4 N
__ logn+(k—1)loglogn 4s the threshold for minimum
P = n degree at least k.
\_ /

Theran, Kiraly ¢13, Jordan-Tanigawa ¢22: If p > Cdlogn/n

then G(n,p) 1is d-rigid whp.
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Theorem (L-Nevo-Peled-Raz ¢23):

With high probability, the random graph process becomes
d-rigid exactly at the time its minimum degree becomes d.

log n+(d—1) log log n+w(n)
n

Corollary: If p >
d-rigid.

then G(n,p) is whp

log n+(d—1) log log n—w(n)
- then G(n,p) is whp not d-rigid.

If p<
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Theorem (Krivelevich-L-Michaeli ¢23+):
With high probability, the random graph process admits a

strong d-rigid partition exactly at the time -its minimum
degree becomes d.

Additional results (Krivelevich-L-Michaeli ¢23+):

- For p > Cedlogd/n, whp G(n,p) has a d-rigid subgraph
with at least (1 —-EJTlvertices.

- A random Cdlogd—regular graph is d-rigid whp.
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Theorem (Krivelevich-L-Michae

Conjecture: A

random 2d-regular

graph i1s d-rigid
whp ~\\

With high probability, the rand¢

strong d-rigid partition exactl
degree becomes d.

Additional results (Krivelevich-L-Michaeli ¢23+):

- For p > C’edlogd/n, whp G(n(i)) has a d-rigid subgraph
with at least (1 —-EJTlvertices.

@)
- A random Cdlogd—regular graph is d-rigid whp.
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Proof idea:

Step 1: A graph with
large enough minimum
degree, and not too

large maximum degree,

admits a partition 1into
d parts, such that
every vertex 1s
adjacent to “many”
vertices from each
part.

Step 2: Use properties
of the random graph to
show that this
partition is in fact a
strong d-rigid
partition

—Induced subgraphs on small
vertex sets are not very
dense
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Proof +idea: .
Step 2: Use properties

of the random graph to
show that this
partition is in fact a
strong d-rigid
partition

Step 1: A graph with
large enough minimum
degree, and not too
large maximum degree,
admits a partition 1into
d parts, such that

. —Induced subgraphs on small
every vertex 1s

vertex sets are not very

adjagent to “many” deree
vertices from each - Any two large enough
part. disjoint sets have an edge

between them
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STRONG D-RIGID PARTITIONS IN RANDOM GRAPHS

More precisely:

G is a K-connector if every two
G is (x,y)-sparse if every disjoint vertex sets, each of

set of vertices of size asx size at least K, are connected by
spans at most ay edges. an edge

Proposition (Krivelevich-L-Michaeli ¢23+):
For every I' > 1there exists C>1 such that if:

® §(G)>Cdlogd and A(G) <Té(G) ,
e G is (z,6(G)/(7d))-sparse for some x,
e G is a (2x/3)-connector,

then G admits a strong d-rigid partition.
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GENERALLZED D-RIGID PARTITIONS
Ala . -aAd—|—1 = partition of V
Gz] — (Az L Aj7 Ezy) Edge disjoint subgraphs of G

(for 1<i<j<d+1)

Every A C Az of size at least 2 has a cut such that all
crossing edges belong to a unique ng

Theorem (Krivelevich-L-Michaeli ¢23+):

ai(@) >min {52 1<i<j<d+1}
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GENERALLZED D-RIGID PARTITIONS

Applications:
- Rigidity of random bipartite graphs o

- Rigidity of “highly connected graphs”: \z;/j.

Theorem (Krivelevich-L-Michaeli ¢23+):

d+1y . . . : : :
If G has (2 )d1SJo1nt connected dominating sets, then it

is d-rigid.
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