Spectral Gaps of Generalized Flag Complexes

Alan Lew
Technion - Israel Institute of Technology
January 2018

Graph Laplacian

$$
G=(V, E) \text { a graph, }|V|=n .
$$

The Laplacian of G is the $V \times V$ matrix L_{G} :

$$
L_{G}(u, v)= \begin{cases}\operatorname{deg}(u) & \text { if } u=v, \\ -1 & \text { if } u v \in E, \\ 0 & \text { otherwise } .\end{cases}
$$

Graph Laplacian

$$
G=(V, E) \text { a graph, }|V|=n
$$

The Laplacian of G is the $V \times V$ matrix L_{G} :

$$
L_{G}(u, v)= \begin{cases}\operatorname{deg}(u) & \text { if } u=v \\ -1 & \text { if } u v \in E \\ 0 & \text { otherwise }\end{cases}
$$

Eigenvalues of L_{G}

$$
\begin{gathered}
0=\lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{n}(G) . \\
\lambda_{2}(G)=\text { Spectral Gap of } G .
\end{gathered}
$$

Graph Laplacian

$$
G=(V, E) \text { a graph, }|V|=n
$$

The Laplacian of G is the $V \times V$ matrix L_{G} :

$$
L_{G}(u, v)= \begin{cases}\operatorname{deg}(u) & \text { if } u=v \\ -1 & \text { if } u v \in E \\ 0 & \text { otherwise }\end{cases}
$$

Eigenvalues of L_{G}

$$
\begin{gathered}
0=\lambda_{1}(G) \leq \lambda_{2}(G) \leq \cdots \leq \lambda_{n}(G) . \\
\lambda_{2}(G)=\text { Spectral Gap of } G . \\
\lambda_{2}>0 \Leftrightarrow G \text { is connected. }
\end{gathered}
$$

Simplicial Cohomology

X a simplicial complex on vertex set V.
$X(k)=k$-dimensional simplices.
$C^{k}(X)=k$-cochains $=$ skew-symmetric maps from the set of ordered k-simplices to \mathbb{R}.

Simplicial Cohomology

X a simplicial complex on vertex set V.
$X(k)=k$-dimensional simplices.
$C^{k}(X)=k$-cochains $=$ skew-symmetric maps from the set of ordered k-simplices to \mathbb{R}.
(E.g. $\left.\phi\left(\left[v_{1}, v_{2}, v_{3}\right]\right)=\phi\left(\left[v_{3}, v_{1}, v_{2}\right]\right)=-\phi\left(\left[v_{1}, v_{3}, v_{2}\right]\right)\right)$

Simplicial Cohomology

X a simplicial complex on vertex set V.
$X(k)=k$-dimensional simplices.
$C^{k}(X)=k$-cochains $=$ skew-symmetric maps from the set of ordered k-simplices to \mathbb{R}.
(E.g. $\left.\phi\left(\left[v_{1}, v_{2}, v_{3}\right]\right)=\phi\left(\left[v_{3}, v_{1}, v_{2}\right]\right)=-\phi\left(\left[v_{1}, v_{3}, v_{2}\right]\right)\right)$

For $\sigma \in X(k+1), \tau \in \sigma(k)$ ordered simplices:
Let $\{v\}=\sigma \backslash \tau$.
$(\sigma: \tau)=$ sign of permutation mapping σ to $v \tau$.

Simplicial Cohomology

X a simplicial complex on vertex set V.
$X(k)=k$-dimensional simplices.
$C^{k}(X)=k$-cochains $=$ skew-symmetric maps from the set of ordered k-simplices to \mathbb{R}.
(E.g. $\left.\phi\left(\left[v_{1}, v_{2}, v_{3}\right]\right)=\phi\left(\left[v_{3}, v_{1}, v_{2}\right]\right)=-\phi\left(\left[v_{1}, v_{3}, v_{2}\right]\right)\right)$

For $\sigma \in X(k+1), \tau \in \sigma(k)$ ordered simplices:
Let $\{v\}=\sigma \backslash \tau$.
$(\sigma: \tau)=$ sign of permutation mapping σ to $v \tau$.
(E.g. $\left(\left[v_{1}, v_{2}, v_{3}\right]:\left[v_{3}, v_{1}\right]\right)=\operatorname{sign}\binom{123}{231}=1$).

Simplicial Cohomology

X a simplicial complex on vertex set V.
$X(k)=k$-dimensional simplices.
$C^{k}(X)=k$-cochains $=$ skew-symmetric maps from the set of ordered k-simplices to \mathbb{R}.
(E.g. $\left.\phi\left(\left[v_{1}, v_{2}, v_{3}\right]\right)=\phi\left(\left[v_{3}, v_{1}, v_{2}\right]\right)=-\phi\left(\left[v_{1}, v_{3}, v_{2}\right]\right)\right)$

For $\sigma \in X(k+1), \tau \in \sigma(k)$ ordered simplices:
Let $\{v\}=\sigma \backslash \tau$.

$$
(\sigma: \tau)=\text { sign of permutation mapping } \sigma \text { to } v \tau \text {. }
$$

(E.g. $\left.\left(\left[v_{1}, v_{2}, v_{3}\right]:\left[v_{3}, v_{1}\right]\right)=\operatorname{sign}\binom{123}{231}=1\right)$.

The Coboundary Operator $d_{k}: C^{k}(X) \rightarrow C^{k+1}(X)$ is given by

$$
d_{k} \phi(\sigma)=\sum_{\tau \in \sigma(k)}(\sigma: \tau) \phi(\tau)
$$

Simplicial Cohomology

$Z^{k}(X)=k$-cocycles $=\operatorname{Ker}\left(d_{k}\right)$.
$B^{k}(X)=k$-coboundaries $=\operatorname{Im}\left(d_{k-1}\right)$.
k-th reduced cohomology group of X :

$$
\tilde{H}^{k}(X ; \mathbb{R})=Z^{k}(X) / B^{k}(X) .
$$

Simplicial Cohomology

$Z^{k}(X)=k$-cocycles $=\operatorname{Ker}\left(d_{k}\right)$.
$B^{k}(X)=k$-coboundaries $=\operatorname{Im}\left(d_{k-1}\right)$.
k-th reduced cohomology group of X :

$$
\tilde{H}^{k}(X ; \mathbb{R})=Z^{k}(X) / B^{k}(X)
$$

Inner product on $C^{k}(X)$:

$$
\langle\phi, \psi\rangle=\sum_{\sigma \in X(k)} \phi(\sigma) \psi(\sigma)
$$

Simplicial Cohomology

$Z^{k}(X)=k$-cocycles $=\operatorname{Ker}\left(d_{k}\right)$.
$B^{k}(X)=k$-coboundaries $=\operatorname{Im}\left(d_{k-1}\right)$.
k-th reduced cohomology group of X :

$$
\tilde{H}^{k}(X ; \mathbb{R})=Z^{k}(X) / B^{k}(X)
$$

Inner product on $C^{k}(X)$:

$$
\langle\phi, \psi\rangle=\sum_{\sigma \in X(k)} \phi(\sigma) \psi(\sigma)
$$

Adjoint of coboundary operator: $\quad d_{k}^{*}: C^{k+1}(X) \rightarrow C^{k}(X)$

$$
\left\langle d_{k} \phi, \psi\right\rangle=\left\langle\phi, d_{k}^{*} \psi\right\rangle .
$$

Higher Laplacians

$$
C^{k-1}(X) \underset{d_{k-1}^{*}}{\stackrel{d_{k-1}}{\underset{ }{\rightleftarrows}}} C^{k}(X) \underset{d_{k}^{*}}{\stackrel{d_{k}}{\rightleftarrows}} C^{k+1}(X)
$$

The reduced k-Laplacian of X is the positive semidefinite operator

$$
L_{k}=d_{k-1} d_{k-1}^{*}+d_{k}^{*} d_{k}: C^{k}(X) \rightarrow C^{k}(X)
$$

Higher Laplacians

$$
C^{k-1}(X) \underset{d_{k-1}^{*}}{\stackrel{d_{k-1}}{\underset{ }{\rightleftarrows}}} C^{k}(X) \underset{d_{k}^{*}}{\stackrel{d_{k}}{\rightleftarrows}} C^{k+1}(X)
$$

The reduced k-Laplacian of X is the positive semidefinite operator

$$
L_{k}=d_{k-1} d_{k-1}^{*}+d_{k}^{*} d_{k}: C^{k}(X) \rightarrow C^{k}(X)
$$

Matrix form of the k-Laplacian

$$
L_{k}(\sigma, \tau)= \begin{cases}\operatorname{deg}(\sigma)+k+1 & \text { if } \sigma=\tau \\ (\sigma: \sigma \cap \tau)(\tau: \sigma \cap \tau) & \text { if }|\sigma \cap \tau|=k, \sigma \cup \tau \notin X \\ 0 & \text { otherwise }\end{cases}
$$

Higher Laplacians

Example

$X=$ boundary of a tetrahedron.

Higher Laplacians

Example

$$
X=\text { boundary of a tetrahedron. }
$$

$$
L_{1}(X)=\left(\begin{array}{llllll}
4 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 4
\end{array}\right)
$$

Higher Laplacians

Example

$$
X=\text { boundary of a tetrahedron. }
$$

$$
L_{1}(X)=\left(\begin{array}{cccccc}
4 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 4
\end{array}\right) \quad L_{2}(X)=\left(\begin{array}{cccc}
3 & 1 & -1 & 1 \\
1 & 3 & 1 & -1 \\
-1 & 1 & 3 & 1 \\
1 & -1 & 1 & 3
\end{array}\right)
$$

Higher Laplacians

$\mu_{k}(X)=k$-th spectral gap of $X=$ minimal eigenvalue of $L_{k}(X)$.

Higher Laplacians

$\mu_{k}(X)=k$-th spectral gap of $X=$ minimal eigenvalue of $L_{k}(X)$.
Relation with the graph Laplacian
Let $G=1$-skeleton of X. Then

$$
\begin{aligned}
& L_{0}(X)=L_{G}+J \\
& \mu_{0}(X)=\lambda_{2}(G)
\end{aligned}
$$

Higher Laplacians

$\mu_{k}(X)=k$-th spectral gap of $X=$ minimal eigenvalue of $L_{k}(X)$.
Relation with the graph Laplacian
Let $G=1$-skeleton of X. Then

$$
\begin{aligned}
& L_{0}(X)=L_{G}+J \\
& \mu_{0}(X)=\lambda_{2}(G)
\end{aligned}
$$

Simplicial Hodge Theorem

$$
\operatorname{Ker}\left(L_{k}\right) \cong \tilde{\mathrm{H}}^{k}(X ; \mathbb{R})
$$

In particular:

$$
\mu_{k}>0 \Leftrightarrow \tilde{\mathrm{H}}^{k}(X ; \mathbb{R})=0
$$

Flag Complexes

The flag complex (or clique complex) $X(G)$ of graph $G=(V, E)$: Vertex set: V, Simplices: all cliques of G.

Flag Complexes

The flag complex (or clique complex) $X(G)$ of graph $G=(V, E)$: Vertex set: V, Simplices: all cliques of G.

Example

Spectral Gaps of Flag Complexes

$G=(V, E)$ a graph with $|V|=n$. Let $X=X(G)$.
Theorem[Aharoni-Berger-Meshulam]:
For $k \geq 1$

$$
k \mu_{k}(X) \geq(k+1) \mu_{k-1}(X)-n .
$$

In particular

$$
\mu_{k}(X) \geq(k+1) \lambda_{2}(G)-k n .
$$

Spectral Gaps of Flag Complexes

$G=(V, E)$ a graph with $|V|=n$. Let $X=X(G)$.
Theorem[Aharoni-Berger-Meshulam]:
For $k \geq 1$

$$
k \mu_{k}(X) \geq(k+1) \mu_{k-1}(X)-n .
$$

In particular

$$
\mu_{k}(X) \geq(k+1) \lambda_{2}(G)-k n .
$$

Corollary:

$$
\lambda_{2}(G)>\frac{k n}{k+1} \Longrightarrow \mu_{k}(X)>0 \Longrightarrow \tilde{H}^{k}(X ; \mathbb{R})=0
$$

Spectral Gaps of Flag Complexes

Extremal Example [Aharoni-Berger-Meshulam]:
Let $n=r \ell$ and let G be the Turán graph $T(n, r)$, i.e. the complete r-partite graph.

Spectral Gaps of Flag Complexes

Extremal Example [Aharoni-Berger-Meshulam]:
Let $n=r \ell$ and let G be the Turán graph $T(n, r)$, i.e. the complete r-partite graph.

Then $\lambda_{2}(G)=\ell(r-1)=\frac{r-1}{r} n$, but $\tilde{H}^{r-1}(X(G) ; \mathbb{R}) \neq 0$.

Generalized Flag Complexes

Missing Faces
X a simplicial complex on vertex set V.
$\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\eta \in X$ for all $\eta \subsetneq \tau$. $h(X)=\max \{\operatorname{dim}(\tau): \tau$ is a missing face of $X\}$.

Generalized Flag Complexes

Missing Faces
X a simplicial complex on vertex set V.
$\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\eta \in X$ for all $\eta \subsetneq \tau$. $h(X)=\max \{\operatorname{dim}(\tau): \tau$ is a missing face of $X\}$.

Example

Generalized Flag Complexes

Missing Faces

X a simplicial complex on vertex set V.
$\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\eta \in X$ for all $\eta \subsetneq \tau$. $h(X)=\max \{\operatorname{dim}(\tau): \tau$ is a missing face of $X\}$.

Example

The missing faces:

$$
\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}
$$

Generalized Flag Complexes

Missing Faces

X a simplicial complex on vertex set V.
$\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\eta \in X$ for all $\eta \subsetneq \tau$. $h(X)=\max \{\operatorname{dim}(\tau): \tau$ is a missing face of $X\}$.

Example

The missing faces:

$$
\left\{v_{1}, v_{2}, v_{3}\right\},\left\{v_{1}, v_{4}\right\}
$$

X is a flag complex $\Leftrightarrow h(X)=1$
(missing faces= edges of the complement of G)

Spectral Gaps of Generalized Flag Complexes

X a simplicial complex on vertex set $V,|V|=n$, with $h(X)=d$.
Theorem:
For $k \geq d$

$$
(k-d+1) \mu_{k}(X) \geq(k+1) \mu_{k-1}(X)-d n .
$$

Spectral Gaps of Generalized Flag Complexes

X a simplicial complex on vertex set $V,|V|=n$, with $h(X)=d$.
Theorem:
For $k \geq d$

$$
(k-d+1) \mu_{k}(X) \geq(k+1) \mu_{k-1}(X)-d n .
$$

In particular

$$
\mu_{k}(X) \geq\binom{ k+1}{d} \mu_{d-1}(X)-\left(\binom{k+1}{d}-1\right) n
$$

Spectral Gaps of Generalized Flag Complexes

X a simplicial complex on vertex set $V,|V|=n$, with $h(X)=d$.
Theorem:
For $k \geq d$

$$
(k-d+1) \mu_{k}(X) \geq(k+1) \mu_{k-1}(X)-d n .
$$

In particular

$$
\mu_{k}(X) \geq\binom{ k+1}{d} \mu_{d-1}(X)-\left(\binom{k+1}{d}-1\right) n
$$

Corollary:
$\mu_{d-1}(X)>\left(1-\binom{k+1}{d}^{-1}\right) n \Longrightarrow \mu_{k}(X)>0 \Longrightarrow \tilde{H}^{k}(X ; \mathbb{R})=0$.

Extremal Examples

Let $d=2$. Then

$$
\mu_{1}(X)>\left(1-\binom{k+1}{2}^{-1}\right) n \Longrightarrow \tilde{\mathrm{H}}^{k}(X ; \mathbb{R})=0
$$

Extremal Examples

Let $d=2$. Then

$$
\mu_{1}(X)>\left(1-\binom{k+1}{2}^{-1}\right) n \Longrightarrow \tilde{\mathrm{H}}^{k}(X ; \mathbb{R})=0
$$

Let X be the complex whose missing faces are the lines of the affine plane over \mathbb{F}_{3} :

Extremal Examples

Let $d=2$. Then

$$
\mu_{1}(X)>\left(1-\binom{k+1}{2}^{-1}\right) n \Longrightarrow \tilde{H}^{k}(X ; \mathbb{R})=0
$$

Let X be the complex whose missing faces are the lines of the affine plane over \mathbb{F}_{3} :

$$
\mu_{1}(X)=6=\left(1-\binom{2+1}{2}^{-1}\right) n, \text { but } \tilde{H}^{2}(X ; \mathbb{R})=\mathbb{R} \neq 0
$$

Extremal Examples

Let $d=2$. Then

$$
\mu_{1}(X)>\left(1-\binom{k+1}{2}^{-1}\right) n \Longrightarrow \tilde{\mathrm{H}}^{k}(X ; \mathbb{R})=0
$$

Let X be the complex whose missing faces are the lines of the affine plane over \mathbb{F}_{3} :

$$
\mu_{1}(X)=6=\left(1-\binom{2+1}{2}^{-1}\right) n, \text { but } \tilde{H}^{2}(X ; \mathbb{R})=\mathbb{R} \neq 0
$$

Several more examples for $d=2$ and $k \leq 4$, all arising from finite geometries.

Homological Connectivity

The homological connectivity of a complex X :

$$
\eta(X)=\min \left\{i: \tilde{\mathrm{H}}^{i}(X) \neq 0\right\}+1
$$

Homological Connectivity

The homological connectivity of a complex X :

$$
\eta(X)=\min \left\{i: \tilde{H}^{i}(X) \neq 0\right\}+1
$$

Examples

Homological Connectivity

The homological connectivity of a complex X :

$$
\eta(X)=\min \left\{i: \tilde{H}^{i}(X) \neq 0\right\}+1
$$

Examples

$$
\eta(X)=2
$$

Homological Connectivity

The homological connectivity of a complex X :

$$
\eta(X)=\min \left\{i: \tilde{\mathrm{H}}^{i}(X) \neq 0\right\}+1
$$

Examples

$$
\eta(X)=2
$$

Homological Connectivity

The homological connectivity of a complex X :

$$
\eta(X)=\min \left\{i: \tilde{\mathrm{H}}^{i}(X) \neq 0\right\}+1
$$

Examples

$$
\eta(X)=2
$$

$$
\eta(X)=\infty
$$

Connectivity of Independence Complexes

Let $G=(V, E)$ be a graph.
The Independence Complex: $I(G)=X(\bar{G})$.

Connectivity of Independence Complexes

Let $G=(V, E)$ be a graph.
The Independence Complex: $I(G)=X(\bar{G})$.
Vertices $=V$, Simplices $=$ all independent sets of G.

Connectivity of Independence Complexes

Let $G=(V, E)$ be a graph.
The Independence Complex: $I(G)=X(\bar{G})$.
Vertices $=V$, Simplices $=$ all independent sets of G.
$\eta(I(G))$ can be bounded by different "domination parameters" of the graph G.
For example: A subset $S \subset V$ is totally dominating if every vertex $v \in V$ has a neighbor in S. Let $\tilde{\gamma}(G)$ be the minimal size of a totally dominating set.

Connectivity of Independence Complexes

Let $G=(V, E)$ be a graph.
The Independence Complex: $I(G)=X(\bar{G})$.
Vertices $=V$, Simplices $=$ all independent sets of G.
$\eta(I(G))$ can be bounded by different "domination parameters" of the graph G.
For example: A subset $S \subset V$ is totally dominating if every vertex $v \in V$ has a neighbor in S. Let $\tilde{\gamma}(G)$ be the minimal size of a totally dominating set.

Theorem[Aharoni-Chudnovsky,Meshulam]

$$
\eta(I(G)) \geq \tilde{\gamma}(G) / 2
$$

Connectivity of Independence Complexes

Let $G=(V, E)$ be a graph.
The Independence Complex: $I(G)=X(\bar{G})$.
Vertices $=V$, Simplices $=$ all independent sets of G.
$\eta(I(G))$ can be bounded by different "domination parameters" of the graph G.
For example: A subset $S \subset V$ is totally dominating if every vertex $v \in V$ has a neighbor in S. Let $\tilde{\gamma}(G)$ be the minimal size of a totally dominating set.

Theorem[Aharoni-Chudnovsky,Meshulam]

$$
\eta(I(G)) \geq \tilde{\gamma}(G) / 2
$$

Connectivity of Independence Complexes

Example

Connectivity of Independence Complexes

Example

Connectivity of Independence Complexes

Example

$$
\tilde{\gamma}(G)=4
$$

Connectivity of Independence Complexes

Example

Vector Domination of a Graph

A vector representation of G :
$P: V \rightarrow \mathbb{R}^{\ell}$ such that for any $v, w \in V$

$$
P(v) \cdot P(w) \geq \begin{cases}1 & \text { if }\{v, w\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

Vector Domination of a Graph

A vector representation of G :
$P: V \rightarrow \mathbb{R}^{\ell}$ such that for any $v, w \in V$

$$
P(v) \cdot P(w) \geq \begin{cases}1 & \text { if }\{v, w\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

Identify P with an $\mathbb{R}^{|V| \times \ell}$ matrix.

A vector $\mathbf{0} \leq \alpha \in \mathbb{R}^{V}$ is dominating for P if $\alpha P P^{T} \geq \mathbf{1}$, i.e.

$$
\sum_{v \in V} \alpha(v) P(v) \cdot P(u) \geq 1
$$

for all $u \in V$.

Vector Domination of a Graph

The value of P :

$$
\begin{aligned}
|P| & =\min \{\alpha \cdot \mathbf{1}: \alpha \text { is dominating }\} \\
& =\max \left\{\alpha \cdot \mathbf{1}: \alpha \geq \mathbf{0}, \alpha P P^{T} \leq \mathbf{1}\right\}
\end{aligned}
$$

Define $\Gamma(G)$ to be the supremum of $|P|$ over all vector representations of G.

Vector Domination of a Graph

The value of P :

$$
\begin{aligned}
|P| & =\min \{\alpha \cdot \mathbf{1}: \alpha \text { is dominating }\} \\
& =\max \left\{\alpha \cdot \mathbf{1}: \alpha \geq \mathbf{0}, \alpha P P^{T} \leq \mathbf{1}\right\}
\end{aligned}
$$

Define $\Gamma(G)$ to be the supremum of $|P|$ over all vector representations of G.
Theorem[Aharoni-Berger-Meshulam]:

$$
\eta(I(G)) \geq \Gamma(G)
$$

Vector Domination of a Simplicial Complex

Let X be a simplicial complex on vertex set V. $\mathcal{M}(k)=$ missing faces of dimension k of X.
$J=\{k \in \mathbb{N}: \mathcal{M}(k) \neq \emptyset\}$.
$S(X)=\cup_{k \in J}\binom{v}{k-1}$.

Vector Domination of a Simplicial Complex

Let X be a simplicial complex on vertex set V.
$\mathcal{M}(k)=$ missing faces of dimension k of X.
$J=\{k \in \mathbb{N}: \mathcal{M}(k) \neq \emptyset\}$.
$S(X)=\cup_{k \in J}\binom{V}{k-1}$.
Example
If X is a clique complex: $J=\{1\}, S(X)=\{\emptyset\}$.

Vector Domination of a Simplicial Complex

Let X be a simplicial complex on vertex set V.
$\mathcal{M}(k)=$ missing faces of dimension k of X.
$J=\{k \in \mathbb{N}: \mathcal{M}(k) \neq \emptyset\}$.
$S(X)=\cup_{k \in J}\binom{V}{k-1}$.
Example
If X is a clique complex: $J=\{1\}, S(X)=\{\emptyset\}$.

For each $\sigma \in S(X)$ fix $\ell=\ell(\sigma)$.
A vector representation of X with respect to $\sigma: P_{\sigma}: V \rightarrow \mathbb{R}^{\ell}$, such that

$$
P_{\sigma}(v) \cdot P_{\sigma}(w) \geq \begin{cases}1 & \text { if } v w \sigma \in \mathcal{M}(|\sigma|+1) \\ 0 & \text { otherwise }\end{cases}
$$

Vector Domination of a Simplicial Complex

Let X be a simplicial complex on vertex set V.
$\mathcal{M}(k)=$ missing faces of dimension k of X.
$J=\{k \in \mathbb{N}: \mathcal{M}(k) \neq \emptyset\}$.
$S(X)=\cup_{k \in J}\binom{V}{k-1}$.
Example
If X is a clique complex: $J=\{1\}, S(X)=\{\emptyset\}$.

For each $\sigma \in S(X)$ fix $\ell=\ell(\sigma)$.
A vector representation of X with respect to $\sigma: P_{\sigma}: V \rightarrow \mathbb{R}^{\ell}$, such that

$$
P_{\sigma}(v) \cdot P_{\sigma}(w) \geq \begin{cases}1 & \text { if } v w \sigma \in \mathcal{M}(|\sigma|+1) \\ 0 & \text { otherwise }\end{cases}
$$

$P=\left\{P_{\sigma}: \sigma \in S(X)\right\}$ is called a vector representation of X.

Vector Domination of a Simplicial Complex

The value of P :

$$
|P|=\max \left\{\alpha \cdot \mathbf{1}: \alpha \geq \mathbf{0}, \alpha P_{\sigma} P_{\sigma}^{T} \leq \mathbf{1} \forall \sigma \in S(X)\right\}
$$

Define $\Gamma(X)$ to be the supremum of $|P|$ over all vector representations of X.

Vector Domination of a Simplicial Complex

The value of P :

$$
|P|=\max \left\{\alpha \cdot \mathbf{1}: \alpha \geq \mathbf{0}, \alpha P_{\sigma} P_{\sigma}^{T} \leq \mathbf{1} \forall \sigma \in S(X)\right\}
$$

Define「 $\Gamma(X)$ to be the supremum of $|P|$ over all vector representations of X.
Remark
For a graph G we have $\Gamma(G)=\Gamma(I(G))$.

Vector Domination of a Simplicial Complex

The value of P :

$$
|P|=\max \left\{\alpha \cdot \mathbf{1}: \alpha \geq \mathbf{0}, \alpha P_{\sigma} P_{\sigma}^{T} \leq \mathbf{1} \forall \sigma \in S(X)\right\}
$$

Define $\Gamma(X)$ to be the supremum of $|P|$ over all vector representations of X.
Remark
For a graph G we have $\Gamma(G)=\Gamma(I(G))$.
Theorem:

$$
\sum_{k \in J} k\binom{\eta(X)}{k} \geq \Gamma(X)
$$

Colorful Simplices

Let V_{1}, \ldots, V_{m} be a partition of V. A simplex $\sigma \in X$ is colorful if $\left|\sigma \cap V_{i}\right|=1$ for all $i=1, \ldots, m$.

Theorem[Aharoni-Haxell, Meshulam]:
If for all $\emptyset \neq I \subset\{1,2, \ldots, m\}$

$$
\eta\left(X\left[\cup_{i \in I} V_{i}\right]\right) \geq|I|
$$

then X contains a colorful simplex.

Colorful Simplices

Let V_{1}, \ldots, V_{m} be a partition of V. A simplex $\sigma \in X$ is colorful if $\left|\sigma \cap V_{i}\right|=1$ for all $i=1, \ldots, m$.
Theorem[Aharoni-Haxell, Meshulam]:
If for all $\emptyset \neq I \subset\{1,2, \ldots, m\}$

$$
\eta\left(X\left[\cup_{i \in I} V_{i}\right]\right) \geq|I|
$$

then X contains a colorful simplex.
We obtain:
Theorem:
If for all $\emptyset \neq I \subset\{1,2, \ldots, m\}$

$$
\Gamma\left(X\left[\cup_{i \in I} V_{i}\right]\right)>\sum_{k \in J} k\binom{|I|-1}{k}
$$

then X contains a colorful simplex.

General Position in \mathbb{R}^{d}

A set $S \subset \mathbb{R}^{d}$ is in general position if any k-dimensional flat contains at most $k+1$ points of S (for $k \leq d-1$).

General Position in \mathbb{R}^{d}

A set $S \subset \mathbb{R}^{d}$ is in general position if any k-dimensional flat contains at most $k+1$ points of S (for $k \leq d-1$).
Equivalently, S is in general position if any $S^{\prime} \subset S$ with $\left|S^{\prime}\right| \leq d+1$ is affinely independent.

General Position in \mathbb{R}^{d}

A set $S \subset \mathbb{R}^{d}$ is in general position if any k-dimensional flat contains at most $k+1$ points of S (for $k \leq d-1$).
Equivalently, S is in general position if any $S^{\prime} \subset S$ with
$\left|S^{\prime}\right| \leq d+1$ is affinely independent.
For $S \subset \mathbb{R}^{d}$, let
$\varphi(S)=$ maximal size of a subset of S in general position.

General Position in \mathbb{R}^{d}

A set $S \subset \mathbb{R}^{d}$ is in general position if any k-dimensional flat contains at most $k+1$ points of S (for $k \leq d-1$). Equivalently, S is in general position if any $S^{\prime} \subset S$ with $\left|S^{\prime}\right| \leq d+1$ is affinely independent.
For $S \subset \mathbb{R}^{d}$, let
$\varphi(S)=$ maximal size of a subset of S in general position.

Example In \mathbb{R}^{2} :

General Position in \mathbb{R}^{d}

A set $S \subset \mathbb{R}^{d}$ is in general position if any k-dimensional flat contains at most $k+1$ points of S (for $k \leq d-1$). Equivalently, S is in general position if any $S^{\prime} \subset S$ with $\left|S^{\prime}\right| \leq d+1$ is affinely independent.
For $S \subset \mathbb{R}^{d}$, let
$\varphi(S)=$ maximal size of a subset of S in general position.

Example In \mathbb{R}^{2} :

Hall-type Theorem for General Position

Colorful sets
Let $V \subset \mathbb{R}^{d}$ a finite set. $V_{1}, V_{2}, \ldots, V_{m}$ a partition of V.
A set $S \subset V$ is colorful if $\left|S \cap V_{i}\right|=1$ for $i=1, \ldots, m$.

Hall-type Theorem for General Position

Colorful sets
Let $V \subset \mathbb{R}^{d}$ a finite set. $V_{1}, V_{2}, \ldots, V_{m}$ a partition of V.
A set $S \subset V$ is colorful if $\left|S \cap V_{i}\right|=1$ for $i=1, \ldots, m$.
Theorem[Holmsen-Martínez Sandoval-Montejano]:
If for every $\emptyset \neq I \subset\{1,2, \ldots, m\}$

$$
\varphi\left(\cup_{i \in I} V_{i}\right)> \begin{cases}|I|-1 & \text { if }|I| \leq d+1, \\ d\binom{2| | \mid-2}{d} & \text { if }|I| \geq d+2,\end{cases}
$$

then V has a colorful subset in general position.

Fractional General Position

$\operatorname{span}(S)=$ Affine span of S.

Fractional General Position

$\operatorname{span}(S)=$ Affine span of S.
$S \subset \mathbb{R}^{d}$ a finite set. A weight function $f: S \rightarrow \mathbb{R}_{\geq 0}$ is in fractional general position if for every $0 \leq k \leq d-1, k$-dimensional flat F and $\sigma \subset F \cap S$ of size k

$$
\sum_{\substack{v \in S, \operatorname{span}(v \sigma)=F}} f(v) \leq d
$$

Fractional General Position

$\operatorname{span}(S)=$ Affine span of S.
$S \subset \mathbb{R}^{d}$ a finite set. A weight function $f: S \rightarrow \mathbb{R}_{\geq 0}$ is in fractional general position if for every $0 \leq k \leq d-1, k$-dimensional flat F and $\sigma \subset F \cap S$ of size k

$$
\sum_{\substack{v \in S, \operatorname{span}(v \sigma)=F}} f(v) \leq d
$$

$\varphi^{*}(S)=$ maximum of $\sum_{v \in S} f(v)$ over all functions in fractional general position.

Fractional General Position

$\operatorname{span}(S)=$ Affine span of S.
$S \subset \mathbb{R}^{d}$ a finite set. A weight function $f: S \rightarrow \mathbb{R}_{\geq 0}$ is in fractional general position if for every $0 \leq k \leq d-1, k$-dimensional flat F and $\sigma \subset F \cap S$ of size k

$$
\sum_{\substack{v \in S, \operatorname{span}(v \sigma)=F}} f(v) \leq d
$$

$\varphi^{*}(S)=$ maximum of $\sum_{v \in S} f(v)$ over all functions in fractional general position.
$\varphi^{*}(S) \geq \varphi(S)$ (the characteristic function of any subset of S in general position is in fractional general position).

Examples

$\ln \mathbb{R}^{2}$:

Examples

$\ln \mathbb{R}^{2}$:

$$
\varphi=2
$$

Examples

$\ln \mathbb{R}^{2}$:

$$
\begin{aligned}
\varphi & =2 \\
\varphi^{*} & =5 \cdot \frac{1}{2}=2 \frac{1}{2}
\end{aligned}
$$

Examples

$\ln \mathbb{R}^{2}$:

$$
\begin{aligned}
\varphi & =2 \\
\varphi^{*} & =5 \cdot \frac{1}{2}=2 \frac{1}{2}
\end{aligned}
$$

Examples

$\ln \mathbb{R}^{2}$:

$$
\begin{aligned}
\varphi & =2 \\
\varphi^{*} & =5 \cdot \frac{1}{2}=2 \frac{1}{2}
\end{aligned}
$$

$$
\varphi=5
$$

Examples

$\ln \mathbb{R}^{2}$:

$$
\begin{aligned}
\varphi & =2 \\
\varphi^{*} & =5 \cdot \frac{1}{2}=2 \frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\varphi & =5 \\
\varphi^{*} & =9 \cdot 1=9
\end{aligned}
$$

Fractional Hall-type Theorem for General Position

Theorem:
If for every $\emptyset \neq I \subset\{1,2, \ldots, m\}$

$$
\varphi^{*}\left(\cup_{i \in I} V_{i}\right)>d \sum_{r=1}^{d} r\binom{|I|-1}{r},
$$

then V has a colorful subset in general position.

Fractional Hall-type Theorem for General Position

Theorem:
If for every $\emptyset \neq I \subset\{1,2, \ldots, m\}$

$$
\varphi^{*}\left(\cup_{i \in I} V_{i}\right)>d \sum_{r=1}^{d} r\binom{|I|-1}{r},
$$

then V has a colorful subset in general position.
As a consequence we obtain:
Theorem:
If for every $\emptyset \neq I \subset\{1,2, \ldots, m\}$

$$
\varphi\left(\cup_{i \in I} V_{i}\right)> \begin{cases}|I|-1 & \text { if }|I| \leq d+1 \\ d \sum_{r=1}^{d} r\binom{|I|-1}{r} & \text { if }|I| \geq d+2\end{cases}
$$

then V has a colorful subset in general position.

Sketch of Proof

For V be a finite set of points in \mathbb{R}^{d}, build a simplicial complex X : Vertex set: V, Simplices: all subsets $S \subset V$ in general position.

Sketch of Proof

For V be a finite set of points in \mathbb{R}^{d}, build a simplicial complex X : Vertex set: V, Simplices: all subsets $S \subset V$ in general position. Missing faces of $X: S \subset V,|S| \leq d+1$, such that S is affinely dependent but any $|S|-1$ points in S are independent.

Sketch of Proof

For V be a finite set of points in \mathbb{R}^{d}, build a simplicial complex X : Vertex set: V, Simplices: all subsets $S \subset V$ in general position. Missing faces of $X: S \subset V,|S| \leq d+1$, such that S is affinely dependent but any $|S|-1$ points in S are independent.
Example

Sketch of Proof

Vector Representation of X :

Let $1 \leq k \leq d$. Let \mathcal{F}_{k} be the set of $(k-1)$-dimensional flats spanned by points in V.
For $\sigma \subset V,|\sigma|=k-1$, define $P_{\sigma}: V \rightarrow \mathbb{R}^{\mathcal{F}_{k}}$ by

$$
P_{\sigma}(v)(F)= \begin{cases}1 & \text { if } \operatorname{span}(v \sigma)=F \\ 0 & \text { otherwise }\end{cases}
$$

Sketch of Proof

Vector Representation of X :

Let $1 \leq k \leq d$. Let \mathcal{F}_{k} be the set of $(k-1)$-dimensional flats spanned by points in V.
For $\sigma \subset V,|\sigma|=k-1$, define $P_{\sigma}: V \rightarrow \mathbb{R}^{\mathcal{F}_{k}}$ by

$$
P_{\sigma}(v)(F)= \begin{cases}1 & \text { if } \operatorname{span}(v \sigma)=F \\ 0 & \text { otherwise }\end{cases}
$$

If $v w \sigma$ is a missing face of X, then it is contained in a $(k-1)$-dimensional flat F, spanned by any k points in $v w \sigma$. So $\operatorname{span}(v \sigma)=\operatorname{span}(w \sigma)=F$, therefore $P_{\sigma}(v) \cdot P_{\sigma}(w)=1$.

Sketch of Proof

Vector Representation of X :

Let $1 \leq k \leq d$. Let \mathcal{F}_{k} be the set of $(k-1)$-dimensional flats spanned by points in V.
For $\sigma \subset V,|\sigma|=k-1$, define $P_{\sigma}: V \rightarrow \mathbb{R}^{\mathcal{F}_{k}}$ by

$$
P_{\sigma}(v)(F)= \begin{cases}1 & \text { if } \operatorname{span}(v \sigma)=F \\ 0 & \text { otherwise }\end{cases}
$$

If $v w \sigma$ is a missing face of X, then it is contained in a $(k-1)$-dimensional flat F, spanned by any k points in $v w \sigma$. So $\operatorname{span}(v \sigma)=\operatorname{span}(w \sigma)=F$, therefore $P_{\sigma}(v) \cdot P_{\sigma}(w)=1$.

If $f: V \rightarrow \mathbb{R}$ is in fractional general position, then $\alpha(v)=f(v) / d$ satisfies $\alpha P_{\sigma} P_{\sigma}^{T} \leq \mathbf{1}$ for all $\sigma \in S(X)$. So

$$
\Gamma(X) \geq|P| \geq \varphi^{*}(V) / d
$$

Spectral Gaps and Minimal Degrees

X a simplicial complex on vertex set $V,|V|=n$, with $h(X)=d$. Let $k \geq 0$.
$\delta_{k}(X)=$ minimal degree of a simplex in $X(k)$.

Spectral Gaps and Minimal Degrees

X a simplicial complex on vertex set $V,|V|=n$, with $h(X)=d$. Let $k \geq 0$.
$\delta_{k}(X)=$ minimal degree of a simplex in $X(k)$.
Theorem:

$$
\mu_{k}(X) \geq(d+1)\left(\delta_{k}(X)+k+1\right)-d n .
$$

Spectral Gaps and Minimal Degrees

X a simplicial complex on vertex set $V,|V|=n$, with $h(X)=d$. Let $k \geq 0$.
$\delta_{k}(X)=$ minimal degree of a simplex in $X(k)$.
Theorem:

$$
\mu_{k}(X) \geq(d+1)\left(\delta_{k}(X)+k+1\right)-d n
$$

As a consequence:
Theorem[Adamaszek]:
$\tilde{H}^{k}(X ; \mathbb{R})=0$ for all $k>\frac{d}{d+1} n-1$.

Extremal Examples

X, Y simplicial complexes on disjoint vertex sets.
The join $X * Y=\{\sigma \cup \tau: \sigma \in X, \tau \in Y\}$.

Extremal Examples

X, Y simplicial complexes on disjoint vertex sets.
The join $X * Y=\{\sigma \cup \tau: \sigma \in X, \tau \in Y\}$.
$\Delta_{m}=$ full complex on $m+1$ vertices.
$\Delta_{m}^{(m-1)}=(m-1)$-skeleton of $\Delta_{m} \simeq S^{m-1}$.

Extremal Examples

X, Y simplicial complexes on disjoint vertex sets.
The join $X * Y=\{\sigma \cup \tau: \sigma \in X, \tau \in Y\}$.
$\Delta_{m}=$ full complex on $m+1$ vertices.
$\Delta_{m}^{(m-1)}=(m-1)$-skeleton of $\Delta_{m} \simeq S^{m-1}$.

Define

$$
X=\underbrace{\Delta_{d}^{(d-1)} * \Delta_{d}^{(d-1)} * \cdots * \Delta_{d}^{(d-1)}}_{t \text { times }} * \Delta_{r-1}
$$

Vertices: $n=(d+1) t+r$. Missing faces: t disjoint d-dimensional simplices. (So $h(X)=d$). $\operatorname{dim}(X)=d t+r-1$.

Extremal Examples

X, Y simplicial complexes on disjoint vertex sets.
The join $X * Y=\{\sigma \cup \tau: \sigma \in X, \tau \in Y\}$.
$\Delta_{m}=$ full complex on $m+1$ vertices.
$\Delta_{m}^{(m-1)}=(m-1)$-skeleton of $\Delta_{m} \simeq S^{m-1}$.

Define

$$
X=\underbrace{\Delta_{d}^{(d-1)} * \Delta_{d}^{(d-1)} * \cdots * \Delta_{d}^{(d-1)}}_{t \text { times }} * \Delta_{r-1}
$$

Vertices: $n=(d+1) t+r$.
Missing faces: t disjoint d-dimensional simplices. (So $h(X)=d$). $\operatorname{dim}(X)=d t+r-1$.
For all k we have

$$
\mu_{k}(X)=(d+1)\left(\delta_{k}(X)+k+1\right)-d n .
$$

Extremal Examples

Let $d=1, t=3, r=3$:
$\mathrm{X}=$
*
*

Extremal Examples

Let $d=1, t=3, r=3$:
$\mathrm{X}=$

For example for $k=2$:

$$
\begin{aligned}
\mu_{2}(X) & =3, \\
\delta_{2}(X) & =3 .
\end{aligned}
$$

Indeed $\mu_{2}(X)=2\left(\delta_{2}(X)+2+1\right)-n=12-9=3$.

Uniqueness of Extremal Examples for Flag Complexes

For flag complexes $(h(X)=1)$ these are the only extremal examples:

Theorem:
Let X be a flag complex on vertex set $V,|V|=n$, such that $\mu_{k}(X)=2(k+1)-n$ for some $k \geq 0$. Then

$$
X \cong \underbrace{\Delta_{1}^{(0)} * \Delta_{1}^{(0)} * \cdots * \Delta_{1}^{(0)}}_{(n-k-1) \text { times }} * \Delta_{2(k+1)-n-1}
$$

