Introduction

Let X be a simplicial complex without missing faces X = Xof dimension larger than d. Following the work of Aharoni, Berger and Meshulam, we prove lower bounds on the spectral gap of the k-Laplacian of Xin terms of the spectral gap of the (d-1)-Laplacian. As an application, we prove a Hall-type theorem for sets of points in \mathbb{R}^d .

Flag complexes:

• $\sigma \subset V$ is a **missing face** of a complex X on vertex set V if $\sigma \notin X$ but $\sigma' \in X$ for all subsets $\sigma' \subsetneq \sigma$.

•Flag complex= complex \bullet without missing faces of dimension larger than 1.

•We look at complexes without missing faces of dimension larger than d as generalized flag complexes.

Simplicial cohomology and the Laplacian

- X a finite simplicial complex.
- X(k) the simplices of dimension k.
- $C^{k}(X)$ = Real valued skew symmetric functions on the ordered k-simplices.
- The coboundary operator: $d_k : C^k(X) \to C^{k+1}(X)$.
- The k-th (reduced) real cohomology group:

$$\tilde{H}^k(X) = Ker(d_k)/Im(d_{k-1}).$$

- Inner product $(\phi, \psi) = \sum_{\sigma \in X(k)} \phi(\sigma) \psi(\sigma)$, norm $\|\phi\|^2 = (\phi, \phi)$.
- $d^*: C^{k+1}(X) \to C^k(X)$ the adjoint of d_k .

The Laplacian operator:

$$L_k(X) = d_{k-1}d_{k-1}^* + d_k^*d_k.$$

• $\mu_k(X)$ - The k-th spectral gap = the minimal eigenvalue of $L_k(X)$.

Simplicial Hodge Theorem. $Ker(L_k(X)) \cong H^k(X)$ for $k \ge 0$. Hence $\tilde{H}^k(X) = 0$ if and only if $\mu_k(X) > 0$.

Spectral gaps of generalized flag complexes

Alan Lew (Technion-Israel Institute of Technology) **Advisor: Roy Meshulam**

Inequalities for spectral gaps of complexes without large missing faces

Theorem (Aharoni–Berger–Meshulam). Let X be a flat complex on n vertices, and $k \ge 1$. Then

 $k\mu_k(X) \ge (k+1)\mu_{k-1}(X) - n.$

Corollary (Aharoni–Berger–Meshulam). If $\mu_0(X) > \frac{k}{k+1}n$, then $\tilde{H}^k(X) = 0.$

Extends to complexes without large missing faces:

Theorem. Let X be a complex on n vertices without missing faces of dimension larger than d, and $k \ge d$. Then

$$(k - d + 1)\mu_k(X) \ge (k + 1)\mu_{k-1}(X) - d \cdot n$$

Corollary. If $\mu_{d-1}(X) > \frac{\binom{k+1}{d}-1}{\binom{k+1}{d}}n$, then $\tilde{H}^k(X) = 0$.

An application: Hall type theorem for points in general position

- $\{A_1, \ldots, A_m\}$ a family of finite sets in \mathbb{R}^d .
- $A \subseteq \bigcup_{i=1}^{m} A_i$ is colorful if $|A \cap A_i| = 1$ $\forall i \in [m]$.
- $\varphi(A) = \text{size of largest subset in general position.}$

Theorem (Holmsen–Martínez-Sandoval -Montejano). Let $\{A_1, \ldots, A_m\}$ be a family of finite sets in \mathbb{R}^d . If for all $\emptyset \neq I \subseteq [m]$

$$\varphi\left(\cup_{i\in I}A_i\right) > d\binom{2|I|}{d}$$

then $\bigcup_{i=1}^{m} A_i$ has a colorful subset in general position.

Example. $A \subset \mathbb{R}^2$: •General position= no two points overlap, no three points lie in the same line. $\varphi(A) = 6, \, \varphi^*(A) = 9$

A fractional extension:

- $\varphi^*(A)$ = the maximum of $\sum_{p \in A} f(p)$ over all functions $f : A \to [0, 1]$ such that $\sum_{p \in F \setminus S} f(p) \leq \dim(F) + 1$ for every flat F spanned by points of A and set $S \subset F$ of size dim(F).
- $\varphi^*(A) \ge \varphi(A)$ (take the characteristic function of the largest set in general position).

Theorem. Let $\{A_1, \ldots, A_m\}$ be a family of finite sets in \mathbb{R}^d . If for all $\emptyset \neq I \subseteq [m]$ $\varphi^*\left(\cup_{i\in I}A_i\right) > d\sum_{k=1}^d k\binom{|I|-1}{k},$

then $\bigcup_{i=1}^{m} A_i$ has a colorful subset in general position.

Some ideas from the proof

•For $\phi \in C^k(X)$ and a vertex $u \in V$ define $\phi_u \in C^{k-1}(X)$ by

$$\phi_u(\tau) = \begin{cases} \phi(u\tau) & \text{if } u\tau \in X(k) \\ 0 & \text{otherwise} \end{cases}$$

•
$$\sum_{u \in V} \|\phi_u\|^2 = (k+1) \|\phi\|^2.$$

•For $\theta \subset V$, define: $m(\theta)$ = size of intersection of all missing faces of X contained in θ .

Key identity: for
$$\phi \in C^k(X)$$
,
 $(k-d+1)(L_k\phi,\phi) = \sum_{u \in V} (L_{k-1}\phi_u,\phi_u) - (B_k\phi)$

where $B_k: C^k(X) \to C^k(X)$ has matrix representation in the standard basis:

For d > 1, we can bound the maximal eigenvalue of B_k by:

$$(B_k)_{\sigma,\tau} = \begin{cases} \sum_{\eta \in \sigma(k-1)} \deg(\eta) - (k-d+1) \deg(\sigma) + (d-1)(k+1) & \text{if } \sigma = \\ (d+1 - m(\sigma \cup \tau)) \left[\sigma : \sigma \cap \tau\right] \cdot \left[\tau : \sigma \cap \tau\right] & \text{if } \frac{|\sigma|}{\sigma \cup \tau \notin} \\ 0 & \text{otherw} \end{cases}$$

max $\sigma \in X(k)$

for each
$$\sigma \in X(k)$$
, the expression just counts d times each ve

But in V, except those with $m(v\sigma) = 1$. So $\lambda_{\max}(B_k) \leq d \cdot n$.

Vector representation and domination

• A vector representation P of X: For each $\sigma \subset V$ and $v \in V$ assign $P_{\sigma}(v) \in \mathbb{R}^{l}$ (for some l) such that for all $w \in V$

 $P_{\sigma}(v) \cdot P_{\sigma}(w) \ge \begin{cases} 1 & \text{if } vw\sigma \text{ is a missing face of dimension } |\sigma|+1, \\ 0 & \text{otherwise.} \end{cases}$

- P_{σ} = matrix whose rows are $P_{\sigma}(v)$.
- For each σ assign $\alpha_{\sigma} \in \mathbb{R}^{V}_{+}$. $\{\alpha_{\sigma}\}_{\sigma \subset V}$ is **dominating** if

$$\sum_{\sigma \in V} \alpha_{\sigma} P_{\sigma} P_{\sigma}^T \ge 1.$$

•
$$|P| = \min \left\{ \sum_{\sigma \subset V} \sum_{v \in V} \alpha_{\sigma}(v) : \{\alpha_{\sigma}\}_{\sigma \subset V} \text{ is dominating} \right\}.$$

- $\Gamma(X)$ = supremum of |P| over all representations P of X.
- Homological connectivity $\eta(X) = \min\{i : \tilde{H}^i(X) \neq 0\} + 1.$

Theorem. Let X be a complex without missing faces of dimension larger than d, then

$$\Gamma(X) \le \sum_{k=1}^{d} k \binom{\eta(X)}{k}.$$

References

- [1] Aharoni, R., Berger, E., & Meshulam, R. (2005). Eigenvalues and homology of flag complexes and vector representations of graphs. Geometric & Functional Analysis GAFA, 15(3), 555-566.
- [2] Holmsen, A., Martinez-Sandoval, L., & Montejano, L. (2016). A geometric Hall-type theorem. Proceedings of the American Mathematical Society, 144(2), 503-511.

