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- An embedding 
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Rigidity
Question: Is the structure rigid or 
flexible?

Or: Is there a continuous motion of the 
vertices that preserves the lengths of all 
edges, except translations and rotations?
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The 1-dimensional case
G is 1-rigid G is connected

R(G,p) =  Incidence matrix of G
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Stiffness Matrix and Algebraic connectivity
Let (G,p) be a d-dimensional framework.

L(G,p) is PSD, and 

Therefore: 

Spectral gap:

d-dimensional algebraic connectivity of G (Jordán-Tanigawa ‘20):

For d=1:

L(G,p) is the 
Laplacian matrix of G.

the algebraic 
connectivity (a.k.a 
Laplacian spectral 
gap) of G.
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Jordán-Tanigawa (‘20): 

-If            , then G remains d-rigid after removing any k 
vertices.

-Let G be a d-rigid graph, and let      . For any t such that

a random subgraph of G obtained by keeping each edge of G with 
probability t is d-rigid with probability at least 1-1/c.

Motivation
-We can think of this as a quantitative measure of rigidity

G is d-rigid
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Rigidity Expanders
Theorem (L-Nevo-Peled-Raz ‘22+):

For any       , there exist families of (2d+1)-regular 
d-rigidity expander graphs. 

Conjecture (Jordán-Tanigawa ‘20, L-Nevo-Peled-Raz ‘22+):

For any       , there do not exist families of 2d-regular 
d-rigidity expander graphs. 
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By the theorem:
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Lemma (L-Nevo-Peled-Raz ‘22+):

There is some               such that for any n there 
exists a graph    on dn vertices, with exactly n vertices 
of degree 3 and (d-1)n vertices of degree 2, and

Similarly, there exists a bipartite graph       with dn 
vertices on each side, with exactly n vertices of degree 
3 and (d-1)n vertices of degree 2 on each side,         
and 

Proof idea: Take a 3-regular expander on n vertices, 
and subdivide some of its edges (each edge at most 
times).
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Construction of Rigidity Expanders We obtain (2d+1)-regular 
graph on
vertices and 
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Some open problems
● Prove that there are no 2d-regular d-rigidity 

expanders.

● What is the best possible expansion constant for a 

family k-regular graphs? (Alon-Boppana-type bound)

● What can we say about the d-dimensional algebraic 

connectivity of minimally d-rigid graphs?

● Understand the behaviour of           when G is 

fixed and d varies.  



Thank you for 
listening!


