RIGIDITY EXPANDER GRAPHS



RIGIDITY

A d-dimensional framework 1is a pair (G,p):

- G=(V,E) a graph



RIGIDITY

A d-dimensional framework 1is a pair (G,p):

- G=(V,E) a graph
- An embedding p: V — R¢



RIGIDITY

A d-dimensional framework 1is a pair (G,p):

.
/ N

- G=(V,E) a graph
- An embedding p: V — R¢




RIGIDITY

A d-dimensional framework 1is a pair (G,p):

- G=(V,E) a graph A

- An embedding p: V — R¢

We view the edges as

“bars” and the
vertices as “joints” /f
>

/ N




RIGIDITY

A d-dimensional framework 1is a pair (G,p):

- G=(V,E) a graph A

- An embedding p: V — R¢

We view the edges as

“bars” and the
vertices as “joints” /f
>

L




RIGIDITY

A d-dimensional framework 1is a pair (G,p):

- G=(V,E) a graph A

- An embedding p: V — R¢

We view the edges as

“bars” and the
vertices as “joints” /f
>

N e




RIGIDITY

Question: Is the structure rigid or
flexible?



RIGIDITY

Question: Is the structure rigid or
flexible?

Or: Is there a continuous motion of the
vertices that preserves the lengths of all
edges, except translations and rotations?



SOME EXAMPLES

| &7




SOME EXAMPLES

—

R

(or 2-rigid)

igid in R2

)

\/




SOME EXAMPLES

—

/Not rigid in
RS

/

\/




SOME EXAMPLES

A

/Not rigid in
RS

/

\/




INFINTTESTMAL RTGIDITY

-Let (G,p) be a d-dimensional framework.



INFINTTESTMAL RTGIDITY

-Let (G,p) be a d-dimensional framework.

—Assume p(V) s d-dimensional (in
particular, ‘V‘ =—n>d+1).



INFINTTESTMAL RTGIDITY

-Let (G,p) be a d-dimensional framework.

—Assume p(V) s d-dimensional (in
particular, ‘V‘ =—n>d+1).

For two vertices u,v, define

_ p(u)—p(v)
duy = |p(u)—p(v)|



INFINTTESTMAL RTGIDITY

-Let (G,p) be a d-dimensional framework.

—Assume p(V) s d-dimensional (in
particular, ‘V‘ =—n>d+1).

For two vertices u,v, define

d p(u)—p(v

) d
= T ] € N



INFINTTESTMAL RTGIDITY

-Let (G,p) be a d-dimensional framework.

—Assume p(V) s d-dimensional (in
particular, ‘V‘ =—n>d+1).

For two vertices u,v, define du”//
p\u)—p\v
d,, = (u)—p(v c RY

)
 lp(w)—p(w)l|
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LAMPLE: 0 e e
0 | -1 | 0
U1 1 0 0
R(G,p)= s ‘1) 8 ‘f/f
0 1 |12
U3 0 —1/v2
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A graph G 1is called d-rigid if there
exists p:V—=R* such that (G,p) is
infinitesimally rigid.

Theorem (Asimow-Roth ¢79):

|G is d-rigid | <

(G,p) 1is infinitesimally rigid
for all generic p

l

|(G,p) is rigid for all generdic p |
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O O o—o—o

R(G,p) = Incidence matrix of G
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I

Let (G,p) be a d-dimensional framework.

For d=1:

L(G7p) — R(G7p)R(G7p)T E Randn L(G,p) is the

Laplacian matrix of G.

(G,p) 1s , and rank(L(G, — rank(R(G, < dn— (31!
L(G,p PSD (L(G,p)) (R(G,p)) <dn— (%) () = al(@)

Therefore: A (L(G,p)) - A(d;1> (L(G,p)) =0 the algebraic
connectivity (a.k.a
Laplacian spectral
Spectral gap: A<d+1)—i—1 (L(G,p)) gap) of G.
2

d-dimensional algebraic connectivity of G (Jordan-Tanigawa ¢20):

aq(G) = sup {)\(dH)H(L(G,p))’p V= Rd}

2
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MOTIVATION

-We can think of this as a quantitative measure of rigidity
ad((?)2> 0 ‘<:::i> G is d-rigid

Jordan-Tanigawa (¢20):

-If ad((?):> k, then G remains d-rigid after removing any k
vertices.

-Let G be a d-rigid graph, and let ¢>1 . For any t such that

2 log ((dn— (d;rl) )c)
—= <t<1,

a random subgraph of G obtained by keeping each edge of G with
probability t is d-rigid with probability at least 1-1/c.
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SOME FACTS ABOUT D-DIMENSIONAL ALGEBRALC CONNECTIVITY
-1f G C G, then ad(G) < a,d(G’)

_What _iS ad(Kn)? a/]_ (Kn

Jordan-Tanigawa (¢20), Zhu (¢13): az(Kn) —
<

1
L-Nevo-Peled-Raz (¢22+): Ford >3 , |9 LEJ

Conjecture (L-Nevo-Peled-Raz ¢22+):

1 if d+1<n<2d,

ad(Kn):{% if 2d < n.
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A family of graphs {Gz — (V;,E) i—1 with lim; ‘V| o0
is a family of d-rigidity expander graphs if there is € > 0
such that Chj((;i) > € for all 1.

For d=1, we know there exist families of 3-regular expander
graphs (and there are no 2-regular expanders).

What happens for d>1?
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RIGIDITY EXPANDERS

Theorem (L-Nevo-Peled-Raz ¢22+):

For any d > 1, there exist families of (2d+1)-regular
d-rigidity expander graphs.

Conjecture (Jordan-Tanigawa ‘20, L-Nevo-Peled-Raz ¢22+):

For any ci;z 1, there do not exist families of 2d-regular
d-rigidity expander graphs.
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A LOWER BOUND ON D-DIMENSIONAL ALGEBRAIC CONNECTIVITY

Let G=(V,E) be a graph, and V:Al U---UAd a
non-trivial partition of its vertex set.

G[Az] — (Ai,{e clb:eC Az})
G(Ai,Aj)Z(AiLJAj,{eEE: |eﬂAi| =|6ﬂAj| 21})

Theorem (L-Nevo-Peled-Raz ¢22+):

24(G) > min ({a(GIAD}L, U {2a(G(41,4)},_,)
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LOWER BOUND FOR COMPLETE GRAPHS:

Partition vertex set into d sets of size \‘EJ or {E-‘ each.

G[Az] are complete graphs a(G|4;]) > {%J

G(AZ,A]) are complete bipartite graphs a(G(4;,A4;)) > {%J

By the theorem:

aq(Ky) > 3 L%J
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Lemma (L-Nevo-Peled-Raz ¢22+):

There is some (E::G(d)ﬁ> 0 such that for any n there
exists a graph H, on dn vertices, with exactly n vertices
of degree 3 and (d-1)n vertices of degree 2, and a(fﬂf)zfe-

Similarly, there exists a bipartite graph (;n, with dn
vertices on each side, with exactly n vertices of degree
3 and (d-1)n vertices of degree 2 on each side,

and a(G,) > €.

Proof idea: Take a 3-regular expander on n vertices,
and subdivide some of {its edges (each edge at most ~ (d—1)/3
times).
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[ONSWU(HON OF RI(JIDHY [XPANDERS (2d+1)-regular

graph on d%n
dn vertices and

ad(G’) Z %e(d)
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SOME OPEN PROBLEMS

e Prove that there are no 2d-regular d-rigidity
expanders.

e What 1s the best possible expansion constant for a
family k-regular graphs? (Alon-Boppana-type bound)

e What can we say about the d-dimensional algebraic
connectivity of minimally d-rigid graphs?

e Understand the behaviour of a'd(G) when G 1s

fixed and d varies.






