Complexes of graphs with bounded independence number

Minki Kim and Alan Lew

Department of Mathematics, Technion, Haifa 32000, Israel

Abstract

Let $G=(V, E)$ be a graph and n a positive integer. Let $I_{n}(G)$ be the simplicial complex whose simplices are the subsets of V that do not contain an independent set of size n in G. We study the collapsibility numbers of the complexes $I_{n}(G)$ for various classes of graphs, focusing on the class of graphs with maximum degree bounded by Δ.

d-Collapsibility

Let X be an abstract simplicial complex on vertex set V. Let $\sigma \in X$ such that $|\sigma| \leq d$ and σ is contained in a unique maximal face $\tau \in X$. The operation of removing σ and all the faces containing it from X is called an elementary d collapse. X is d-collapsible if there is a sequence of elementary d-collapses from X to the void complex \emptyset.
The collapsibility number of X, denoted by $C(X)$, is the minimal d such that X is d-collapsible.

Example.

(Click on picture for details)

Upper bounds on collapsibility numbers

For $v \in V$, let

$$
X \backslash v=\{\sigma \in X: v \notin \sigma\}, \quad \operatorname{lk}(X, v)=\{\sigma \in X: v \notin \sigma, \sigma \cup\{v\} \in X\} .
$$

Our starting point is the following basic bound, due to Tancer:
Lemma 1 (Tancer [1]). Let $v \in V$. Then,

$$
C(X) \leq \max \{C(X \backslash v), C(\operatorname{lk}(X, v))+1\}
$$

By inductive application of Lemma 1, we obtain several useful bounds on $C(X)$
(Click here for details). In particular, we obtain the following result: A missing face of X is a set $\tau \subset V$ such that $\tau \notin X$, but $\sigma \in X$ for any $\sigma \subsetneq \tau$. Proposition 2. Let X be a simplicial complex on vertex set V. If all the missing faces of X are of dimension at most d, then

$$
C(X) \leq\left\lfloor\frac{d|V|}{d+1}\right\rfloor
$$

Moreover, equality $C(X)=\frac{d|V|}{d+1}$ is obtained if and only if the set of missing faces of X consists of $\frac{|V|}{d+1}$ disjoint sets of size $d+1$.

Rainbow independent sets

Let G be a graph, and let $\mathcal{F}=\left\{A_{1}, \ldots, A_{m}\right\}$ be a family of (not necessarily distinct) independent sets in G. An independent set A of size $n \leq m$ in G is called a rainbow independent set with respect to \mathcal{F} if it can be written as $A=\left\{a_{i_{1}}, \ldots, a_{i_{n}}\right\}$, where $1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq m$ and $a_{i_{j}} \in A_{i_{j}}$ for each $1 \leq j \leq n$.
For a positive integer n, let $f_{G}(n)$ be the minimum integer t such that every family of t independent sets of size n in G has a rainbow independent set of size n.
The parameters $f_{G}(n)$ were introduced by Aharoni, Briggs, Kim and Kim in [2].

Example.

(Click on picture for details)

Let $G=(V, E)$ be a simple graph. For every integer $n \geq 1$, we define the simplicial complex
$I_{n}(G)=\{U \subset V: U$ does not contain an independent set of size n in $G\}$.
By a standard application of Kalai and Meshulam's Colorful Helly Theorem for d-collapsible complexes ($[3$, Theorem 2.1]), the following bound is obtained:
Proposition 3. $\quad f_{G}(n) \leq C\left(I_{n}(G)\right)+1$.

Main results

Our main results are the following upper bounds on the collapsibility numbers of $I_{n}(G)$, for different families of graphs:
Theorem 4. Let $G=(V, E)$ be a chordal graph. Then $C\left(I_{n}(G)\right) \leq n-1$. Moreover, if $\alpha(G) \geq n$, then $C\left(I_{n}(G)\right)=n-1$.
Proposition 5. Let G be a k-colorable graph. Then $C\left(I_{n}(G)\right) \leq k(n-1)$.
Theorem 6. Let $G=(V, E)$ be a graph with maximum degree at most Δ. Then $C\left(I_{n}(G)\right) \leq \Delta(n-1)$.
The bound in Theorem $\mathbf{6}$ is tight only for $\Delta \leq 2$. In the case $n \leq 3$ we can prove the following tight bounds, for general Δ :
Theorem 7. Let $G=(V, E)$ be a graph with maximum degree at most Δ. Then

$$
C\left(I_{2}(G)\right) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil
$$

Theorem 8. Let $G=(V, E)$ be a graph with maximum degree at most Δ. Then

$$
C\left(I_{3}(G)\right) \leq \begin{cases}\Delta+2 & \text { if } \Delta \text { is even } \\ \Delta+1 & \text { if } \Delta \text { is odd }\end{cases}
$$

Combining these bounds with Proposition 3, we recover several of the bounds for $f_{G}(n)$ first proved by Aharoni et al. in [2]. The following bound is new:
Theorem 9 (Click here for more details). Let G be a claw-free graph with maximum degree at most Δ. Then

$$
f_{G}(n) \leq\left\lfloor\left(\frac{\Delta}{2}+1\right)(n-1)\right\rfloor+1
$$

Some conjectures and a counterexample

The following conjecture was proposed in [2]:
Conjecture 10 (Aharoni, Briggs, Kim, Kim [2]). Let G be a graph with maximum degree at most Δ, and let n be a positive integer. Then

$$
f_{G}(n) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil(n-1)+1
$$

It is natural to ask whether the following extension of Conjecture 10 holds: Question 11 (Aharoni). Let G be a graph with maximum degree at most Δ, and let n be a positive integer. Does the following bound hold?

$$
C\left(I_{n}(G)\right) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil(n-1)
$$

Theorems 6,7 and 8 settle the question affirmatively in the special cases where $\Delta \leq 2$ or $n \leq 3$. Unfortunately, the bound in Question 11 does not hold in general. We found a family of counterexamples to the case $\Delta=3$. The proof is topological; it follows by bounding the Leray number, a homological variant of the collapsibility number, of our complexes.

(Click on picture for details)

References

[^0][3] Gil Kalai and Roy Meshulam. A topological colorful Helly theorem Adv. Math., 191(2):305-311, 2005.

Extra Material

Let X be the 2-dimensional complex:

X is not 1-collapsible: any vertex in X is contained in at least 2 different maximal faces. Hence, not even a single elementary 1-collapse can be performed on X.
On the other hand, X is 2-collapsible:

So, $C(X)=2$.

More upper bounds on collapsibility

First, we recall some definitions. For $U \subset V$, let

$$
X[U]=\{\sigma \in X: \sigma \subset U\} .
$$

For $\tau \in X$, let

$$
\operatorname{lk}(X, \tau)=\{\sigma \in X: \sigma \cap \tau=\emptyset, \sigma \cup \tau \in X\} .
$$

Let $v \in V$. The complex X is called a cone over the vertex v if v is contained in every maximal face of X. The following bounds are the main technical tools used for our results on the collapsibility of the complexes $I_{n}(G):$

Lemma 12: Let $\sigma=\left\{v_{1}, \ldots, v_{k}\right\} \in X$. For $0 \leq i \leq k-1$, let $\sigma_{i}=\left\{v_{j}: 1 \leq j \leq i\right\}$. Let $d \geq k$.
If for all $0 \leq i \leq k-1$,

$$
C\left(\operatorname{lk}\left(X \backslash v_{i+1}, \sigma_{i}\right)\right) \leq d-i,
$$

and

$$
C(\operatorname{lk}(X, \sigma)) \leq d-k,
$$

then $C(X) \leq d$.
Lemma 13: Let $B \subset V$, and let < be a linear order on the vertices of B. Let $\mathcal{P}=\mathcal{P}(X, B)$ be the family of partitions $\left(B_{1}, B_{2}\right)$ of B satisfying:

- $B_{2} \in X$.
- For any $v \in B_{2}$, the complex $\operatorname{lk}\left(X\left[V \backslash\left\{u \in B_{1}: u<v\right\}\right],\left\{u \in B_{2}: u<v\right\}\right)$ is not a cone over v.

If

$$
C\left(\operatorname{lk}\left(X\left[V \backslash B_{1}\right], B_{2}\right)\right) \leq d-\left|B_{2}\right|
$$

for every $\left(B_{1}, B_{2}\right) \in \mathcal{P}$, then $C(X) \leq d$.
Both bounds follow by simple inductive applications of Lemma 1

Rainbow independent sets - An example

Let $n=3$. Let G be the following graph:

Let I_{1}, I_{2}, I_{3} be the independent sets of size 3 in G :

Look at the family:

$$
\mathcal{F}=\left\{I_{1}, I_{1}, I_{2}, I_{2}, I_{3}, I_{3}\right\}
$$

\mathcal{F} does not have a rainbow independent set of size 3: Any rainbow set of \mathcal{F} contains at most 2 vertices from each color class. Hence, $f_{G}(3)>6$.
On the other hand, any collection of 7 independent sets of size 3 contains a rainbow independent set of size 3 (since any such collection must contain at least 3 copies of one of the independent sets I_{1}, I_{2}, or I_{3}). So,

$$
f_{G}(3)=7 .
$$

Back to poster 9

Rainbow independent sets in bounded degree claw-free graphs
A graph G is called claw-free if it does not contain the complete bipartite graph $K_{1,3}$ as an induced subgraph. The following is the main application of our results to the rainbow independent set problem:

Theorem 9. Let G be a claw-free graph with maximum degree at most Δ. Then

$$
f_{G}(n) \leq\left\lfloor\left(\frac{\Delta}{2}+1\right)(n-1)\right]+1
$$

The proof of Theorem 9 relies on bounding the collapsibility numbers of certain subcomplexes of $I_{n}(G)$:
Proposition 14. Let G be a claw-free graph with maximum degree at most Δ, and let $n \geq 1$ be an integer. Let A be an independent set of size $n-1$ in G. Then,

$$
C\left(\operatorname{lk}\left(I_{n}(G), A\right)\right) \leq\left\lfloor\frac{(n-1) \Delta}{2}\right\rfloor
$$

Examples in [2] show that, for even Δ, the bound in Theorem 9 is tight. Proving a tight bound for the odd Δ case, and deciding whether such bounds hold also for general bounded degree graphs, are open questions (see Conjecture 10).

Let X be a simplicial complex. For $i \geq-1$, let $\tilde{H}_{i}(X)$ be the i-th reduced homology group of X with real coefficients. We say that X is d-Leray if for any induced subcomplex Y of $X, \tilde{H}_{i}(Y)=0$ for all $i \geq d$. The Leray number of X, denoted by $L(X)$, is the minimum integer d such that X is d-Leray.
The Leray number of X is a lower bound for its collapsibility number: $C(X) \geq L(X)$.

Let G be the dodecahedral graph. We can represent G as a generalized Petersen graph, as follows:

The graph G is 3-regular (i.e. the degree of every vertex in G is 3). The maximum size of an independent set in G is 8 .

Let $n=8$. Applying standard topological tools (the Nerve Theorem and Alexander duality), we can compute the homology groups of the complex $I_{8}(G)$:
Proposition 15. Let G be the dodecahedral graph. Then,

$$
\tilde{H}_{i}\left(I_{8}(G)\right)= \begin{cases}\mathbb{R}^{4} & \text { if } i=15 \\ 0 & \text { otherwise }\end{cases}
$$

In particular, $L\left(I_{8}(G)\right) \geq 16$.
We obtain $C\left(I_{8}(G)\right) \geq L\left(I_{8}(G)\right) \geq 16>2 \cdot(8-1)=14$. Therefore, $I_{8}(G)$ does not satisfy the bound in Question 11 . However, it is not hard to check that $f_{G}(8) \leq 11$. So, G does not contradict Conjecture 10 .

The next result allows us to construct more examples of complexes that do not satisfy the bound in Question 11 :
Theorem 16. Let G be the disjoint union of the graphs G_{1}, \ldots, G_{m}. For $1 \leq i \leq m$, let t_{i} be the maximum size of an independent set in G_{i} and let $\ell_{i}=L\left(I_{t_{i}}\left(G_{i}\right)\right)$. Let $t=\Sigma_{i=1}^{m} t_{i}$ be the maximum size of an independent set in G, and $\ell=L\left(I_{t}(G)\right)$. Then,

$$
\ell=\sum_{i=1}^{m} \ell_{i}+m-1
$$

Combining Theorem 16 with Proposition 15, we obtain:
Corollary 17. Let G_{k} be the union of k disjoint copies of the dodecahedral graph. Then

$$
L\left(I_{8 k}\left(G_{k}\right)\right) \geq 17 k-1
$$

Note that the graphs G_{k} are 3-regular, and $\frac{L\left(I_{8 k}\left(G_{k}\right)\right)}{8 k-1} \geq \frac{17 k-1}{8 k-1}>2 \frac{1}{8}>2$. Thus, the complexes $I_{8 k}\left(G_{k}\right)$ do not satisfy the bound in Question 11 .

[^0]: [1] Martin Tancer. Strong d-collapsibility.
 Contributions to Discrete Mathematics, 6(2):32-35, 2011.
 [2] Ron Aharoni, Joseph Briggs, Jinha Kim and Minki Kim. Rainbow independent sets in certain classes of graphs
 preprint, https://arxiv.org/abs/1909.13143, 2019.

