Spectral Gaps of Generalized Flag Complexes

Alan Lew
Technion – Israel Institute of Technology
January 2018
Graph Laplacian

$G = (V, E)$ a graph, $|V| = n$.

The Laplacian of G is the $V \times V$ matrix L_G:

$$L_G(u, v) = \begin{cases}
\deg(u) & \text{if } u = v, \\
-1 & \text{if } uv \in E, \\
0 & \text{otherwise.}
\end{cases}$$
Graph Laplacian

\(G = (V, E) \) a graph, \(|V| = n\).

The Laplacian of \(G \) is the \(V \times V \) matrix \(L_G \):

\[
L_G(u, v) = \begin{cases}
\text{deg}(u) & \text{if } u = v, \\
-1 & \text{if } uv \in E, \\
0 & \text{otherwise}.
\end{cases}
\]

Eigenvalues of \(L_G \)

\[
0 = \lambda_1(G) \leq \lambda_2(G) \leq \cdots \leq \lambda_n(G).
\]

\(\lambda_2(G) = \text{Spectral Gap of } G \).
Graph Laplacian

\[G = (V, E) \text{ a graph, } |V| = n. \]

The Laplacian of \(G \) is the \(V \times V \) matrix \(L_G \):

\[
L_G(u, v) = \begin{cases}
\deg(u) & \text{if } u = v, \\
-1 & \text{if } uv \in E, \\
0 & \text{otherwise.}
\end{cases}
\]

Eigenvalues of \(L_G \)

\[
0 = \lambda_1(G) \leq \lambda_2(G) \leq \cdots \leq \lambda_n(G).
\]

\(\lambda_2(G) = \text{Spectral Gap of } G. \)

\(\lambda_2 > 0 \iff G \text{ is connected.} \)
Simplicial Cohomology

X a simplicial complex on vertex set V.
$X(k) = k$-dimensional simplices.
$C^k(X) = k$-cochains = skew-symmetric maps from the set of ordered k-simplices to \mathbb{R}.
Simplicial Cohomology

X a simplicial complex on vertex set V.
X(k) = k-dimensional simplices.
C^k(X) = k-cochains = skew-symmetric maps from the set of ordered k-simplices to \(\mathbb{R} \).
(E.g. \(\phi([v_1, v_2, v_3]) = \phi([v_3, v_1, v_2]) = -\phi([v_1, v_3, v_2]) \))
Simplicial Cohomology

X a simplicial complex on vertex set V.
$X(k) =$ k-dimensional simplices.
$C^k(X) =$ k-cochains = skew-symmetric maps from the set of ordered k-simplices to \mathbb{R}.

(E.g. $\phi([v_1, v_2, v_3]) = \phi([v_3, v_1, v_2]) = -\phi([v_1, v_3, v_2])$)

For $\sigma \in X(k + 1)$, $\tau \in \sigma(k)$ ordered simplices:
Let $\{v\} = \sigma \setminus \tau$.

$(\sigma : \tau) =$ sign of permutation mapping σ to $v\tau$.

Simplicial Cohomology

X a simplicial complex on vertex set V.
$X(k) = k$-dimensional simplices.
$C^k(X) = k$-cochains = skew-symmetric maps from the set of ordered k-simplices to \mathbb{R}.

(E.g. $\phi([v_1, v_2, v_3]) = \phi([v_3, v_1, v_2]) = -\phi([v_1, v_3, v_2])$)

For $\sigma \in X(k + 1)$, $\tau \in \sigma(k)$ ordered simplices:
Let $\{v\} = \sigma \setminus \tau$.

$$(\sigma : \tau) = \text{sign of permutation mapping } \sigma \text{ to } v\tau.$$ (E.g. $([v_1, v_2, v_3] : [v_3, v_1]) = \text{sign}(123) = 1$).
Simplicial Cohomology

Let X be a simplicial complex on vertex set V.

$X(k)$ are k-dimensional simplices.

$C^k(X) = k$-cochains = skew-symmetric maps from the set of ordered k-simplices to \mathbb{R}.

(E.g. $\phi([v_1, v_2, v_3]) = \phi([v_3, v_1, v_2]) = -\phi([v_1, v_3, v_2])$)

For $\sigma \in X(k + 1)$, $\tau \in \sigma(k)$ ordered simplices:

Let $\{v\} = \sigma \setminus \tau$.

$$(\sigma : \tau) = \text{sign of permutation mapping } \sigma \text{ to } v\tau.$$

(E.g. $([v_1, v_2, v_3] : [v_3, v_1]) = \text{sign}(\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}) = 1$).

The **Coboundary Operator** $d_k : C^k(X) \to C^{k+1}(X)$ is given by

$$d_k \phi(\sigma) = \sum_{\tau \in \sigma(k)} (\sigma : \tau) \phi(\tau).$$
Simplicial Cohomology

\[Z^k(X) = k\text{-cocycles} = \text{Ker}(d_k). \]
\[B^k(X) = k\text{-coboundaries} = \text{Im}(d_{k-1}). \]

\(k \)-th reduced cohomology group of \(X \):

\[\tilde{H}^k(X; \mathbb{R}) = Z^k(X)/B^k(X). \]
Simplicial Cohomology

\[Z^k(X) = k\text{-cocycles} = \text{Ker}(d_k). \]
\[B^k(X) = k\text{-coboundaries} = \text{Im}(d_{k-1}). \]

\(k \)-th reduced cohomology group of \(X \):

\[\tilde{H}^k(X; \mathbb{R}) = Z^k(X)/B^k(X). \]

Inner product on \(C^k(X) \):

\[\langle \phi, \psi \rangle = \sum_{\sigma \in X(k)} \phi(\sigma)\psi(\sigma). \]
Simplicial Cohomology

\[Z^k(X) = \text{\(k\)-cocycles} = \text{Ker}(d_k). \]
\[B^k(X) = \text{\(k\)-coboundaries} = \text{Im}(d_{k-1}). \]
\[k\text{-th reduced cohomology group of } X: \]
\[\tilde{H}^k(X; \mathbb{R}) = \frac{Z^k(X)}{B^k(X)}. \]

Inner product on \(C^k(X) \):
\[\langle \phi, \psi \rangle = \sum_{\sigma \in X(k)} \phi(\sigma)\psi(\sigma). \]

Adjoint of coboundary operator: \(d_k^* : C^{k+1}(X) \to C^k(X) \)
\[\langle d_k \phi, \psi \rangle = \langle \phi, d_k^* \psi \rangle. \]
Higher Laplacians

\[
C^{k-1}(X) \xrightarrow{d_{k-1}} C^k(X) \xrightarrow{d_k} C^{k+1}(X)
\]

The reduced \textit{k-Laplacian} of \(X\) is the positive semidefinite operator

\[
L_k = d_{k-1}d^*_{k-1} + d^*kd_k : C^k(X) \to C^k(X).
\]
Higher Laplacians

\[C^{k-1}(X) \xrightarrow{d_{k-1}} C^k(X) \xleftarrow{d^*_k} C^{k+1}(X) \]

The reduced \(k \)-Laplacian of \(X \) is the positive semidefinite operator

\[L_k = d_{k-1}d^*_{k-1} + d^*_kd_k : C^k(X) \to C^k(X). \]

Matrix form of the \(k \)-Laplacian

\[L_k(\sigma, \tau) = \begin{cases} \deg(\sigma) + k + 1 & \text{if } \sigma = \tau, \\ (\sigma : \sigma \cap \tau)(\tau : \sigma \cap \tau) & \text{if } |\sigma \cap \tau| = k, \sigma \cup \tau \not\in X, \\ 0 & \text{otherwise.} \end{cases} \]
Higher Laplacians

Example

$$X = \text{boundary of a tetrahedron.}$$
Higher Laplacians

Example

\[X = \text{boundary of a tetrahedron}. \]

\[
L_1(X) = \begin{pmatrix}
4 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 4
\end{pmatrix}
\]
Higher Laplacians

Example

\[X = \text{boundary of a tetrahedron.} \]

\[L_1(X) = \begin{pmatrix}
4 & 0 & 0 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 & 0 & 0 \\
0 & 0 & 4 & 0 & 0 & 0 \\
0 & 0 & 0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 4 \\
\end{pmatrix} \]

\[L_2(X) = \begin{pmatrix}
3 & 1 & -1 & 1 \\
1 & 3 & 1 & -1 \\
-1 & 1 & 3 & 1 \\
1 & -1 & 1 & 3 \\
\end{pmatrix} \]
Higher Laplacians

\[\mu_k(X) = k\text{-th spectral gap of } X = \text{minimal eigenvalue of } L_k(X). \]
Higher Laplacians

\[\mu_k(X) = k\text{-th spectral gap of } X = \text{minimal eigenvalue of } L_k(X). \]

Relation with the graph Laplacian
Let \(G \) = 1-skeleton of \(X \). Then

\[L_0(X) = L_G + J, \]

\[\mu_0(X) = \lambda_2(G). \]
Higher Laplacians

\(\mu_k(X) = k\)-th spectral gap of \(X \) = minimal eigenvalue of \(L_k(X) \).

Relation with the graph Laplacian
Let \(G \) = 1-skeleton of \(X \). Then

\[
L_0(X) = L_G + J,
\]

\[
\mu_0(X) = \lambda_2(G).
\]

Simplicial Hodge Theorem

\[
\operatorname{Ker}(L_k) \cong \tilde{H}^k(X; \mathbb{R}).
\]

In particular:

\[
\mu_k > 0 \iff \tilde{H}^k(X; \mathbb{R}) = 0.
\]
Flag Complexes

The flag complex (or clique complex) $X(G)$ of graph $G = (V, E)$:
Vertex set: V, Simplices: all cliques of G.
Flag Complexes

The flag complex (or clique complex) $X(G)$ of graph $G = (V, E)$:
Vertex set: V, Simplices: all cliques of G.

Example

$$G = \begin{array}{c}
\begin{tikzpicture}
 \draw (0,0) -- (1,1) -- (2,0) -- (0,0);
 \draw (0,0) -- (0,1) -- (1,1) -- (0,0);
 \draw (1,1) -- (2,0) -- (1,1);
\end{tikzpicture}
\end{array}$$ $$X(G) = \begin{array}{c}
\begin{tikzpicture}
 \draw (0,0) -- (1,1) -- (2,0) -- (0,0);
 \draw (0,0) -- (0,1) -- (1,1) -- (0,0);
 \draw (1,1) -- (2,0) -- (1,1);
 \filldraw[blue] (0,0) circle (2pt);
 \filldraw[blue] (1,1) circle (2pt);
 \filldraw[blue] (2,0) circle (2pt);
\end{tikzpicture}
\end{array}$$
Spectral Gaps of Flag Complexes

\[G = (V, E) \text{ a graph with } |V| = n. \text{ Let } X = X(G). \]

Theorem [Aharoni-Berger-Meshulam]:

For \(k \geq 1 \)

\[k \mu_k(X) \geq (k + 1) \mu_{k-1}(X) - n. \]

In particular

\[\mu_k(X) \geq (k + 1) \lambda_2(G) - kn. \]
Spectral Gaps of Flag Complexes

\[G = (V, E) \text{ a graph with } |V| = n. \text{ Let } X = X(G). \]

Theorem [Aharoni-Berger-Meshulam]:

For \(k \geq 1 \)

\[k\mu_k(X) \geq (k + 1)\mu_{k-1}(X) - n. \]

In particular

\[\mu_k(X) \geq (k + 1)\lambda_2(G) - kn. \]

Corollary:

\[\lambda_2(G) > \frac{kn}{k + 1} \implies \mu_k(X) > 0 \implies \tilde{H}^k(X; \mathbb{R}) = 0. \]
Extremal Example [Aharoni-Berger-Meshulam]:
Let $n = r\ell$ and let G be the Turán graph $T(n, r)$, i.e. the complete r-partite graph.

$G = \begin{array}{c}
a_1 \\
b_1 \\
a_2 \\
b_2 \\
a_3 \\
b_3 \\
\end{array}$

$X(G) = \begin{array}{c}
a_1 \\
a_2 \\
a_3 \\
b_1 \\
b_2 \\
b_3 \\
\end{array}$
Spectral Gaps of Flag Complexes

Extremal Example [Aharoni-Berger-Meshulam]:

Let \(n = r\ell \) and let \(G \) be the Turán graph \(T(n, r) \), i.e. the complete \(r \)-partite graph.

\[
\lambda_2(G) = \ell(r - 1) = \frac{r-1}{r} n, \text{ but } \tilde{H}^{r-1}(X(G); \mathbb{R}) \neq 0.
\]
Generalized Flag Complexes

Missing Faces

X a simplicial complex on vertex set V.

$\tau \subset V$ is a missing face of X if $\tau \not\in X$ but $\eta \in X$ for all $\eta \subset \tau$.

$h(X) = \max \{ \dim(\tau) : \tau \text{ is a missing face of } X \}$.

Example

The missing faces: $\{v_1, v_2, v_3\}, \{v_1, v_4\}$

X is a flag complex $\iff h(X) = 1$ (missing faces = edges of the complement of G).
Generalized Flag Complexes

Missing Faces

X a simplicial complex on vertex set V.
$\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\eta \in X$ for all $\eta \subset \tau$.
$h(X) = \max\{\dim(\tau) : \tau \text{ is a missing face of } X\}$.

Example
Generalized Flag Complexes

Missing Faces

X a simplicial complex on vertex set V.

$\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\eta \in X$ for all $\eta \subsetneq \tau$.

$h(X) = \max\{\dim(\tau) : \tau \text{ is a missing face of } X\}$.

Example

The missing faces:

$\{v_1, v_2, v_3\}$, $\{v_1, v_4\}$
Generalized Flag Complexes

Missing Faces

X a simplicial complex on vertex set V.

$\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\eta \in X$ for all $\eta \subset \tau$.

\[h(X) = \max \{ \dim(\tau) : \tau \text{ is a missing face of } X \} \]

Example

X is a flag complex $\iff h(X) = 1$

(missing faces $=$ edges of the complement of G)
Spectral Gaps of Generalized Flag Complexes

X a simplicial complex on vertex set V, $|V| = n$, with $h(X) = d$.

Theorem:
For $k \geq d$

$$(k - d + 1)\mu_k(X) \geq (k + 1)\mu_{k-1}(X) - dn.$$
Spectral Gaps of Generalized Flag Complexes

X a simplicial complex on vertex set V, $|V| = n$, with $h(X) = d$.

Theorem:
For $k \geq d$

$$(k - d + 1)\mu_k(X) \geq (k + 1)\mu_{k-1}(X) - dn.$$

In particular

$$\mu_k(X) \geq \binom{k+1}{d}\mu_{d-1}(X) - \left(\binom{k+1}{d} - 1\right)n.$$
Spectral Gaps of Generalized Flag Complexes

X a simplicial complex on vertex set V, $|V| = n$, with $h(X) = d$.

Theorem:
For $k \geq d$

$$(k - d + 1)\mu_k(X) \geq (k + 1)\mu_{k-1}(X) - dn.$$

In particular

$$\mu_k(X) \geq \binom{k+1}{d} \mu_{d-1}(X) - \left(\binom{k+1}{d} - 1 \right) n.$$

Corollary:
$\mu_{d-1}(X) > \left(1 - \binom{k+1}{d}^{-1} \right) n \implies \mu_k(X) > 0 \implies \tilde{H}^k(X; \mathbb{R}) = 0.$
Extremal Examples

Let \(d = 2 \). Then

\[
\mu_1(X) > \left(1 - \left(\frac{k + 1}{2}\right)^{-1}\right)n \iff \tilde{H}^k(X; \mathbb{R}) = 0.
\]
Extremal Examples

Let $d = 2$. Then

$$
\mu_1(X) > \left(1 - \left(\frac{k + 1}{2}\right)^{-1}\right) n \implies \tilde{H}^k(X; \mathbb{R}) = 0.
$$

Let X be the complex whose missing faces are the lines of the affine plane over \mathbb{F}_3:

![Diagram of a complex with missing faces labeled as lines in the affine plane over F3]
Extremal Examples

Let $d = 2$. Then

$$
\mu_1(X) > \left(1 - \left(\frac{k + 1}{2}\right)^{-1}\right)n \implies \tilde{H}^k(X; \mathbb{R}) = 0.
$$

Let X be the complex whose missing faces are the lines of the affine plane over \mathbb{F}_3:

$$
\mu_1(X) = 6 = \left(1 - \left(\frac{2+1}{2}\right)^{-1}\right)n, \text{ but } \tilde{H}^2(X; \mathbb{R}) = \mathbb{R} \neq 0.
$$
Extremal Examples

Let $d = 2$. Then

$$\mu_1(X) > \left(1 - \left(\frac{k + 1}{2}\right)^{-1}\right)n \implies \tilde{H}^k(X; \mathbb{R}) = 0.$$

Let X be the complex whose missing faces are the lines of the affine plane over \mathbb{F}_3:

$$\mu_1(X) = 6 = \left(1 - \left(\frac{2+1}{2}\right)^{-1}\right)n,$$

but $\tilde{H}^2(X; \mathbb{R}) = \mathbb{R} \neq 0$.

Several more examples for $d = 2$ and $k \leq 4$, all arising from finite geometries.
Homological Connectivity

The homological connectivity of a complex X:

$$\eta(X) = \min\{i : \tilde{H}^i(X) \neq 0\} + 1.$$
Homological Connectivity

The homological connectivity of a complex X:

$$\eta(X) = \min\{i : \tilde{H}^i(X) \neq 0\} + 1.$$

Examples
Homological Connectivity

The homological connectivity of a complex X:

$$\eta(X) = \min\{i : \tilde{H}^i(X) \neq 0\} + 1.$$

Examples

$$\eta(X) = 2$$
Homological Connectivity

The homological connectivity of a complex X:

$$\eta(X) = \min\{i : \tilde{H}^i(X) \neq 0\} + 1.$$

Examples

$\eta(X) = 2$
Homological Connectivity

The homological connectivity of a complex X:

$$\eta(X) = \min \{ i : \tilde{H}^i(X) \neq 0 \} + 1.$$

Examples

$\eta(X) = 2$

$\eta(X) = \infty$
Connectivity of Independence Complexes

Let $G = (V, E)$ be a graph. The Independence Complex: $I(G) = X(\bar{G})$.

$\eta(I(G))$ can be bounded by different "domination parameters" of the graph G. For example: A subset $S \subseteq V$ is totally dominating if every vertex $v \in V$ has a neighbor in S. Let $\bar{\gamma}(G)$ be the minimal size of a totally dominating set.

Theorem [Aharoni-Chudnovsky, Meshulam]: $\eta(I(G)) \geq \bar{\gamma}(G)/2$.

Connectivity of Independence Complexes

Let $G = (V, E)$ be a graph.
The **Independence Complex**: $I(G) = X(\bar{G})$.
Vertices $= V$, Simplices $= \text{all independent sets of } G$.

$\eta(I(G))$ can be bounded by different "domination parameters" of the graph G.
For example: A subset $S \subset V$ is totally dominating if every vertex $v \in V$ has a neighbor in S.
Let $\tilde{\gamma}(G)$ be the minimal size of a totally dominating set.
Theorem [Aharoni-Chudnovsky, Meshulam]
$\eta(I(G)) \geq \frac{\tilde{\gamma}(G)}{2}$.

15 / 32
Connectivity of Independence Complexes

Let $G = (V, E)$ be a graph.
The Independence Complex: $I(G) = X(\bar{G})$.
Vertices $= V$, Simplices $= \text{all independent sets of } G$.

$\eta(I(G))$ can be bounded by different “domination parameters” of the graph G.
For example: A subset $S \subset V$ is totally dominating if every vertex $v \in V$ has a neighbor in S. Let $\tilde{\gamma}(G)$ be the minimal size of a totally dominating set.
Connectivity of Independence Complexes

Let $G = (V, E)$ be a graph.
The **Independence Complex**: $I(G) = X(\bar{G})$.
Vertices = V, Simplices = all independent sets of G.

$\eta(I(G))$ can be bounded by different “domination parameters” of the graph G.
For example: A subset $S \subseteq V$ is totally dominating if every vertex $v \in V$ has a neighbor in S. Let $\tilde{\gamma}(G)$ be the minimal size of a totally dominating set.

Theorem[Aharoni-Chudnovsky,Meshulam]

$$\eta(I(G)) \geq \frac{\tilde{\gamma}(G)}{2}.$$
Connectivity of Independence Complexes

Let $G = (V, E)$ be a graph.

The Independence Complex: $I(G) = X(\bar{G})$.

Vertices $= V$, Simplices $= \text{all independent sets of } G$.

$\eta(I(G))$ can be bounded by different “domination parameters” of the graph G.

For example: A subset $S \subset V$ is totally dominating if every vertex $v \in V$ has a neighbor in S. Let $\tilde{\gamma}(G)$ be the minimal size of a totally dominating set.

Theorem [Aharoni-Chudnovsky, Meshulam]

$$\eta(I(G)) \geq \tilde{\gamma}(G)/2.$$
Connectivity of Independence Complexes

Example

\[\tilde{\gamma}(G) = 4 \]

\[\eta(I(G)) = 2 = \tilde{\gamma}(G) / 2 \]

\[G = \]

\[I(G) = \]

\[1 \quad 2 \quad 3 \]

\[4 \quad 5 \quad 6 \]
Connectivity of Independence Complexes

Example

\[\gamma(G) = 4 \]
\[\eta(I(G)) = 2 = \frac{\gamma(G)}{2} \]
Connectivity of Independence Complexes

Example

\[\tilde{\gamma}(G) = 4 \]

\[\tilde{\gamma}(I(G)) = 2 = \frac{\tilde{\gamma}(G)}{2} \]
Connectivity of Independence Complexes

Example

\[\tilde{\gamma}(G) = 4 \]

\[\eta(I(G)) = 2 = \tilde{\gamma}(G)/2. \]
Vector Domination of a Graph

A vector representation of G:
$P : V \rightarrow \mathbb{R}^\ell$ such that for any $v, w \in V$

$$P(v) \cdot P(w) \geq \begin{cases} 1 & \text{if } \{v, w\} \in E, \\ 0 & \text{otherwise.} \end{cases}$$
A vector representation of G:

$P : V \rightarrow \mathbb{R}^\ell$ such that for any $v, w \in V$

$$P(v) \cdot P(w) \geq \begin{cases}
1 & \text{if } \{v, w\} \in E, \\
0 & \text{otherwise}.
\end{cases}$$

Identify P with an $\mathbb{R}^{|V| \times \ell}$ matrix.

A vector $0 \leq \alpha \in \mathbb{R}^V$ is dominating for P if $\alpha PP^T \geq 1$, i.e.

$$\sum_{v \in V} \alpha(v) P(v) \cdot P(u) \geq 1$$

for all $u \in V$.
Vector Domination of a Graph

The value of P:

$$|P| = \min\{\alpha \cdot 1 : \alpha \text{ is dominating}\}$$

$$= \max\{\alpha \cdot 1 : \alpha \geq 0, \alpha PP^T \leq 1\}.$$

Define $\Gamma(G)$ to be the supremum of $|P|$ over all vector representations of G.
Vector Domination of a Graph

The value of P:

$$|P| = \min \{ \alpha \cdot 1 : \alpha \text{ is dominating} \} = \max \{ \alpha \cdot 1 : \alpha \geq 0, \alpha PP^T \leq 1 \}.$$

Define $\Gamma(G)$ to be the supremum of $|P|$ over all vector representations of G.

Theorem [Aharoni-Berger-Meshulam]:

$$\eta(I(G)) \geq \Gamma(G).$$
Vector Domination of a Simplicial Complex

Let X be a simplicial complex on vertex set V.
$\mathcal{M}(k) =$ missing faces of dimension k of X.
$J = \{ k \in \mathbb{N} : \mathcal{M}(k) \neq \emptyset \}$.
$S(X) = \bigcup_{k \in J} \binom{V}{k-1}$.
Vector Domination of a Simplicial Complex

Let X be a simplicial complex on vertex set V.

$\mathcal{M}(k) =$ missing faces of dimension k of X.

$J = \{ k \in \mathbb{N} : \mathcal{M}(k) \neq \emptyset \}$.

$S(X) = \bigcup_{k \in J} \binom{V}{k-1}$.

Example

If X is a clique complex: $J = \{1\}$, $S(X) = \{\emptyset\}$.
Vector Domination of a Simplicial Complex

Let X be a simplicial complex on vertex set V.

$M(k) =$ missing faces of dimension k of X.

$J = \{k \in \mathbb{N} : M(k) \neq \emptyset\}$.

$S(X) = \bigcup_{k \in J} \binom{V}{k-1}$.

Example

If X is a clique complex: $J = \{1\}$, $S(X) = \{\emptyset\}$.

For each $\sigma \in S(X)$ fix $\ell = \ell(\sigma)$.

A vector representation of X with respect to σ: $P_\sigma : V \rightarrow \mathbb{R}^\ell$, such that

$$P_\sigma(v) \cdot P_\sigma(w) \geq \begin{cases} 1 & \text{if } vw\sigma \in M(|\sigma| + 1), \\ 0 & \text{otherwise}. \end{cases}$$
Vector Domination of a Simplicial Complex

Let X be a simplicial complex on vertex set V.
$M(k) =$ missing faces of dimension k of X.
$J = \{k \in \mathbb{N} : M(k) \neq \emptyset\}$.
$S(X) = \bigcup_{k \in J} \binom{V}{k-1}$.

Example
If X is a clique complex: $J = \{1\}$, $S(X) = \{\emptyset\}$.

For each $\sigma \in S(X)$ fix $\ell = \ell(\sigma)$.
A vector representation of X with respect to σ: $P_\sigma : V \rightarrow \mathbb{R}^\ell$, such that

$$P_\sigma(v) \cdot P_\sigma(w) \geq \begin{cases} 1 & \text{if } vw\sigma \in M(|\sigma| + 1), \\ 0 & \text{otherwise}. \end{cases}$$

$P = \{P_\sigma : \sigma \in S(X)\}$ is called a vector representation of X.
The value of P:

$$|P| = \max\{\alpha \cdot \mathbf{1} : \alpha \geq 0, \alpha P_{\sigma} P_{\sigma}^T \leq \mathbf{1} \ \forall \sigma \in S(X)\}.$$

Define $\Gamma(X)$ to be the supremum of $|P|$ over all vector representations of X.

Remark: For a graph G, we have $\Gamma(G) = \Gamma(I(G))$.

Theorem:

$$\sum_{k \in J} k(\eta(X)k) \geq \Gamma(X).$$
Vector Domination of a Simplicial Complex

The value of P:

$$|P| = \max\{\alpha \cdot 1 : \alpha \geq 0, \alpha P_\sigma P_\sigma^T \leq 1 \ \forall \sigma \in S(X)\}.$$

Define $\Gamma(X)$ to be the supremum of $|P|$ over all vector representations of X.

Remark

For a graph G we have $\Gamma(G) = \Gamma(I(G))$.

Vector Domination of a Simplicial Complex

The value of P:

$$|P| = \max\{\alpha \cdot 1 : \alpha \geq 0, \alpha P_\sigma P_\sigma^T \leq 1 \ \forall \sigma \in S(X)\}.$$

Define $\Gamma(X)$ to be the supremum of $|P|$ over all vector representations of X.

Remark
For a graph G we have $\Gamma(G) = \Gamma(I(G))$.

Theorem:

$$\sum_{k \in J} k \binom{\eta(X)}{k} \geq \Gamma(X).$$
Colorful Simplices

Let V_1, \ldots, V_m be a partition of V. A simplex $\sigma \in X$ is **colorful** if $|\sigma \cap V_i| = 1$ for all $i = 1, \ldots, m$.

Theorem [Aharoni-Haxell, Meshulam]:

If for all $\emptyset \neq I \subset \{1, 2, \ldots, m\}$

$$\eta(X[\cup_{i \in I} V_i]) \geq |I|,$$

then X contains a colorful simplex.
Colorful Simplices

Let V_1, \ldots, V_m be a partition of V. A simplex $\sigma \in X$ is colorful if $|\sigma \cap V_i| = 1$ for all $i = 1, \ldots, m$.

Theorem [Aharoni-Haxell, Meshulam]:
If for all $\emptyset \neq I \subset \{1, 2, \ldots, m\}$

$$\eta(X[\cup_{i \in I} V_i]) \geq |I|,$$

then X contains a colorful simplex.

We obtain:

Theorem:
If for all $\emptyset \neq I \subset \{1, 2, \ldots, m\}$

$$\Gamma(X[\cup_{i \in I} V_i]) > \sum_{k \in J} k\binom{|I| - 1}{k},$$

then X contains a colorful simplex.
General Position in \mathbb{R}^d

A set $S \subset \mathbb{R}^d$ is in general position if any k-dimensional flat contains at most $k + 1$ points of S (for $k \leq d - 1$).
General Position in \mathbb{R}^d

A set $S \subset \mathbb{R}^d$ is in general position if any k-dimensional flat contains at most $k + 1$ points of S (for $k \leq d - 1$). Equivalently, S is in general position if any $S' \subset S$ with $|S'| \leq d + 1$ is affinely independent.
General Position in \mathbb{R}^d

A set $S \subset \mathbb{R}^d$ is in general position if any k-dimensional flat contains at most $k + 1$ points of S (for $k \leq d - 1$). Equivalently, S is in general position if any $S' \subset S$ with $|S'| \leq d + 1$ is affinely independent.

For $S \subset \mathbb{R}^d$, let

$$\varphi(S) = \text{maximal size of a subset of } S \text{ in general position.}$$
General Position in \mathbb{R}^d

A set $S \subset \mathbb{R}^d$ is in general position if any k-dimensional flat contains at most $k + 1$ points of S (for $k \leq d - 1$).

Equivalently, S is in general position if any $S' \subset S$ with $|S'| \leq d + 1$ is affinely independent.

For $S \subset \mathbb{R}^d$, let

$$\varphi(S) = \text{maximal size of a subset of } S \text{ in general position}.$$

Example

In \mathbb{R}^2:
General Position in \mathbb{R}^d

A set $S \subset \mathbb{R}^d$ is in **general position** if any k-dimensional flat contains at most $k + 1$ points of S (for $k \leq d - 1$). Equivalently, S is in general position if any $S' \subset S$ with $|S'| \leq d + 1$ is affinely independent.

For $S \subset \mathbb{R}^d$, let

$$\varphi(S) = \text{maximal size of a subset of } S \text{ in general position}.$$

Example

In \mathbb{R}^2:
Colorful sets
Let $V \subset \mathbb{R}^d$ a finite set. V_1, V_2, \ldots, V_m a partition of V. A set $S \subset V$ is colorful if $|S \cap V_i| = 1$ for $i = 1, \ldots, m$.
Hall-type Theorem for General Position

Colorful sets
Let $V \subset \mathbb{R}^d$ a finite set. V_1, V_2, \ldots, V_m a partition of V. A set $S \subset V$ is colorful if $|S \cap V_i| = 1$ for $i = 1, \ldots, m$.

Theorem [Holmsen-Martínez Sandoval-Montejano]: If for every $\emptyset \neq I \subset \{1, 2, \ldots, m\}$

$$\varphi(\bigcup_{i \in I} V_i) > \begin{cases} |I| - 1 & \text{if } |I| \leq d + 1, \\ d\left(\frac{2|I| - 2}{d}\right) & \text{if } |I| \geq d + 2, \end{cases}$$

then V has a colorful subset in general position.
Fractional General Position

\[\text{span}(S) = \text{Affine span of } S. \]
Fractional General Position

\[\text{span}(S) = \text{Affine span of } S. \]

\(S \subset \mathbb{R}^d \) a finite set. A weight function \(f : S \to \mathbb{R}_{\geq 0} \) is in fractional general position if for every \(0 \leq k \leq d - 1 \), \(k \)-dimensional flat \(F \) and \(\sigma \subset F \cap S \) of size \(k \)

\[
\sum_{\substack{\nu \in S, \\ \text{span}(\nu \sigma) = F}} f(\nu) \leq d.
\]
Fractional General Position

\[\text{span}(S) = \text{Affine span of } S. \]

\(S \subset \mathbb{R}^d \) a finite set. A weight function \(f : S \rightarrow \mathbb{R}_{\geq 0} \) is in fractional general position if for every \(0 \leq k \leq d - 1 \), \(k \)-dimensional flat \(F \) and \(\sigma \subset F \cap S \) of size \(k \)

\[
\sum_{\substack{v \in S, \\ \text{span}(v\sigma) = F}} f(v) \leq d.
\]

\(\varphi^*(S) = \text{maximum of } \sum_{v \in S} f(v) \) over all functions in fractional general position.
Fractional General Position

$\text{span}(S) =$ Affine span of S.

$S \subset \mathbb{R}^d$ a finite set. A weight function $f : S \to \mathbb{R}_{\geq 0}$ is in fractional general position if for every $0 \leq k \leq d - 1$, k-dimensional flat F and $\sigma \subset F \cap S$ of size k

$$\sum_{v \in S, \text{span}(v\sigma)=F} f(v) \leq d.$$

$\varphi^*(S) =$ maximum of $\sum_{v \in S} f(v)$ over all functions in fractional general position.

$\varphi^*(S) \geq \varphi(S)$ (the characteristic function of any subset of S in general position is in fractional general position).
Examples

In \mathbb{R}^2:

\[\phi = 2 \phi^* = 5 \cdot 1.2 = 2.12 \]

\[\phi = 5 \phi^* = 9 \cdot 1 = 9 \]
Examples

In \mathbb{R}^2:

$\varphi = 2$

$\varphi^* = 5 \cdot \frac{1}{2} = 2 \frac{1}{2}$

$\varphi^* = 9 \cdot \frac{1}{2} = 9 \frac{1}{2}$
Examples

In \mathbb{R}^2:

\[\varphi = 2 \]
\[\varphi^* = 5 \cdot \frac{1}{2} = 2\frac{1}{2} \]
Examples

In \mathbb{R}^2:

$\varphi = 2$

$\varphi^* = 5 \cdot \frac{1}{2} = 2 \frac{1}{2}$
Examples

In \mathbb{R}^2:

\[
\varphi = 2
\]
\[
\varphi^* = 5 \cdot \frac{1}{2} = 2\frac{1}{2}
\]

\[
\varphi = 5
\]
Examples

In \mathbb{R}^2:

\begin{align*}
\varphi &= 2 \\
\varphi^* &= 5 \cdot \frac{1}{2} = 2 \frac{1}{2}
\end{align*}

\begin{align*}
\varphi &= 5 \\
\varphi^* &= 9 \cdot 1 = 9
\end{align*}
Fractional Hall-type Theorem for General Position

Theorem:
If for every $\emptyset \neq I \subset \{1, 2, \ldots, m\}$

$$\varphi^*(\bigcup_{i \in I} V_i) > d \sum_{r=1}^{d} r \binom{|I| - 1}{r},$$

then V has a colorful subset in general position.
Fractional Hall-type Theorem for General Position

Theorem:
If for every $\emptyset \neq I \subset \{1, 2, \ldots, m\}$

$$\varphi^*(\bigcup_{i \in I} V_i) > d \sum_{r=1}^{d} r \left(\frac{|I| - 1}{r} \right),$$

then V has a colorful subset in general position.

As a consequence we obtain:

Theorem:
If for every $\emptyset \neq I \subset \{1, 2, \ldots, m\}$

$$\varphi(\bigcup_{i \in I} V_i) > \begin{cases} |I| - 1 & \text{if } |I| \leq d + 1, \\ d \sum_{r=1}^{d} r \left(\frac{|I| - 1}{r} \right) & \text{if } |I| \geq d + 2, \end{cases}$$

then V has a colorful subset in general position.
Sketch of Proof

For V be a finite set of points in \mathbb{R}^d, build a simplicial complex X:
Vertex set: V, Simplices: all subsets $S \subset V$ in general position.
Sketch of Proof

For V be a finite set of points in \mathbb{R}^d, build a simplicial complex X:
Vertex set: V, Simplices: all subsets $S \subseteq V$ in general position.

Missing faces of X: $S \subseteq V$, $|S| \leq d + 1$, such that S is affinely dependent but any $|S| - 1$ points in S are independent.
Sketch of Proof

For V be a finite set of points in \mathbb{R}^d, build a simplicial complex X: Vertex set: V, Simplices: all subsets $S \subset V$ in general position. **Missing faces of X:** $S \subset V$, $|S| \leq d + 1$, such that S is affinely dependent but any $|S| - 1$ points in S are independent.

Example
Sketch of Proof

Vector Representation of X:

Let $1 \leq k \leq d$. Let \mathcal{F}_k be the set of $(k-1)$-dimensional flats spanned by points in V.

For $\sigma \subset V$, $|\sigma| = k - 1$, define $P_{\sigma} : V \rightarrow \mathbb{R}^{\mathcal{F}_k}$ by

$$P_{\sigma}(v)(F) = \begin{cases} 1 & \text{if span}(v\sigma) = F, \\ 0 & \text{otherwise}. \end{cases}$$
Sketch of Proof

Vector Representation of X:

Let $1 \leq k \leq d$. Let \mathcal{F}_k be the set of $(k - 1)$-dimensional flats spanned by points in V.

For $\sigma \subset V$, $|\sigma| = k - 1$, define $P_\sigma : V \rightarrow \mathbb{R}^{\mathcal{F}_k}$ by

$$P_\sigma(v)(F) = \begin{cases} 1 & \text{if } \text{span}(v\sigma) = F, \\ 0 & \text{otherwise}. \end{cases}$$

If $vw\sigma$ is a missing face of X, then it is contained in a $(k - 1)$-dimensional flat F, spanned by any k points in $vw\sigma$. So $\text{span}(v\sigma) = \text{span}(w\sigma) = F$, therefore $P_\sigma(v) \cdot P_\sigma(w) = 1$.
Sketch of Proof

Vector Representation of X:

Let $1 \leq k \leq d$. Let F_k be the set of $(k-1)$-dimensional flats spanned by points in V.

For $\sigma \subset V$, $|\sigma| = k - 1$, define $P_\sigma : V \to \mathbb{R}^{F_k}$ by

$$P_\sigma(v)(F) = \begin{cases} 1 & \text{if } \text{span}(v\sigma) = F, \\ 0 & \text{otherwise.} \end{cases}$$

If $vw\sigma$ is a missing face of X, then it is contained in a $(k-1)$-dimensional flat F, spanned by any k points in $vw\sigma$. So $\text{span}(v\sigma) = \text{span}(w\sigma) = F$, therefore $P_\sigma(v) \cdot P_\sigma(w) = 1$.

If $f : V \to \mathbb{R}$ is in fractional general position, then $\alpha(v) = f(v)/d$ satisfies $\alpha P_\sigma P_\sigma^T \leq 1$ for all $\sigma \in S(X)$. So

$$\Gamma(X) \geq |P| \geq \varphi^*(V)/d.$$
X a simplicial complex on vertex set V, $|V| = n$, with $h(X) = d$.
Let $k \geq 0$.
$\delta_k(X) = \text{minimal degree of a simplex in } X(k)$.

Theorem:

$\mu_k(X) \geq (d + 1)(\delta_k(X) + k + 1) - dn$.

As a consequence:

Theorem [Adamaszek]:
$\tilde{H}_k(X; \mathbb{R}) = 0$ for all $k > \frac{d^2 + 1}{dn - 1}$.

X a simplicial complex on vertex set V, $|V| = n$, with $h(X) = d$.
Let $k \geq 0$.
$\delta_k(X) =$ minimal degree of a simplex in $X(k)$.

Theorem:

$$\mu_k(X) \geq (d + 1)(\delta_k(X) + k + 1) - dn.$$
X a simplicial complex on vertex set V, |V| = n, with h(X) = d. Let k ≥ 0.
δ_k(X) = minimal degree of a simplex in X(k).

Theorem:

μ_k(X) ≥ (d + 1)(δ_k(X) + k + 1) − dn.

As a consequence:

Theorem[Adamaszek]:

\[\tilde{H}^k(X; \mathbb{R}) = 0 \text{ for all } k > \frac{d}{d+1} n - 1. \]
Extremal Examples

X, Y simplicial complexes on disjoint vertex sets. The join $X \ast Y = \{\sigma \cup \tau : \sigma \in X, \tau \in Y\}$.
Extremal Examples

X, Y simplicial complexes on disjoint vertex sets.
The join $X \ast Y = \{\sigma \cup \tau : \sigma \in X, \tau \in Y\}$.

$\Delta_m =$ full complex on $m + 1$ vertices.
$\Delta_m^{(m-1)} =$ $(m - 1)$-skeleton of $\Delta_m \simeq S^{m-1}$.
Extremal Examples

X, Y simplicial complexes on disjoint vertex sets.
The join $X \ast Y = \{\sigma \cup \tau : \sigma \in X, \tau \in Y\}$.

$\Delta_m =$ full complex on $m + 1$ vertices.

$\Delta_m^{(m-1)} = (m-1)$-skeleton of $\Delta_m \cong S^{m-1}$.

Define

$$X = \Delta_d^{(d-1)} \ast \Delta_d^{(d-1)} \ast \cdots \ast \Delta_d^{(d-1)} \ast \Delta_{r-1}.\tag{t times}$$

Vertices: $n = (d + 1)t + r$.

Missing faces: t disjoint d-dimensional simplices. (So $h(X) = d$).

$\dim(X) = dt + r - 1$.
Extremal Examples

X, Y simplicial complexes on disjoint vertex sets. The join $X \ast Y = \{\sigma \cup \tau : \sigma \in X, \tau \in Y\}$.

$\Delta_m =$ full complex on $m + 1$ vertices.

$\Delta_{m}^{(m-1)} =$ $(m - 1)$-skeleton of $\Delta_m \simeq S^{m-1}$.

Define

$$X = \Delta_d^{(d-1)} \ast \Delta_d^{(d-1)} \ast \cdots \ast \Delta_d^{(d-1)} \ast \Delta_{r-1}.$$

t times

Vertices: $n = (d + 1)t + r$.

Missing faces: t disjoint d-dimensional simplices. (So $h(X) = d$).

$\dim(X) = dt + r - 1$.

For all k we have

$$\mu_k(X) = (d + 1)(\delta_k(X) + k + 1) - dn.$$
Let $d = 1$, $t = 3$, $r = 3$:

$$X = \begin{array}{cccc}
\ast & \ast & \ast \\
\ast & \ast & \ast & \ast \\
\ast & \ast & \ast & \ast & \ast \\
\end{array}$$
Extremal Examples

Let $d = 1$, $t = 3$, $r = 3$:

For example for $k = 2$:

$\mu_2(X) = 3,$
$\delta_2(X) = 3.$

Indeed $\mu_2(X) = 2(\delta_2(X) + 2 + 1) - n = 12 - 9 = 3.$
For flag complexes \((h(X) = 1)\) these are the only extremal examples:

Theorem:
Let \(X\) be a flag complex on vertex set \(V, |V| = n\), such that \(\mu_k(X) = 2(k + 1) - n\) for some \(k \geq 0\). Then

\[
X \cong \Delta_1^{(0)} \ast \Delta_1^{(0)} \ast \cdots \ast \Delta_1^{(0)} \ast \Delta_2^{(k+1) - n - 1} \quad \text{(n – k – 1) times}
\]