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Graph Laplacian

G =(V,E) a graph, |V|=n.
The Laplacian of G is the V x V matrix Lg:

deg(u) ifu=v,
Lo(u,v) =< -1 if uv € E,
0 otherwise.
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Graph Laplacian

G =(V,E) a graph, |V|=n.
The Laplacian of G is the V x V matrix Lg:

deg(u) ifu=v,
Lo(u,v) =< -1 if uv € E,
0 otherwise.

Eigenvalues of Lg

0=A1(G) < X(G) < -~ < An(G).

A2(G) = Spectral Gap of G.

A>» > 0 < G is connected.
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Simplicial Cohomology

X a simplicial complex on vertex set V.

X (k) = k-dimensional simplices.

CK(X) = k-cochains = skew-symmetric maps from the set of
ordered k-simplices to R.
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Simplicial Cohomology

X a simplicial complex on vertex set V.

X (k) = k-dimensional simplices.

CK(X) = k-cochains = skew-symmetric maps from the set of
ordered k-simplices to R.

(E-g. ¢([v1, v2, v3]) = ¢([vs, va, v2]) = —9([v1, v3, v2]) )

For o € X(k + 1), 7 € o(k) ordered simplices:
Let {v}=0\T.

(o : 7) = sign of permutation mapping o to vr.

(E.g. ([v1,v2,va] : [v3, v1]) =sign(337) = 1).
The Coboundary Operator dy : CK(X) — CKT1(X) is given by

dkp(0) = > (0:7)¢(7).

T€a(k)



Simplicial Cohomology

ZK(X) = k-cocycles = Ker(dj).
BX(X) = k-coboundaries = Im(dy_1).
k-th reduced cohomology group of X:

A (X R) = ZK(X)/B¥(X).
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Simplicial Cohomology

ZK(X) = k-cocycles = Ker(dj).
BX(X) = k-coboundaries = Im(dy_1).
k-th reduced cohomology group of X:

A (X R) = ZK(X)/B¥(X).

Inner product on CK(X):

()= ¢(o)(o).

oeX(k)
Adjoint of coboundary operator:  d} : Ck*1(X) — CK(X)

(dkd, ) = (¢, di¥h).-
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Higher Laplacians

dk—1 dj
Ck—l(X)<_—> Ck(X): Ck+1(X)

* *
a1 a

The reduced k-Laplacian of X is the positive semidefinite operator

L = dy_1d;f 1 + djdi : CK(X) = CK(X).
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Higher Laplacians

de—1 dy
Ck—l(X)<_—> Ck(X): Ck+1(X)
%1 %

The reduced k-Laplacian of X is the positive semidefinite operator

L = dy_1d;f 1 + djdi : CK(X) = CK(X).
Matrix form of the k-Laplacian

deg(o) + k+1 if o =,
Li(o,7) =< (c:on7)(t:0nT) ifloNT|=k ocUT ¢ X,

0 otherwise.
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Higher Laplacians

Example

X = boundary of a tetrahedron.
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Higher Laplacians

1k (X) = k-th spectral gap of X = minimal eigenvalue of L, (X).
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Higher Laplacians

1k (X) = k-th spectral gap of X = minimal eigenvalue of L, (X).

Relation with the graph Laplacian
Let G = 1-skeleton of X. Then

Lo(X) =Llg+J,

po(X) = X2(G).
Simplicial Hodge Theorem

Ker(Ly) = A*(X; R).
In particular:
e > 06 BCGR) = 0.



Flag Complexes

The flag complex (or clique complex) X(G) of graph G = (V, E):
Vertex set: V, Simplices: all cliques of G.
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Flag Complexes

The flag complex (or clique complex) X(G) of graph G = (V, E):
Vertex set: V, Simplices: all cliques of G.

Example

G = X(G) =
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Spectral Gaps of Flag Complexes

G = (V,E) a graph with |V| = n. Let X = X(G).

Theorem[Aharoni-Berger-Meshulam]:
For k>1
Kik(X) = (k + Dp-1(X) — .

In particular
Mk(X) Z (k + 1))\2(6) — kn.
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Spectral Gaps of Flag Complexes

G = (V,E) a graph with |V| = n. Let X = X(G).

Theorem[Aharoni-Berger-Meshulam]:

For k > 1
ki(X) > (k + D1 (X) = .
In particular
Mk(X) Z (k + 1))\2(6) — kn.
Corollary:
kn ~ k
A2(G) > = uk(X)>0 = H (X;R)=0.

k+1



Spectral Gaps of Flag Complexes

Extremal Example [Aharoni-Berger-Meshulam]:

Let n = rf and let G be the Turdn graph T(n,r), i.e. the complete
r-partite graph.

ai ~ as a-

G = X(G) =,

b:

b.

b- bs
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Spectral Gaps of Flag Complexes

Extremal Example [Aharoni-Berger-Meshulam]:

Let n = rf and let G be the Turdn graph T(n,r), i.e. the complete
r-partite graph.

ai ~ as a-

G = X(G) =,

b:

b.

b- bs
b:

Then \o(G) = £(r — 1) = =X, but A" (X(G); R) # 0,
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Generalized Flag Complexes

Missing Faces

X a simplicial complex on vertex set V.
T C Vis a missing face of X if 7 ¢ X butn € X foralln C 7.
h(X) = max{dim(7) : 7 is a missing face of X}.
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X a simplicial complex on vertex set V.

T C Vis a missing face of X if 7 ¢ X butn € X foralln C 7.

h(X) = max{dim(7) : 7 is a missing face of X}.
Example

The missing faces:
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Generalized Flag Complexes

Missing Faces

X a simplicial complex on vertex set V.
T C Vis a missing face of X if 7 ¢ X butn € X foralln C 7.
h(X) = max{dim(7) : 7 is a missing face of X}.

Example

The missing faces:
{vi, v2, va}, {v1, va}

Vi

X is a flag complex < h(X) =1
(missing faces= edges of the complement of G)

11/32



Spectral Gaps of Generalized Flag Complexes

X a simplicial complex on vertex set V, |V| = n, with h(X) = d.

Theorem:
For k > d

(k—d+ 1)puw(X) = (k + 1)pe—1(X) — dn.
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Spectral Gaps of Generalized Flag Complexes

X a simplicial complex on vertex set V, |V| = n, with h(X) = d.

Theorem:
For k > d

(k—d+ 1)puw(X) = (k + 1)pe—1(X) — dn.

In particular

Corollary:
fg-1(X) > (1 - (kgl)*l) n = u(X)>0 = AX;R) =0.

12/32



Extremal Examples

Let d = 2. Then

pi(X) > (1 - (k;1)1> n = AXGR) = 0.
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Extremal Examples

Let d = 2. Then

pi(X) > (1 - (k;1)1> n = AXGR) = 0.

Let X be the complex whose
missing faces are the lines of the
affine plane over F3:

m(X)=6= (1= (3") ") n but F(X;R) =R £0.

Several more examples for d = 2 and k < 4, all arising from finite
geometries.

13 /32



Homological Connectivity

The homological connectivity of a complex X:

n(X) = min{i : A'(X) # 0} +1.
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Connectivity of Independence Complexes

Let G = (V, E) be a graph. )
The Independence Complex: 1(G) = X(G).
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totally dominating set.
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Vector Domination of a Graph

A vector representation of G:
P : V — R’ such that for any v,w € V

1 if{v,w}€E,

0 otherwise.

P(v)- P(w) > {
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Vector Domination of a Graph

A vector representation of G:
P : V — R’ such that for any v,w € V

1 if{v,w}€E,

0 otherwise.

P(v)- P(w) > {

Identify P with an RIVI*¢ matrix.

A vector 0 < a e RV is dominating for P if aPPT >1,ie.

> a(v)P(v)- P(u) > 1

veVv

forallue V.
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Vector Domination of a Graph

The value of P:

|P| = min{a-1: « is dominating}
=max{a-1: a>0,aPPT <1}.

Define I'(G) to be the supremum of |P| over all vector
representations of G.
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Vector Domination of a Graph

The value of P:

|P| = min{a-1: « is dominating}
=max{a-1: a>0,aPPT <1}.

Define I'(G) to be the supremum of |P| over all vector
representations of G.

Theorem[Aharoni-Berger-Meshulam]:

n(1(6)) = T(G).

18 /32



Vector Domination of a Simplicial Complex

Let X be a simplicial complex on vertex set V.
M(k) = missing faces of dimension k of X.
J={k e N: M(k) # 0}.

S(X) = Ukes (V1)
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M(k) = missing faces of dimension k of X.
J={k e N: M(k) # 0}.

S(X) = Ukes (V1)

Example
If X is a clique complex: J = {1}, S(X) = {0}.

For each o € 5(X) fix £ = (o).

A vector representation of X with respect to o: P, : V — RY, such
that

1 if vwo € M(Jo|+ 1),

0 otherwise.

Po(v) - Po(w) > {
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Vector Domination of a Simplicial Complex

Let X be a simplicial complex on vertex set V.
M(k) = missing faces of dimension k of X.
J={k e N: M(k) # 0}.

S(X) = Ukes (Y1)

Example

If X is a clique complex: J = {1}, S(X) = {0}.

For each o € 5(X) fix £ = (o).
A vector representation of X with respect to o: P, : V — RY, such

that
1 if vwo € M(Jo|+ 1),

0 otherwise.

Po(v) - Po(w) > {

P ={P,:0 € S(X)} is called a vector representation of X.

19/32



Vector Domination of a Simplicial Complex

The value of P:
Pl =max{a-1: a>0,aP,P] <1 VoecS(X)}.

Define ['(X) to be the supremum of |P| over all vector
representations of X.
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Vector Domination of a Simplicial Complex

The value of P:
Pl =max{a-1: a>0,aP,P] <1 VoecS(X)}.

Define ['(X) to be the supremum of |P| over all vector
representations of X.

Remark
For a graph G we have I'(G) =T (/(G)).

Theorem:

Zk("(;()> > [(X).

ked

20 /32



Colorful Simplices

Let V4,..., V., be a partition of V. A simplex o € X is colorful if
lonVi=1foralli=1,...,m.

Theorem[Aharoni-Haxell, Meshulam]:
If forall @ £ 1 C {1,2,...,m}

n(X[Uies Vi]) 2 |11,

then X contains a colorful simplex.
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Colorful Simplices

Let V4,..., V., be a partition of V. A simplex o € X is colorful if
lonVi=1foralli=1,...,m.

Theorem[Aharoni-Haxell, Meshulam]:

If forall @ £ 1 C {1,2,...,m}
n(X[UiesVi]) > 111,

then X contains a colorful simplex.

We obtain:

Theorem:
If forall @ £ 1 c {1,2,..., m}

x> k(1Y)
ked

then X contains a colorful simplex.

21/32



General Position in R

A set S C RY is in general position if any k-dimensional flat
contains at most k + 1 points of S (for k < d —1).
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A set S C RY is in general position if any k-dimensional flat
contains at most k + 1 points of S (for k < d —1).
Equivalently, S is in general position if any S’ C S with

|S’] < d + 1 is affinely independent.

For S C RY, let

©(S) = maximal size of a subset of S in general position.

Example
In R?:



Hall-type Theorem for General Position

Colorful sets
Let V C RY a finite set. Vi, Vs,..., Vi, a partition of V.
Aset S C Vis colorful if |SNVj|=1fori=1,...,m.

23 /32



Hall-type Theorem for General Position

Colorful sets
Let V C RY a finite set. Vi, Vs,..., Vi, a partition of V.
Aset S C Vis colorful if |SNVj|=1fori=1,...,m.

Theorem[Holmsen-Martinez Sandoval-Montejano:
If for every O # 1 C {1,2,...,m}

-1 if|l|<d+1,

Uier Vi) >
#(VierVi) {d@@% if [I| >d+2,

then V has a colorful subset in general position.
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Fractional General Position

span(S) = Affine span of S.
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S C RY a finite set. A weight function f : S — R>g is in fractional
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and o C FNS of size k
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Fractional General Position
span(S) = Affine span of S.

S C RY a finite set. A weight function f : S — R>g is in fractional
general position if for every 0 < k < d — 1, k-dimensional flat F
and o C FN'S of size k

Y f(v)<d

VES,
span(vo)=F

©*(S) = maximum of Y s f(v) over all functions in fractional
general position.

©*(5) > ¢(S) (the characteristic function of any subset of S in
general position is in fractional general position).

24 /32



Examples

In R2:
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Examples

In R2:
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1
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Fractional Hall-type Theorem for General Position

Theorem:
If for every O # | C {1,2,...,m}

-1
U,GIV >dz <|| )

then V has a colorful subset in general position.
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Fractional Hall-type Theorem for General Position

Theorem:
If for every @ # 1 C {1,2,...,m}

-1
U,e[\/ >dz <|| >

then V has a colorful subset in general position.

As a consequence we obtain:

Theorem:
If for every O # 1 C {1,2,...,m}

sV = -1 if [I] <d+1,
P\Uiel Vi dzgzlr(l”r_l) if|/‘2d+2;

then V has a colorful subset in general position.
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Sketch of Proof

For V be a finite set of points in RY, build a simplicial complex X:
Vertex set: V/, Simplices: all subsets S C V in general position.
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Sketch of Proof

Vector Representation of X:

Let 1 < k < d. Let Fi be the set of (k — 1)-dimensional flats
spanned by points in V.

For 0 C V, |o| = k — 1, define P, : V — R by

1 ifspan(vo) =F,
0 otherwise.

Po(v)(F) = {
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Sketch of Proof

Vector Representation of X:

Let 1 < k < d. Let Fi be the set of (k — 1)-dimensional flats
spanned by points in V.
For 0 C V, |o| = k — 1, define P, : V — R by

1 ifspan(vo) =F,
0 otherwise.

Po(v)(F) = {

If vwo is a missing face of X, then it is contained in a
(k — 1)-dimensional flat F, spanned by any k points in vwo.
So span(vo) = span(wo) = F, therefore P, (v) - Py(w) = 1.

If f:V — Ris in fractional general position, then a(v) = f(v)/d
satisfies aP,P] <1 for all o € S(X). So

M(X) = [P| = ¢*(V)/d.



Spectral Gaps and Minimal Degrees

X a simplicial complex on vertex set V, |V| = n, with h(X) = d.
Let kK > 0.
dk(X) = minimal degree of a simplex in X(k).
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X a simplicial complex on vertex set V, |V| = n, with h(X) = d.
Let kK > 0.
dk(X) = minimal degree of a simplex in X(k).

Theorem:

fu(X) > (d + 1)(6x(X) + k + 1) — dn.

As a consequence:

Theorem[Adamaszek|:
Hk(X;R) =0 for all k > d%rln -1
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X, Y simplicial complexes on disjoint vertex sets.
The join XxY ={cUT: ce X, 7€ Y}

A, = full complex on m+ 1 vertices.

ALY = (m — 1)-skeleton of A, ~ S™L,

Define
X = Agd_l) * Agd_l) %o e ook Agd_l) *N\,_1.

t times

Vertices: n= (d + 1)t +r.
Missing faces: t disjoint d-dimensional simplices. (So h(X) = d).
dim(X) =dt+r—1.

For all kK we have

1 (X) = (d + 1)(5x(X) + k + 1) — dn.
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Extremal Examples

Letd=1,t=3, r=3:
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Extremal Examples

Letd=1,t=3, r=3:

For example for k = 2:

p2(X)

37
52(X) = 3.

3

Indeed p12(X) = 2(02(X)+2+1)—n=12-9=3.
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Uniqueness of Extremal Examples for Flag Complexes

For flag complexes (h(X) = 1) these are the only extremal
examples:

Theorem:
Let X be a flag complex on vertex set V, |V| = n, such that

k(X)) =2(k + 1) — n for some k > 0. Then

X = A(lo) * A(lo) ¥ ook A(lo) *Az(k+1)—n—1-

-~
(n— k —1) times
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