Collapsibility of simplicial complexes of graphs and hypergraphs

Alan Lew
Technion - Israel Institute of Technology

Bar-Ilan Combinatorics Seminar November 2019

d-Collapsibility

Let X be a simplicial complex and $\sigma \in X$ such that:

- $|\sigma| \leq d$,
- σ is contained in a unique maximal face $\tau \in X$.

d-Collapsibility

Let X be a simplicial complex and $\sigma \in X$ such that:

- $|\sigma| \leq d$,
- σ is contained in a unique maximal face $\tau \in X$.

Elementary d-collapse: $X \xrightarrow{\sigma} X^{\prime}=X \backslash\{\eta: \sigma \subset \eta \subset \tau\}$.

d-Collapsibility

Let X be a simplicial complex and $\sigma \in X$ such that:

- $|\sigma| \leq d$,
- σ is contained in a unique maximal face $\tau \in X$.

Elementary d-collapse: $X \xrightarrow{\sigma} X^{\prime}=X \backslash\{\eta: \sigma \subset \eta \subset \tau\}$.
X is d-collapsible if there is a sequence of elementary d-collapses:

$$
X=X_{1} \xrightarrow{\sigma_{1}} X_{2} \xrightarrow{\sigma_{2}} \cdots \xrightarrow{\sigma_{k-1}} X_{k}=\emptyset .
$$

d-Collapsibility

Let X be a simplicial complex and $\sigma \in X$ such that:

- $|\sigma| \leq d$,
- σ is contained in a unique maximal face $\tau \in X$.

Elementary d-collapse: $X \xrightarrow{\sigma} X^{\prime}=X \backslash\{\eta: \sigma \subset \eta \subset \tau\}$.
X is d-collapsible if there is a sequence of elementary d-collapses:

$$
X=X_{1} \xrightarrow{\sigma_{1}} X_{2} \xrightarrow{\sigma_{2}} \cdots \xrightarrow{\sigma_{k-1}} X_{k}=\emptyset .
$$

Collapsibility of X :

$$
C(X)=\text { minimal } d \text { such that } X \text { is } d \text {-collapsible. }
$$

Examples

Example 1:
$C(X)=0 \Longleftrightarrow X$ is a simplex

Examples

Example 1:

$$
C(X)=0 \Longleftrightarrow X \text { is a simplex }
$$

Example 2:

Examples

Example 1:

$$
C(X)=0 \Longleftrightarrow X \text { is a simplex }
$$

X is not 1-collapsible

Examples

A 2-collapsing sequence for X :

$$
C(X)=2 .
$$

Examples- 1-collapsibility

A graph $G=(V, E)$ is chordal if it does not contain a cycle of length ≥ 4 as an induced subgraph.

Examples- 1-collapsibility

A graph $G=(V, E)$ is chordal if it does not contain a cycle of length ≥ 4 as an induced subgraph.

Examples- 1-collapsibility

A graph $G=(V, E)$ is chordal if it does not contain a cycle of length ≥ 4 as an induced subgraph.

Examples-1-collapsibility

A graph $G=(V, E)$ is chordal if it does not contain a cycle of length ≥ 4 as an induced subgraph.

The Clique complex $X(G)$ of a graph $G=(V, E)$:

- Vertices=V
- Simplices $=$ Cliques in G

Examples-1-collapsibility

A graph $G=(V, E)$ is chordal if it does not contain a cycle of length ≥ 4 as an induced subgraph.

The Clique complex $X(G)$ of a graph $G=(V, E)$:

- Vertices=V
- Simplices= Cliques in G

Examples- 1-collapsibility

Theorem (Wegner '75):
A simplicial complex X is 1-collapsible if and only if $X=X(G)$ for some chordal graph G.

Examples- 1-collapsibility

Theorem (Wegner '75):
A simplicial complex X is 1-collapsible if and only if $X=X(G)$ for some chordal graph G.
The proof relies on the following fact:
Lemma (Lekkerkerker-Boland '62):
Any chordal graph contains a simplicial vertex (a vertex whose neighbors form a clique).

Some properties of d-collapsibility

Claim: [Wegner '75]
X is d-collapsible $\Longrightarrow X$ is homotopy equivalent to a complex of dimension $<d$.

Some properties of d-collapsibility

Claim: [Wegner '75]
X is d-collapsible $\Longrightarrow X$ is homotopy equivalent to a complex of dimension $<d$.

In particular:
Corollary:
If X is d-collapsible, then $\tilde{H}_{i}(X)=0$ for $i \geq d$.

Some properties of d-collapsibility

Claim: [Wegner '75]
X is d-collapsible $\Longrightarrow X$ is homotopy equivalent to a complex of dimension $<d$.
In particular:
Corollary:
If X is d-collapsible, then $\tilde{H}_{i}(X)=0$ for $i \geq d$.
Claim: [Wegner '75]
Every induced subcomplex of a d-collapsible complex is d-collapsible.

d-Collapsibility of nerves

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of sets.
The nerve of the family is the simplicial complex:

$$
N(\mathcal{F})=\left\{I \subset[n]: \cap_{i \in I} F_{i} \neq \emptyset\right\}
$$

d-Collapsibility of nerves

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of sets.
The nerve of the family is the simplicial complex:

d-Collapsibility of nerves

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of sets.
The nerve of the family is the simplicial complex:

$$
N(\mathcal{F})=\left\{I \subset[n]: \cap_{i \in I} F_{i} \neq \emptyset\right\}
$$

$N(F)=$

d-Collapsibility of nerves

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of sets.
The nerve of the family is the simplicial complex:

$$
N(\mathcal{F})=\left\{I \subset[n]: \cap_{i \in I} F_{i} \neq \emptyset\right\}
$$

Theorem: [Wegner '75]
The nerve of a family of convex sets in \mathbb{R}^{d} is d-collapsible.

d-Collapsibility of nerves

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of sets.
The nerve of the family is the simplicial complex:

$$
N(\mathcal{F})=\left\{I \subset[n]: \cap_{i \in I} F_{i} \neq \emptyset\right\}
$$

$N(F)=$

Theorem: [Wegner '75]
The nerve of a family of convex sets in \mathbb{R}^{d} is d-collapsible.
Theorem: [Matoušek-Tancer '09]
The nerve of a family of finite sets of size $\leq d$ is d-collapsible.

Complex of hypergraphs with bounded covering number
Let \mathcal{H} be an r-uniform hypergraph.

Complex of hypergraphs with bounded covering number
Let \mathcal{H} be an r-uniform hypergraph.
A set C is a cover of \mathcal{H} if $A \cap C \neq \emptyset$ for all $A \in \mathcal{H}$.

Complex of hypergraphs with bounded covering number
Let \mathcal{H} be an r-uniform hypergraph.
A set C is a cover of \mathcal{H} if $A \cap C \neq \emptyset$ for all $A \in \mathcal{H}$.
The covering number: $\tau(\mathcal{H})=$ minimal size of a cover.

Complex of hypergraphs with bounded covering number
Let \mathcal{H} be an r-uniform hypergraph.
A set C is a cover of \mathcal{H} if $A \cap C \neq \emptyset$ for all $A \in \mathcal{H}$.
The covering number: $\tau(\mathcal{H})=$ minimal size of a cover.
Let $p \in \mathbb{N}$ and let

$$
\operatorname{Cov}_{\mathcal{H}, p}=\{\mathcal{F} \subset \mathcal{H}: \tau(\mathcal{F}) \leq p\}
$$

Complex of hypergraphs with bounded covering number
Let \mathcal{H} be an r-uniform hypergraph.
A set C is a cover of \mathcal{H} if $A \cap C \neq \emptyset$ for all $A \in \mathcal{H}$.
The covering number: $\tau(\mathcal{H})=$ minimal size of a cover.
Let $p \in \mathbb{N}$ and let

$$
\operatorname{Cov}_{\mathcal{H}, p}=\{\mathcal{F} \subset \mathcal{H}: \tau(\mathcal{F}) \leq p\}
$$

Example
Let $\mathcal{H}=\binom{[4]}{3}=\{\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}\}$.

Complex of hypergraphs with bounded covering number
Let \mathcal{H} be an r-uniform hypergraph.
A set C is a cover of \mathcal{H} if $A \cap C \neq \emptyset$ for all $A \in \mathcal{H}$.
The covering number: $\tau(\mathcal{H})=$ minimal size of a cover.
Let $p \in \mathbb{N}$ and let

$$
\operatorname{Cov}_{\mathcal{H}, p}=\{\mathcal{F} \subset \mathcal{H}: \tau(\mathcal{F}) \leq p\} .
$$

Example

$$
\text { Let } \mathcal{H}=\binom{[4]}{3}=\{\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}\} .
$$

Complex of hypergraphs with bounded covering number

Let \mathcal{H} be an r-uniform hypergraph.
A set C is a cover of \mathcal{H} if $A \cap C \neq \emptyset$ for all $A \in \mathcal{H}$.
The covering number: $\tau(\mathcal{H})=$ minimal size of a cover.
Let $p \in \mathbb{N}$ and let

$$
\operatorname{Cov}_{\mathcal{H}, p}=\{\mathcal{F} \subset \mathcal{H}: \tau(\mathcal{F}) \leq p\}
$$

Example
Let $\mathcal{H}=\binom{[4]}{3}=\{\{1,2,3\},\{1,2,4\},\{1,3,4\},\{2,3,4\}\}$.

Remark: $\operatorname{Cov}_{\mathcal{H}, 1}=N(\mathcal{H})$.

Homology of $\operatorname{Cov}_{\mathcal{H}, P}$

Question:
Let \mathcal{H} be an r-uniform hypergraph. What is the maximal i such that $\tilde{H}_{i}\left(\operatorname{Cov}_{\mathcal{H}, p}\right) \neq 0$?

Homology of $\operatorname{Cov}_{\mathcal{H}, P}$

Question:

Let \mathcal{H} be an r-uniform hypergraph. What is the maximal i such that $\tilde{H}_{i}\left(\operatorname{Cov}_{\mathcal{H}, p}\right) \neq 0$?
Some previously known results:
Theorem (Jonsson '05):
Let K_{n} be the complete graph on n vertices, and let $p \leq 3$. Then

$$
\tilde{H}_{i}\left(\operatorname{Cov}_{K_{n}, p}\right)=0
$$

for $i \geq\binom{ p+2}{2}-1$.

Homology of $\operatorname{Cov}_{\mathcal{H}, P}$

Question:

Let \mathcal{H} be an r-uniform hypergraph. What is the maximal i such that $\tilde{H}_{i}\left(\operatorname{Cov}_{\mathcal{H}, p}\right) \neq 0$?
Some previously known results:
Theorem (Jonsson '05):
Let K_{n} be the complete graph on n vertices, and let $p \leq 3$. Then

$$
\tilde{H}_{i}\left(\operatorname{Cov}_{K_{n}, p}\right)=0
$$

for $i \geq\binom{ p+2}{2}-1$.
Theorem (Matoušek-Tancer '09):
Let \mathcal{H} be an r-uniform hypergraph. Then $\tilde{H}_{i}\left(\operatorname{Cov}_{\mathcal{H}, 1}\right)=0$ for $i \geq r$.

Complex of hypergraphs with bounded covering number

Theorem 1: [L '19]
$\operatorname{Cov}_{\mathcal{H}, p}$ is $\left(\binom{r+p}{r}-1\right)$-collapsible.

Complex of hypergraphs with bounded covering number

Theorem 1: [L '19]
$\operatorname{Cov}_{\mathcal{H}, \mathrm{p}}$ is $\left(\binom{r+p}{r}-1\right)$-collapsible.
Example
Let $\mathcal{H}=\binom{[r+p]}{r}$.

Complex of hypergraphs with bounded covering number

Theorem 1: [L '19]
$\operatorname{Cov}_{\mathcal{H}, p}$ is $\left(\binom{r+p}{r}-1\right)$-collapsible.
Example
Let $\mathcal{H}=\binom{[r+p]}{r}$.
The complex $\operatorname{Cov}_{\mathcal{H}, p}$ is an $\left(\binom{r+p}{r}-2\right)$-dimensional sphere.

Complex of hypergraphs with bounded covering number

Theorem 1: [L '19]
$\operatorname{Cov}_{\mathcal{H}, p}$ is $\left(\binom{r+p}{r}-1\right)$-collapsible.
Example
Let $\mathcal{H}=\left({ }_{r}^{[r+p]}{ }_{r}\right)$.
The complex $\operatorname{Cov}_{\mathcal{H}, p}$ is an $\left(\binom{r+p}{r}-2\right)$-dimensional sphere.
In particular, $\operatorname{Cov}_{\mathcal{H}, p}$ is not $\left(\binom{r+p}{r}-2\right)$-collapsible.

Complex of hypergraphs with bounded covering number

Theorem 1: [L '19]
$\operatorname{Cov}_{\mathcal{H}, p}$ is $\left(\binom{r+p}{r}-1\right)$-collapsible.
Example
Let $\mathcal{H}=\binom{[r+p]}{r}$.
The complex $\operatorname{Cov}_{\mathcal{H}, p}$ is an $\left(\binom{r+p}{r}-2\right)$-dimensional sphere.
In particular, $\operatorname{Cov}_{\mathcal{H}, p}$ is not $\left(\binom{r+p}{r}-2\right)$-collapsible.
Corollary:

$$
\tilde{H}_{i}\left(\operatorname{Cov}_{\mathcal{H}, p}\right)=0
$$

for all $i \geq\binom{ r+p}{r}-1$.

Complex of intersecting hypergraphs

Let \mathcal{H} be an r-uniform hypergraph.

Complex of intersecting hypergraphs

Let \mathcal{H} be an r-uniform hypergraph.
\mathcal{H} is (pairwise) intersecting if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{H}$.

Complex of intersecting hypergraphs

Let \mathcal{H} be an r-uniform hypergraph. \mathcal{H} is (pairwise) intersecting if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{H}$. Let

$$
\operatorname{lnt}_{\mathcal{H}}=\{\mathcal{F} \subset \mathcal{H}: \mathcal{F} \text { is intersecting }\}
$$

Complex of intersecting hypergraphs

Let \mathcal{H} be an r-uniform hypergraph.
\mathcal{H} is (pairwise) intersecting if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{H}$.
Let

$$
\text { Int }_{\mathcal{H}}=\{\mathcal{F} \subset \mathcal{H}: \mathcal{F} \text { is intersecting }\}
$$

Example
Let $\mathcal{H}=\binom{[4]}{2}=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$.

Complex of intersecting hypergraphs

Let \mathcal{H} be an r-uniform hypergraph.
\mathcal{H} is (pairwise) intersecting if $A \cap B \neq \emptyset$ for all $A, B \in \mathcal{H}$.
Let

$$
\operatorname{lnt}_{\mathcal{H}}=\{\mathcal{F} \subset \mathcal{H}: \mathcal{F} \text { is intersecting }\}
$$

Example
Let $\mathcal{H}=\binom{[4]}{2}=\{\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}\}$.

Complex of intersecting hypergraphs

Theorem 2: [L '19] $\operatorname{Int}_{\mathcal{H}}$ is $\frac{1}{2}\binom{2 r}{r}$-collapsible.

Complex of intersecting hypergraphs

Theorem 2: [L '19] $\operatorname{lnt}_{\mathcal{H}}$ is $\frac{1}{2}\binom{2 r}{r}$-collapsible.

Example
Let $\mathcal{H}=\binom{[2 r]}{r}$.

Complex of intersecting hypergraphs

Theorem 2: [L '19]

$$
\operatorname{lnt}_{\mathcal{H}} \text { is } \frac{1}{2}\binom{2 r}{r} \text {-collapsible. }
$$

Example
Let $\mathcal{H}=\binom{[2 r]}{r}$.
$\operatorname{lnt}_{\mathcal{H}}$ is a $\left(\frac{1}{2}\binom{2 r}{r}-1\right)$-dimensional sphere.

Complex of intersecting hypergraphs

Theorem 2: [L '19]

$$
\operatorname{lnt}_{\mathcal{H}} \text { is } \frac{1}{2}\binom{2 r}{r} \text {-collapsible. }
$$

Example Let $\mathcal{H}=\binom{[2 r]}{r}$.
$\operatorname{lnt}_{\mathcal{H}}$ is a $\left(\frac{1}{2}\binom{2 r}{r}-1\right)$-dimensional sphere.
In particular, $\operatorname{lnt}_{\mathcal{H}}$ is not $\left(\frac{1}{2}\binom{2 r}{r}-1\right)$-collapsible.

Complex of intersecting hypergraphs

Theorem 2: [L '19]

$$
\operatorname{lnt}_{\mathcal{H}} \text { is } \frac{1}{2}\binom{2 r}{r} \text {-collapsible. }
$$

Example Let $\mathcal{H}=\binom{[2 r]}{r}$.
$\operatorname{lnt}_{\mathcal{H}}$ is a $\left(\frac{1}{2}\binom{2 r}{r}-1\right)$-dimensional sphere.
In particular, $\operatorname{lnt}_{\mathcal{H}}$ is not $\left(\frac{1}{2}\binom{2 r}{r}-1\right)$-collapsible.
Corollary:

$$
\tilde{H}_{i}\left(\operatorname{lnt}_{\mathcal{H}}\right)=0
$$

for all $i \geq \frac{1}{2}\binom{2 r}{r}$.

A bound on collapsibility

$X=$ a simplicial complex.

A bound on collapsibility

$X=$ a simplicial complex.
$S(X)=$ the set of sequences of vertices $\left(v_{1}, \ldots, v_{k}\right)$ satisfying the following property:

A bound on collapsibility

$X=$ a simplicial complex.
$S(X)=$ the set of sequences of vertices $\left(v_{1}, \ldots, v_{k}\right)$ satisfying the following property:

There exist maximal faces $\sigma_{1}, \ldots, \sigma_{k+1}$ of X such that:

- $v_{i} \notin \sigma_{i}$ for all $1 \leq i \leq k$,

A bound on collapsibility

$X=$ a simplicial complex.
$S(X)=$ the set of sequences of vertices $\left(v_{1}, \ldots, v_{k}\right)$ satisfying the following property:

There exist maximal faces $\sigma_{1}, \ldots, \sigma_{k+1}$ of X such that:

- $v_{i} \notin \sigma_{i}$ for all $1 \leq i \leq k$,
- $v_{i} \in \sigma_{j}$ for all $1 \leq i<j \leq k+1$.

A bound on collapsibility

$X=$ a simplicial complex.
$S(X)=$ the set of sequences of vertices $\left(v_{1}, \ldots, v_{k}\right)$ satisfying the following property:

There exist maximal faces $\sigma_{1}, \ldots, \sigma_{k+1}$ of X such that:

- $v_{i} \notin \sigma_{i}$ for all $1 \leq i \leq k$,
- $v_{i} \in \sigma_{j}$ for all $1 \leq i<j \leq k+1$.
$d^{\prime}(X)=$ maximal length of a sequence in $S(X)$.

A bound on collapsibility

$X=$ a simplicial complex.
$S(X)=$ the set of sequences of vertices $\left(v_{1}, \ldots, v_{k}\right)$ satisfying the following property:

There exist maximal faces $\sigma_{1}, \ldots, \sigma_{k+1}$ of X such that:

- $v_{i} \notin \sigma_{i}$ for all $1 \leq i \leq k$,
- $v_{i} \in \sigma_{j}$ for all $1 \leq i<j \leq k+1$.
$d^{\prime}(X)=$ maximal length of a sequence in $S(X)$.
Theorem: [Matoušek-Tancer '09, L '19]
X is $d^{\prime}(X)$-collapsible.

A bound on collapsibility- Proof sketch

 X a simplicial complex, v a vertex of X.
A bound on collapsibility- Proof sketch

 X a simplicial complex, v a vertex of X.$$
X \backslash v=\{\sigma \in X: v \notin \sigma\}
$$

A bound on collapsibility- Proof sketch

 X a simplicial complex, v a vertex of X.$$
\begin{gathered}
X \backslash v=\{\sigma \in X: v \notin \sigma\} \\
\operatorname{lk}(X, v)=\{\sigma \in X: v \notin \sigma, \sigma \cup\{v\} \in X\} .
\end{gathered}
$$

A bound on collapsibility- Proof sketch

 X a simplicial complex, v a vertex of X.$$
X \backslash v=\{\sigma \in X: v \notin \sigma\},
$$

$$
\operatorname{lk}(X, v)=\{\sigma \in X: v \notin \sigma, \sigma \cup\{v\} \in X\} .
$$

A bound on collapsibility- Proof sketch

 X a simplicial complex, v a vertex of X.$$
X \backslash v=\{\sigma \in X: v \notin \sigma\},
$$

$$
\operatorname{lk}(X, v)=\{\sigma \in X: v \notin \sigma, \sigma \cup\{v\} \in X\} .
$$

A bound on collapsibility- Proof sketch

 X a simplicial complex, v a vertex of X.$$
X \backslash v=\{\sigma \in X: v \notin \sigma\},
$$

$$
\operatorname{lk}(X, v)=\{\sigma \in X: v \notin \sigma, \sigma \cup\{v\} \in X\} .
$$

A bound on collapsibility- Proof sketch

 X a simplicial complex, v a vertex of X.$$
\begin{gathered}
X \backslash v=\{\sigma \in X: v \notin \sigma\} \\
\operatorname{lk}(X, v)=\{\sigma \in X: v \notin \sigma, \sigma \cup\{v\} \in X\}
\end{gathered}
$$

Lemma: [Tancer '11]

$$
C(X) \leq \max \{C(X \backslash v), C(\operatorname{lk}(X, v))+1\} .
$$

A bound on collapsibility- Proof sketch

 X a simplicial complex, v a vertex of X.$$
\begin{gathered}
X \backslash v=\{\sigma \in X: v \notin \sigma\}, \\
\operatorname{lk}(X, v)=\{\sigma \in X: v \notin \sigma, \sigma \cup\{v\} \in X\} .
\end{gathered}
$$

Lemma: [Tancer '11]

$$
C(X) \leq \max \{C(X \backslash v), C(\operatorname{lk}(X, v))+1\} .
$$

Lemma:
If v is not contained in all maximal faces of X, then

$$
d^{\prime}(X) \geq \max \left\{d^{\prime}(X \backslash v), d^{\prime}(\operatorname{lk}(X, v))+1\right\} .
$$

A bound on collapsibility- Proof sketch

Reminder - Theorem:

$$
C(X) \leq d^{\prime}(X) .
$$

A bound on collapsibility- Proof sketch

Reminder - Theorem:

$$
C(X) \leq d^{\prime}(X) .
$$

Proof

- If X is a simplex, then $C(X)=0=d^{\prime}(X)$.

A bound on collapsibility- Proof sketch

Reminder - Theorem:

$$
C(X) \leq d^{\prime}(X) .
$$

Proof

- If X is a simplex, then $C(X)=0=d^{\prime}(X)$.
- Otherwise, there is a vertex v and a maximal face σ such that $v \notin \sigma$.

A bound on collapsibility- Proof sketch

Reminder - Theorem:

$$
C(X) \leq d^{\prime}(X) .
$$

Proof

- If X is a simplex, then $C(X)=0=d^{\prime}(X)$.
- Otherwise, there is a vertex v and a maximal face σ such that $v \notin \sigma$.

$$
C(X) \leq \max \{C(X \backslash v), C(\operatorname{lk}(X, v))+1\}
$$

A bound on collapsibility- Proof sketch

Reminder - Theorem:

$$
C(X) \leq d^{\prime}(X) .
$$

Proof

- If X is a simplex, then $C(X)=0=d^{\prime}(X)$.
- Otherwise, there is a vertex v and a maximal face σ such that $v \notin \sigma$.

$$
\begin{aligned}
& C(X) \leq \max \{C(X \backslash v), C(\operatorname{lk}(X, v))+1\} \\
& \quad \leq \max \left\{d^{\prime}(X \backslash v), d^{\prime}(\operatorname{lk}(X, v))+1\right\}
\end{aligned}
$$

A bound on collapsibility- Proof sketch

Reminder - Theorem:

$$
C(X) \leq d^{\prime}(X) .
$$

Proof

- If X is a simplex, then $C(X)=0=d^{\prime}(X)$.
- Otherwise, there is a vertex v and a maximal face σ such that $v \notin \sigma$.

$$
\begin{gathered}
C(X) \leq \max \{C(X \backslash v), C(\operatorname{lk}(X, v))+1\} \\
\leq \max \left\{d^{\prime}(X \backslash v), d^{\prime}(\operatorname{lk}(X, v))+1\right\} \\
\leq d^{\prime}(X) .
\end{gathered}
$$

Skew-intersecting families of sets

Lemma: [Frankl '82, Kalai '84]
Let $\left\{A_{1}, \ldots, A_{k}\right\},\left\{B_{1}, \ldots, B_{k}\right\}$ families of sets such that:

$$
\begin{aligned}
& \mathrm{A}_{1, \ldots}, \mathrm{~A}_{\mathrm{i}, \ldots}, \mathrm{~A}_{\mathrm{j}}, \ldots, \mathrm{~A}_{\mathrm{k}} \\
& \mathrm{~B}_{1, \ldots}, \mathrm{~B}_{\mathrm{i}}, \ldots, \mathrm{~B}_{\mathrm{j}}, \ldots, \mathrm{~B}_{\mathrm{k}}
\end{aligned}
$$

Skew-intersecting families of sets

Lemma: [Frankl '82, Kalai '84]
 Let $\left\{A_{1}, \ldots, A_{k}\right\},\left\{B_{1}, \ldots, B_{k}\right\}$ families of sets such that:
 - $\left|A_{i}\right| \leq r,\left|B_{i}\right| \leq p$ for all $1 \leq i \leq k$.

$$
\begin{aligned}
& \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{i}, \ldots}, \mathrm{~A}_{\mathrm{j}}, \ldots, \mathrm{~A}_{\mathrm{k}} \\
& \mathrm{~B}_{1, \ldots}, \mathrm{~B}_{\mathrm{i}}, \ldots, \mathrm{~B}_{\mathrm{j}}, \ldots, \mathrm{~B}_{\mathrm{k}}
\end{aligned}
$$

Skew-intersecting families of sets

Lemma: [Frankl '82, Kalai '84]
Let $\left\{A_{1}, \ldots, A_{k}\right\},\left\{B_{1}, \ldots, B_{k}\right\}$ families of sets such that:

- $\left|A_{i}\right| \leq r,\left|B_{i}\right| \leq p$ for all $1 \leq i \leq k$.
- $A_{i} \cap B_{i}=\emptyset$ for all $1 \leq i \leq k$.
$\xrightarrow[B_{1}, \ldots, B_{i}, \ldots, B_{j}, \ldots, B_{k}]{A_{1}, \ldots, A_{i}, \ldots,} A_{j}, \ldots, A_{k}$

Skew-intersecting families of sets

Lemma: [Frankl '82, Kalai '84]
Let $\left\{A_{1}, \ldots, A_{k}\right\},\left\{B_{1}, \ldots, B_{k}\right\}$ families of sets such that:

- $\left|A_{i}\right| \leq r,\left|B_{i}\right| \leq p$ for all $1 \leq i \leq k$.
- $A_{i} \cap B_{i}=\emptyset$ for all $1 \leq i \leq k$.
- $A_{i} \cap B_{j} \neq \emptyset$ for all $1 \leq i<j \leq k$.

$$
\begin{aligned}
& \mathrm{A}_{1, \ldots}, \underbrace{}_{\mathrm{A}_{i}, \ldots, \mathrm{~A}_{j}, \ldots, \mathrm{~A}_{\mathrm{k}}} \\
& \mathrm{~B}_{1, \ldots}, \mathrm{~B}_{\mathrm{i}, \ldots,}, \mathrm{~B}_{\mathrm{j}}, \ldots, \mathrm{~B}_{\mathrm{k}}
\end{aligned}
$$

Skew-intersecting families of sets

Lemma: [Frankl '82, Kalai '84]
Let $\left\{A_{1}, \ldots, A_{k}\right\},\left\{B_{1}, \ldots, B_{k}\right\}$ families of sets such that:

- $\left|A_{i}\right| \leq r,\left|B_{i}\right| \leq p$ for all $1 \leq i \leq k$.
- $A_{i} \cap B_{i}=\emptyset$ for all $1 \leq i \leq k$.
- $A_{i} \cap B_{j} \neq \emptyset$ for all $1 \leq i<j \leq k$.

$$
\begin{aligned}
& \mathrm{A}_{1}, \ldots, \underbrace{}_{\mathrm{A}_{\mathrm{i}}, \ldots, \mathrm{~A}_{\mathrm{j}}, \ldots, \mathrm{~A}_{\mathrm{k}}} \\
& \mathrm{~B}_{1, \ldots}, \mathrm{~B}_{\mathrm{i}, \ldots,}, \mathrm{~B}_{\mathrm{j}}, \ldots, \mathrm{~B}_{\mathrm{k}}
\end{aligned}
$$

Then

$$
k \leq\binom{ r+p}{r} .
$$

Proof of Theorem 1

Reminder- Theorem 1:
$\operatorname{Cov}_{\mathcal{H}, p}$ is $\left(\binom{r+p}{r}-1\right)$-collapsible.

Proof of Theorem 1

Reminder- Theorem 1:
$\operatorname{Cov}_{\mathcal{H}, p}$ is $\left(\binom{r+p}{r}-1\right)$-collapsible.
Proof:
Let $\left(A_{1}, \ldots, A_{k}\right) \in S\left(\operatorname{Cov}_{\mathcal{H}, p}\right)$. There exist maximal faces
$\mathcal{F}_{1}, \ldots, \mathcal{F}_{k+1} \in \operatorname{Cov}_{\mathcal{H}, p}$ such that

- $A_{i} \notin \mathcal{F}_{i}$ for all $1 \leq i \leq k$,

Proof of Theorem 1

Reminder- Theorem 1:
$\operatorname{Cov}_{\mathcal{H}, p}$ is $\left.\binom{r+p}{r}-1\right)$-collapsible.
Proof:
Let $\left(A_{1}, \ldots, A_{k}\right) \in S\left(\operatorname{Cov}_{\mathcal{H}, p}\right)$. There exist maximal faces
$\mathcal{F}_{1}, \ldots, \mathcal{F}_{k+1} \in \operatorname{Cov}_{\mathcal{H}, p}$ such that

- $A_{i} \notin \mathcal{F}_{i}$ for all $1 \leq i \leq k$,
- $A_{i} \in \mathcal{F}_{j}$ for all $1 \leq i<j \leq k+1$.

Proof of Theorem 1

Reminder- Theorem 1:
$\operatorname{Cov}_{\mathcal{H}, p}$ is $\left(\binom{r+p}{r}-1\right)$-collapsible.
Proof:
Let $\left(A_{1}, \ldots, A_{k}\right) \in S\left(\operatorname{Cov}_{\mathcal{H}, p}\right)$. There exist maximal faces
$\mathcal{F}_{1}, \ldots, \mathcal{F}_{k+1} \in \operatorname{Cov}_{\mathcal{H}, p}$ such that

- $A_{i} \notin \mathcal{F}_{i}$ for all $1 \leq i \leq k$,
- $A_{i} \in \mathcal{F}_{j}$ for all $1 \leq i<j \leq k+1$.

For all $1 \leq i \leq k+1$, there is a set C_{i} of size at most p that covers \mathcal{F}_{i}.

Proof of Theorem 1

Reminder- Theorem 1:

$$
\operatorname{Cov}_{\mathcal{H}, p} \text { is }\left(\binom{r+p}{r}-1\right) \text {-collapsible. }
$$

Proof:
Let $\left(A_{1}, \ldots, A_{k}\right) \in S\left(\operatorname{Cov}_{\mathcal{H}, p}\right)$. There exist maximal faces
$\mathcal{F}_{1}, \ldots, \mathcal{F}_{k+1} \in \operatorname{Cov}_{\mathcal{H}, p}$ such that

- $A_{i} \notin \mathcal{F}_{i}$ for all $1 \leq i \leq k$,
- $A_{i} \in \mathcal{F}_{j}$ for all $1 \leq i<j \leq k+1$.

For all $1 \leq i \leq k+1$, there is a set C_{i} of size at most p that covers \mathcal{F}_{i}. Since \mathcal{F}_{i} is maximal, then for all $A \in \mathcal{H}$:

$$
A \in \mathcal{F}_{i} \Longleftrightarrow A \cap C_{i} \neq \emptyset .
$$

Proof of Theorem 1

Look at the families $\left\{A_{1}, \ldots, A_{k}, \emptyset\right\}$ and $\left\{C_{1}, \ldots, C_{k+1}\right\}$. We have:

Proof of Theorem 1

Look at the families $\left\{A_{1}, \ldots, A_{k}, \emptyset\right\}$ and $\left\{C_{1}, \ldots, C_{k+1}\right\}$. We have:

- $\left|A_{i}\right| \leq r$ for all $1 \leq i \leq k,\left|C_{i}\right| \leq p$ for all $1 \leq j \leq k+1$.

$$
\begin{aligned}
& \mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathbf{i}}, \ldots, \mathrm{A}_{\mathrm{j}}, \ldots, \mathrm{~A}_{\mathrm{k}}, \varnothing \\
& \mathrm{C}_{1}, \ldots, \mathrm{C}_{\mathrm{i}}, \ldots, \mathrm{C}_{\mathbf{j}}, \ldots, \mathrm{C}_{\mathrm{k}}, \mathrm{C}_{\mathrm{k}+1}
\end{aligned}
$$

Proof of Theorem 1

Look at the families $\left\{A_{1}, \ldots, A_{k}, \emptyset\right\}$ and $\left\{C_{1}, \ldots, C_{k+1}\right\}$. We have:

- $\left|A_{i}\right| \leq r$ for all $1 \leq i \leq k,\left|C_{i}\right| \leq p$ for all $1 \leq j \leq k+1$.
- For all $1 \leq i \leq k, A_{i} \notin \mathcal{F}_{i}$; hence, $A_{i} \cap C_{i}=\emptyset$.

Proof of Theorem 1

Look at the families $\left\{A_{1}, \ldots, A_{k}, \emptyset\right\}$ and $\left\{C_{1}, \ldots, C_{k+1}\right\}$. We have:

- $\left|A_{i}\right| \leq r$ for all $1 \leq i \leq k,\left|C_{i}\right| \leq p$ for all $1 \leq j \leq k+1$.
- For all $1 \leq i \leq k, A_{i} \notin \mathcal{F}_{i}$; hence, $A_{i} \cap C_{i}=\emptyset$.
- For all $1 \leq i<j \leq k+1, A_{i} \in \mathcal{F}_{j}$; hence, $A_{i} \cap C_{j} \neq \emptyset$.

$$
\begin{aligned}
& \mathrm{A}_{1}, \ldots, \underbrace{}_{\mathrm{A}_{\mathrm{i}}, \ldots, \mathrm{~A}_{\mathrm{j}}, \ldots, \mathrm{~A}_{\mathrm{k}}, \varnothing} \\
& \mathrm{C}_{1, \ldots,}, \ldots, \mathrm{C}_{\mathrm{i}, \ldots,}, \mathrm{C}_{\mathrm{j}}, \ldots, \mathrm{C}_{\mathrm{k}}, \mathrm{C}_{\mathrm{k}+1}
\end{aligned}
$$

Proof of Theorem 1

By Frankl-Kalai: $k+1 \leq\binom{ r+p}{r}$.

Proof of Theorem 1

By Frankl-Kalai: $k+1 \leq\binom{ r+p}{r}$. So,

$$
C\left(\operatorname{Cov}_{\mathcal{H}, p}\right) \leq d^{\prime}\left(\operatorname{Cov}_{\mathcal{H}, p}\right) \leq\binom{ r+p}{r}-1 .
$$

That is, $\operatorname{Cov}_{\mathcal{H}, p}$ is $\left(\binom{r+p}{r}-1\right)$-collapsible.

Rainbow independent sets

Problem:
Let G be a graph, $n \geq 1$.
Find minimal k such that for any family of independent sets
$I_{1}, I_{2}, \ldots, I_{k}$ of size n in G (not necessarily distinct), there exists a rainbow independent set of size n.

Rainbow independent sets

Problem:
Let G be a graph, $n \geq 1$.
Find minimal k such that for any family of independent sets
$I_{1}, I_{2}, \ldots, I_{k}$ of size n in G (not necessarily distinct), there exists a rainbow independent set of size n.
That is, there exist $1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq k$ and $v_{i_{j}} \in I_{i_{j}}$ such that $\left\{v_{i_{1}}, \ldots, v_{i_{n}}\right\}$ is independent in G.

Rainbow independent sets

Problem:
Let G be a graph, $n \geq 1$.
Find minimal k such that for any family of independent sets
$I_{1}, I_{2}, \ldots, I_{k}$ of size n in G (not necessarily distinct), there exists a rainbow independent set of size n.
That is, there exist $1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq k$ and $v_{i_{j}} \in I_{i_{j}}$ such that $\left\{v_{i_{1}}, \ldots, v_{i_{n}}\right\}$ is independent in G.
Denote such minimal k by $f_{G}(n)$.

Rainbow independent sets

Problem:
Let G be a graph, $n \geq 1$.
Find minimal k such that for any family of independent sets
$I_{1}, I_{2}, \ldots, I_{k}$ of size n in G (not necessarily distinct), there exists a rainbow independent set of size n.
That is, there exist $1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq k$ and $v_{i_{j}} \in I_{i_{j}}$ such that $\left\{v_{i_{1}}, \ldots, v_{i_{n}}\right\}$ is independent in G.
Denote such minimal k by $f_{G}(n)$.

Example:

Rainbow independent sets

Problem:
Let G be a graph, $n \geq 1$.
Find minimal k such that for any family of independent sets
$I_{1}, I_{2}, \ldots, I_{k}$ of size n in G (not necessarily distinct), there exists a rainbow independent set of size n.
That is, there exist $1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq k$ and $v_{i_{j}} \in I_{i_{j}}$ such that $\left\{v_{i_{1}}, \ldots, v_{i_{n}}\right\}$ is independent in G.
Denote such minimal k by $f_{G}(n)$.

Example:

Rainbow independent sets

Problem:
Let G be a graph, $n \geq 1$.
Find minimal k such that for any family of independent sets
$I_{1}, I_{2}, \ldots, I_{k}$ of size n in G (not necessarily distinct), there exists a rainbow independent set of size n.
That is, there exist $1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq k$ and $v_{i_{j}} \in I_{i_{j}}$ such that $\left\{v_{i_{1}}, \ldots, v_{i_{n}}\right\}$ is independent in G.
Denote such minimal k by $f_{G}(n)$.

Example:

Rainbow independent sets

Problem:
Let G be a graph, $n \geq 1$.
Find minimal k such that for any family of independent sets
$I_{1}, I_{2}, \ldots, I_{k}$ of size n in G (not necessarily distinct), there exists a rainbow independent set of size n.
That is, there exist $1 \leq i_{1}<i_{2}<\cdots<i_{n} \leq k$ and $v_{i_{j}} \in I_{i_{j}}$ such that $\left\{v_{i_{1}}, \ldots, v_{i_{n}}\right\}$ is independent in G.
Denote such minimal k by $f_{G}(n)$.

Example:

Some previous results:

Theorem (Aharoni-Briggs-Kim-Kim):
Let $G=(V, E)$ be a chordal graph, and let $n \geq 1$ be an integer. Then

$$
f_{G}(n) \leq n .
$$

Some previous results:

Theorem (Aharoni-Briggs-Kim-Kim):
Let $G=(V, E)$ be a chordal graph, and let $n \geq 1$ be an integer. Then

$$
f_{G}(n) \leq n .
$$

Theorem (Aharoni-Briggs-Kim-Kim):
Let G be a k-colorable graph, and $n \geq 1$ an integer. Then

$$
f_{G}(n) \leq k(n-1)+1
$$

Some previous results:

Theorem (Aharoni-Briggs-Kim-Kim):
Let $G=(V, E)$ be a chordal graph, and let $n \geq 1$ be an integer.
Then

$$
f_{G}(n) \leq n .
$$

Theorem (Aharoni-Briggs-Kim-Kim):
Let G be a k-colorable graph, and $n \geq 1$ an integer. Then

$$
f_{G}(n) \leq k(n-1)+1
$$

Theorem (Aharoni-Briggs-Kim-Kim):
Let $G=(V, E)$ be a graph with maximum degree at most Δ, and let $n \geq 1$ be an integer. Then

$$
f_{G}(n) \leq \Delta(n-1)+1
$$

Some previous results:

Theorem (Aharoni-Briggs-Kim-Kim):
Let $G=(V, E)$ be a chordal graph, and let $n \geq 1$ be an integer. Then

$$
f_{G}(n) \leq n .
$$

Theorem (Aharoni-Briggs-Kim-Kim):
Let G be a k-colorable graph, and $n \geq 1$ an integer. Then

$$
f_{G}(n) \leq k(n-1)+1
$$

Theorem (Aharoni-Briggs-Kim-Kim):
Let $G=(V, E)$ be a graph with maximum degree at most Δ, and let $n \geq 1$ be an integer. Then

$$
f_{G}(n) \leq \Delta(n-1)+1
$$

Last bound is not tight for $\Delta \geq 3$.

Some previous results:

Theorem (Aharoni-Briggs-Kim-Kim):
Let $G=(V, E)$ be a graph with maximum degree at most Δ. Then

$$
f_{G}(2) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil+1,
$$

Some previous results:

Theorem (Aharoni-Briggs-Kim-Kim):
Let $G=(V, E)$ be a graph with maximum degree at most Δ. Then

$$
f_{G}(2) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil+1,
$$

and

$$
f_{G}(3) \leq \begin{cases}\Delta+3 & \text { if } \Delta \text { is even, }, \\ \Delta+2 & \text { if } \Delta \text { is odd. }\end{cases}
$$

Some previous results:

Theorem (Aharoni-Briggs-Kim-Kim):
Let $G=(V, E)$ be a graph with maximum degree at most Δ.
Then

$$
f_{G}(2) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil+1,
$$

and

$$
f_{G}(3) \leq \begin{cases}\Delta+3 & \text { if } \Delta \text { is even }, \\ \Delta+2 & \text { if } \Delta \text { is odd. }\end{cases}
$$

Conjecture (Aharoni-Briggs-Kim-Kim):
Let G be a graph with maximum degree at most Δ, and let n be a positive integer. Then

$$
f_{G}(n) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil(n-1)+1 .
$$

Example (Aharoni-Briggs-Kim-Kim)

Let Δ be even.

Example (Aharoni-Briggs-Kim-Kim)

Let Δ be even.
$G_{\Delta, n}=$ cycle of length $\left(\frac{\Delta}{2}+1\right) n$

Example (Aharoni-Briggs-Kim-Kim)

Let Δ be even.
$G_{\Delta, n}=$ cycle of length $\left(\frac{\Delta}{2}+1\right) n+$ edges connecting any two vertices of distance at most $\frac{\Delta}{2}$.

Example (Aharoni-Briggs-Kim-Kim)

Let Δ be even.
$G_{\Delta, n}=$ cycle of length $\left(\frac{\Delta}{2}+1\right) n+$ edges connecting any two vertices of distance at most $\frac{\Delta}{2}$.
For example, for $n=3, \Delta=4$:

Example (Aharoni-Briggs-Kim-Kim)

Let Δ be even.
$G_{\Delta, n}=$ cycle of length $\left(\frac{\Delta}{2}+1\right) n+$ edges connecting any two vertices of distance at most $\frac{\Delta}{2}$.
For example, for $n=3, \Delta=4$:

Example (Aharoni-Briggs-Kim-Kim)

Let Δ be even.
$G_{\Delta, n}=$ cycle of length $\left(\frac{\Delta}{2}+1\right) n+$ edges connecting any two vertices of distance at most $\frac{\Delta}{2}$.
For example, for $n=3, \Delta=4$:

Example (Aharoni-Briggs-Kim-Kim)

Let Δ be even.
$G_{\Delta, n}=$ cycle of length $\left(\frac{\Delta}{2}+1\right) n+$ edges connecting any two vertices of distance at most $\frac{\Delta}{2}$.
For example, for $n=3, \Delta=4$:

Example (Aharoni-Briggs-Kim-Kim)

Let Δ be even.
$G_{\Delta, n}=$ cycle of length $\left(\frac{\Delta}{2}+1\right) n+$ edges connecting any two vertices of distance at most $\frac{\Delta}{2}$.
For example, for $n=3, \Delta=4$:

Choose independent sets $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}$.

Example (Aharoni-Briggs-Kim-Kim)

Let Δ be even.
$G_{\Delta, n}=$ cycle of length $\left(\frac{\Delta}{2}+1\right) n+$ edges connecting any two vertices of distance at most $\frac{\Delta}{2}$.
For example, for $n=3, \Delta=4$:

Choose independent sets $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}$. There is no rainbow independent set of size 3 .

Example (Aharoni-Briggs-Kim-Kim)

Let Δ be even.
$G_{\Delta, n}=$ cycle of length $\left(\frac{\Delta}{2}+1\right) n+$ edges connecting any two vertices of distance at most $\frac{\Delta}{2}$.
For example, for $n=3, \Delta=4$:

Choose independent sets $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}$. There is no rainbow independent set of size 3 . So

$$
f_{G_{4,3}}(3) \geq 7
$$

Example (Aharoni-Briggs-Kim-Kim)

Let Δ be even.
$G_{\Delta, n}=$ cycle of length $\left(\frac{\Delta}{2}+1\right) n+$ edges connecting any two vertices of distance at most $\frac{\Delta}{2}$.
For example, for $n=3, \Delta=4$:

Choose independent sets $I_{1}, I_{2}, I_{3}, I_{4}, I_{5}, I_{6}$. There is no rainbow independent set of size 3 . So

$$
f_{G_{4,3}}(3) \geq 7
$$

In general, $f_{G_{\Delta, n}}(n)=\left(\frac{\Delta}{2}+1\right)(n-1)+1$.

Rainbow sets and collapsibility

$G=(V, E)$ a graph, $n \geq 1$ an integer. Define the simplicial complex:

$$
I_{n}(G)=\left\{U \subset V: U \text { does not contain an independent } \begin{array}{c}
\text { set of } G \text { of size } n
\end{array}\right\}
$$

Rainbow sets and collapsibility

$G=(V, E)$ a graph, $n \geq 1$ an integer. Define the simplicial complex:

$$
I_{n}(G)=\left\{U \subset V: U \text { does not contain an independent } \begin{array}{c}
\text { set of } G \text { of size } n
\end{array}\right\}
$$

Examples

- $I_{1}(G)=\{\emptyset\}$.

Rainbow sets and collapsibility

$G=(V, E)$ a graph, $n \geq 1$ an integer. Define the simplicial complex:

$$
I_{n}(G)=\{U \subset V: U \text { does not contain an independent }\} .
$$

Examples

- $I_{1}(G)=\{\emptyset\}$.
- $I_{2}(G)=X(G)$ (the Clique Complex of G).

Rainbow sets and collapsibility

$G=(V, E)$ a graph, $n \geq 1$ an integer. Define the simplicial complex:

$$
I_{n}(G)=\{U \subset V: U \text { does not contain an independent }\} .
$$

Examples

- $I_{1}(G)=\{\emptyset\}$.
- $I_{2}(G)=X(G)$ (the Clique Complex of G).

Proposition:

$$
f_{G}(n) \leq C\left(I_{n}(G)\right)+1
$$

Rainbow sets and collapsibility

Topological colorful Helly Theorem (Kalai-Meshulam '05): X a d-collapsible complex on vertex set $V=V_{1} \cup V_{2} \cup \cdots \cup V_{d+1}$. If $\left\{v_{1}, v_{2}, \ldots, v_{d+1}\right\} \in X$ for every choice of vertices $v_{1} \in V_{1}, \ldots, v_{d+1} \in V_{d+1}$, then there exists some $1 \leq i \leq d+1$ such that $V_{i} \in X$.

Rainbow sets and collapsibility

Topological colorful Helly Theorem (Kalai-Meshulam '05):
X a d-collapsible complex on vertex set $V=V_{1} \cup V_{2} \cup \cdots \cup V_{d+1}$.
If $\left\{v_{1}, v_{2}, \ldots, v_{d+1}\right\} \in X$ for every choice of vertices
$v_{1} \in V_{1}, \ldots, v_{d+1} \in V_{d+1}$, then there exists some $1 \leq i \leq d+1$ such that $V_{i} \in X$.
Reminder: want to show:

$$
f_{G}(n) \leq C\left(I_{n}(G)\right)+1
$$

Proof sketch
Assume $C\left(I_{n}(G)\right)=d$.

Rainbow sets and collapsibility

Topological colorful Helly Theorem (Kalai-Meshulam '05):
X a d-collapsible complex on vertex set $V=V_{1} \cup V_{2} \cup \cdots \cup V_{d+1}$.
If $\left\{v_{1}, v_{2}, \ldots, v_{d+1}\right\} \in X$ for every choice of vertices
$v_{1} \in V_{1}, \ldots, v_{d+1} \in V_{d+1}$, then there exists some $1 \leq i \leq d+1$ such that $V_{i} \in X$.
Reminder: want to show:

$$
f_{G}(n) \leq C\left(I_{n}(G)\right)+1
$$

Proof sketch
Assume $C\left(I_{n}(G)\right)=d$.
Let $I_{1}, \ldots I_{d+1}$ a family of disjoint independent sets of size n in G, assume for contradiction there is no rainbow independent set of size n.

Rainbow sets and collapsibility

Topological colorful Helly Theorem (Kalai-Meshulam '05):
X a d-collapsible complex on vertex set $V=V_{1} \cup V_{2} \cup \cdots \cup V_{d+1}$.
If $\left\{v_{1}, v_{2}, \ldots, v_{d+1}\right\} \in X$ for every choice of vertices
$v_{1} \in V_{1}, \ldots, v_{d+1} \in V_{d+1}$, then there exists some $1 \leq i \leq d+1$ such that $V_{i} \in X$.
Reminder: want to show:

$$
f_{G}(n) \leq C\left(I_{n}(G)\right)+1
$$

Proof sketch
Assume $C\left(I_{n}(G)\right)=d$.
Let $I_{1}, \ldots I_{d+1}$ a family of disjoint independent sets of size n in G, assume for contradiction there is no rainbow independent set of size n.
That is, all rainbow sets belong to $I_{n}(G)$,

Rainbow sets and collapsibility

Topological colorful Helly Theorem (Kalai-Meshulam '05):
X a d-collapsible complex on vertex set $V=V_{1} \cup V_{2} \cup \cdots \cup V_{d+1}$.
If $\left\{v_{1}, v_{2}, \ldots, v_{d+1}\right\} \in X$ for every choice of vertices
$v_{1} \in V_{1}, \ldots, v_{d+1} \in V_{d+1}$, then there exists some $1 \leq i \leq d+1$ such that $V_{i} \in X$.
Reminder: want to show:

$$
f_{G}(n) \leq C\left(I_{n}(G)\right)+1
$$

Proof sketch
Assume $C\left(I_{n}(G)\right)=d$.
Let $I_{1}, \ldots I_{d+1}$ a family of disjoint independent sets of size n in G, assume for contradiction there is no rainbow independent set of size n.
That is, all rainbow sets belong to $I_{n}(G)$,
Therefore, by $\mathrm{K}-\mathrm{M}$, there exists $1 \leq j \leq d+1$ such that $l_{j} \in I_{n}(G)$.

Rainbow sets and collapsibility

Topological colorful Helly Theorem (Kalai-Meshulam '05):
X a d-collapsible complex on vertex set $V=V_{1} \cup V_{2} \cup \cdots \cup V_{d+1}$.
If $\left\{v_{1}, v_{2}, \ldots, v_{d+1}\right\} \in X$ for every choice of vertices
$v_{1} \in V_{1}, \ldots, v_{d+1} \in V_{d+1}$, then there exists some $1 \leq i \leq d+1$ such that $V_{i} \in X$.
Reminder: want to show:

$$
f_{G}(n) \leq C\left(I_{n}(G)\right)+1
$$

Proof sketch
Assume $C\left(I_{n}(G)\right)=d$.
Let $I_{1}, \ldots I_{d+1}$ a family of disjoint independent sets of size n in G, assume for contradiction there is no rainbow independent set of size n.
That is, all rainbow sets belong to $I_{n}(G)$,
Therefore, by $\mathrm{K}-\mathrm{M}$, there exists $1 \leq j \leq d+1$ such that $I_{j} \in I_{n}(G)$.
But l_{j} is an independent set of size n in G, a contradiction.

Collapsibility of $I_{n}(G)$

Theorem (Kim-L):
Let G be a chordal graph. Then

$$
C\left(I_{n}(G)\right) \leq n-1 .
$$

Collapsibility of $I_{n}(G)$

Theorem (Kim-L):
Let G be a chordal graph. Then

$$
C\left(I_{n}(G)\right) \leq n-1 .
$$

Theorem (Kim-L):
Let G be a k-colorable graph. Then

$$
C\left(I_{n}(G)\right) \leq k(n-1) .
$$

Collapsibility of $I_{n}(G)$

Theorem (Kim-L):
Let G be a chordal graph. Then

$$
C\left(I_{n}(G)\right) \leq n-1 .
$$

Theorem (Kim-L):
Let G be a k-colorable graph. Then

$$
C\left(I_{n}(G)\right) \leq k(n-1) .
$$

In fact, $\operatorname{dim}\left(I_{n}(G)\right) \leq k(n-1)-1$.

Collapsibility of $I_{n}(G)$

Theorem (Kim-L):
Let G be a chordal graph. Then

$$
C\left(I_{n}(G)\right) \leq n-1 .
$$

Theorem (Kim-L):
Let G be a k-colorable graph. Then

$$
C\left(I_{n}(G)\right) \leq k(n-1) .
$$

In fact, $\operatorname{dim}\left(I_{n}(G)\right) \leq k(n-1)-1$.
Theorem (Kim-L):
Let G be a graph with maximum degree at most Δ. Then

$$
C\left(I_{n}(G)\right) \leq \Delta(n-1)
$$

Collapsibility of $I_{n}(G)$

Theorem (Kim-L):
Let G be a chordal graph. Then

$$
C\left(I_{n}(G)\right) \leq n-1 .
$$

Theorem (Kim-L):
Let G be a k-colorable graph. Then

$$
C\left(I_{n}(G)\right) \leq k(n-1) .
$$

In fact, $\operatorname{dim}\left(I_{n}(G)\right) \leq k(n-1)-1$.
Theorem (Kim-L):
Let G be a graph with maximum degree at most Δ. Then

$$
C\left(I_{n}(G)\right) \leq \Delta(n-1)
$$

Last bound is not tight for $\Delta \geq 3$.

Collapsibility of $I_{n}(G)$ for bounded degree graphs

Theorem (Kim-L):
Let G be a graph with maximum degree at most Δ. Then

$$
C\left(I_{2}(G)\right) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil
$$

Collapsibility of $I_{n}(G)$ for bounded degree graphs

Theorem (Kim-L):
Let G be a graph with maximum degree at most Δ. Then

$$
C\left(I_{2}(G)\right) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil
$$

and

$$
C\left(I_{3}(G)\right) \leq \begin{cases}\Delta+2 & \text { if } \Delta \text { is even } \\ \Delta+1 & \text { if } \Delta \text { is odd }\end{cases}
$$

Collapsibility of $I_{n}(G)$ for bounded degree graphs

Theorem (Kim-L):
Let G be a graph with maximum degree at most Δ. Then

$$
C\left(I_{2}(G)\right) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil
$$

and

$$
C\left(I_{3}(G)\right) \leq \begin{cases}\Delta+2 & \text { if } \Delta \text { is even } \\ \Delta+1 & \text { if } \Delta \text { is odd }\end{cases}
$$

Since $f_{G}(n) \leq C\left(I_{n}(G)\right)+1$, we recover the bounds from ABKK, The following bound is new:

Collapsibility of $I_{n}(G)$ for bounded degree graphs

Theorem (Kim-L):
Let G be a graph with maximum degree at most Δ. Then

$$
C\left(I_{2}(G)\right) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil \text {, }
$$

and

$$
C\left(I_{3}(G)\right) \leq \begin{cases}\Delta+2 & \text { if } \Delta \text { is even }, \\ \Delta+1 & \text { if } \Delta \text { is odd. }\end{cases}
$$

Since $f_{G}(n) \leq C\left(I_{n}(G)\right)+1$, we recover the bounds from ABKK, The following bound is new:
Theorem (Kim-L):
Let G be a claw-free graph with maximum degree at most Δ. Then

$$
f_{G}(n) \leq\left\lfloor\left(\frac{\Delta}{2}+1\right)(n-1)\right\rfloor+1
$$

Collapsibility of $I_{n}(G)$ for bounded degree graphs

Conjecture:
Let G be a graph with maximum degree at most Δ. Then

$$
C\left(I_{n}(G)\right) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil(n-1)
$$

Collapsibility of $I_{n}(G)$ for bounded degree graphs

Conjecture:
Let G be a graph with maximum degree at most Δ. Then

$$
C\left(I_{n}(G)\right) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil(n-1)
$$

Holds for $\Delta=2$ and $n \leq 3$.

Collapsibility of $I_{n}(G)$ for bounded degree graphs

Conjecture:
Let G be a graph with maximum degree at most Δ. Then

$$
C\left(I_{n}(G)\right) \leq\left\lceil\frac{\Delta+1}{2}\right\rceil(n-1)
$$

Holds for $\Delta=2$ and $n \leq 3$.
But it is not true in general!

A counterexample for $\Delta=3$

For $\Delta=3$ we want: $C\left(I_{n}(G)\right) \leq 2(n-1)$.

A counterexample for $\Delta=3$

For $\Delta=3$ we want: $C\left(I_{n}(G)\right) \leq 2(n-1)$.

However, for the graph $G=$

we obtain for $n=8$

$$
C\left(I_{8}(G)\right) \geq 16>14=2(n-1) .
$$

A counterexample for $\Delta=3$

For $\Delta=3$ we want: $C\left(I_{n}(G)\right) \leq 2(n-1)$.

However, for the graph $G=$

we obtain for $n=8$

$$
C\left(I_{8}(G)\right) \geq 16>14=2(n-1)
$$

On the other hand

$$
f_{G}(8) \leq 11<2(n-1)+1 .
$$

Thank you!

