Representability and boxicity of simplicial complexes

Alan Lew
Technion – Israel Institute of Technology

Bar-Ilan University Combinatorics Seminar
December 2020
Boxicity

Interval graph = intersection graph of a family of intervals in \(\mathbb{R} \).
Interval graph = intersection graph of a family of intervals in \mathbb{R}.

Boxicity

Let G be a graph. $\text{box}(G) = \text{minimal } k \text{ such that } G \text{ is the intersection of } k \text{ interval graphs.}$

$\text{box}(G) = 1 \iff G \text{ is an interval graph.}$
Boxicity

Interval graph = intersection graph of a family of intervals in \mathbb{R}.
Boxicity

Interval graph = intersection graph of a family of intervals in \mathbb{R}.

Let G be a graph.

$\text{box}(G) = \text{minimal } k \text{ such that } G \text{ is the intersection of } k \text{ interval graphs.}$

$\text{box}(G) = 1 \iff G \text{ is an interval graph.}$
Boxicity

Interval graph = intersection graph of a family of intervals in \mathbb{R}.

Let G be a graph.

$\text{box}(G) = \text{minimal } k \text{ such that } G \text{ is the intersection of } k \text{ interval graphs.}$
Boxicity

Interval graph = intersection graph of a family of intervals in \mathbb{R}.

Let G be a graph.
$\text{box}(G) =$ minimal k such that G is the intersection of k interval graphs.

- $\text{box}(G) = 1 \iff G$ is an interval graph.
Boxicity- Example

Let G be the cycle of length 4.
Let G be the cycle of length 4.
Let G be the cycle of length 4.

Easy to check- G is not an interval graph
Boxicity- Example

Let G be the cycle of length 4.

$$\text{box}(G) = ?$$

Easy to check- G is not an interval graph (so $\text{box}(G) > 1$).
Boxicity- Example

Let G be the cycle of length 4.

Easy to check- G is not an interval graph (so $\text{box}(G) > 1$).
Boxicity- Example

Let G be the cycle of length 4.

$\text{box}(G) = ?$

Easy to check- G is not an interval graph (so $\text{box}(G) > 1$).
Boxicity- Example

Let G be the cycle of length 4.

\[\text{box}(G) = ? \]

Easy to check- G is not an interval graph (so $\text{box}(G) > 1$).
Boxicity- Example

Let G be the cycle of length 4.

Easy to check- G is not an interval graph (so $\text{box}(G) > 1$).
Bobicity- Example

Let G be the cycle of length 4.

$\text{box}(G) = 2$

Easy to check- G is not an interval graph (so $\text{box}(G) > 1$).
Bovicity- An equivalent definition

$\text{box}(G) \leq k \iff G$ is the intersection graph of a family of axis-parallel boxes in \mathbb{R}^k.
Boxicity- An equivalent definition

\[\text{box}(G) \leq k \iff G \text{ is the intersection graph of a family of axis-parallel boxes in } \mathbb{R}^k. \]

Example
Boxicity- An equivalent definition

\[\text{box}(G) \leq k \iff G \text{ is the intersection graph of a family of axis-parallel boxes in } \mathbb{R}^k. \]

Example
Boxicity- An equivalent definition

\[\text{box}(G) \leq k \iff G \text{ is the intersection graph of a family of axis-parallel boxes in } \mathbb{R}^k. \]

Example
Boxicity- Roberts’ Theorem

Theorem (Roberts ’69, Witsenhausen ’80)

Let G be a graph on n vertices. Then

$$\text{box}(G) \leq \left\lfloor \frac{n}{2} \right\rfloor.$$
Theorem (Roberts ’69, Witsenhausen ’80)

Let G be a graph on n vertices. Then

$$\text{box}(G) \leq \left\lfloor \frac{n}{2} \right\rfloor.$$

Moreover, $\text{box}(G) = \frac{n}{2}$ if and only if G is the complete $\frac{n}{2}$-partite graph with sides of size 2.
Boxicity- Roberts’ Theorem

Theorem (Roberts ’69, Witsenhausen ’80)

Let G be a graph on n vertices. Then

$$\text{box}(G) \leq \left\lfloor \frac{n}{2} \right\rfloor.$$

Moreover, $\text{box}(G) = \frac{n}{2}$ if and only if G is the complete $\frac{n}{2}$-partite graph with sides of size 2.
Representability

Let $\mathcal{F} = \{F_1, \ldots, F_n\}$ be a family of sets.
Let $\mathcal{F} = \{F_1, \ldots, F_n\}$ be a family of sets. The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:
Let $\mathcal{F} = \{F_1, \ldots, F_n\}$ be a family of sets. The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:

- A vertex is assigned to each set of the family.
Let $\mathcal{F} = \{F_1, \ldots, F_n\}$ be a family of sets. The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:

- A vertex is assigned to each set of the family.
- Simplices correspond to subfamilies with non-empty intersection.
Let $\mathcal{F} = \{F_1, \ldots, F_n\}$ be a family of sets. The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:

- A vertex is assigned to each set of the family.
- Simplices correspond to subfamilies with non-empty intersection.
Let $\mathcal{F} = \{F_1, \ldots, F_n\}$ be a family of sets. The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:

- A vertex is assigned to each set of the family.
- Simplices correspond to subfamilies with non-empty intersection.

d-Representable complex = nerve of a family of convex sets in \mathbb{R}^d.

\[\mathcal{F} = \ldots \]
Let $\mathcal{F} = \{F_1, \ldots, F_n\}$ be a family of sets. The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:
- A vertex is assigned to each set of the family.
- Simplices correspond to subfamilies with non-empty intersection.
Representability

Let $\mathcal{F} = \{F_1, \ldots, F_n\}$ be a family of sets. The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:

- A vertex is assigned to each set of the family.
- Simplices correspond to subfamilies with non-empty intersection.

d-Representable complex = nerve of a family of convex sets in \mathbb{R}^d.
Representability- Important properties

Helly's Theorem
Let C_1, \ldots, C_m be a family of convex sets in \mathbb{R}^d.
Representability- Important properties

Helly’s Theorem

Let C_1, \ldots, C_m be a family of convex sets in \mathbb{R}^d. If any $d + 1$ sets have non-empty intersection, then $\bigcap_{i=1}^{m} C_i \neq \emptyset$.
Representability- Important properties

Helly’s Theorem

Let C_1, \ldots, C_m be a family of convex sets in \mathbb{R}^d. If any $d + 1$ sets have non-empty intersection, then $\bigcap_{i=1}^{m} C_i \neq \emptyset$.

Helly’s Theorem
Let C_1, \ldots, C_m be a family of convex sets in \mathbb{R}^d. If any $d + 1$ sets have non-empty intersection, then $\bigcap_{i=1}^{m} C_i \neq \emptyset$.

\[\text{Homology of a } d\text{-representable complex:} \]
Let X be d-representable. Then, for any $k \geq d$, the k-th homology group of X vanishes. This is a consequence of the Nerve Theorem: The homology of $N(F)$ is the same as that of the union of $\bigcup_{C \in F} C$.

\[\]
Representability - Important properties

Helly’s Theorem
Let C_1, \ldots, C_m be a family of convex sets in \mathbb{R}^d. If any $d + 1$ sets have non-empty intersection, then $\bigcap_{i=1}^{m} C_i \neq \emptyset$.

Homology of a d-representable complex:
Let X be d-representable. Then, for any $k \geq d$, the k-th homology group of X vanishes.
Representability- Important properties

Helly’s Theorem
Let C_1, \ldots, C_m be a family of convex sets in \mathbb{R}^d. If any $d + 1$ sets have non-empty intersection, then $\cap_{i=1}^m C_i \neq \emptyset$.

Homology of a d-representable complex:
Let X be d-representable. Then, for any $k \geq d$, the k-th homology group of X vanishes.
This is a consequence of the Nerve Theorem: The homology of $N(\mathcal{F})$ is the same as that of the union of $\bigcup_{C \in \mathcal{F}} C$.
Representability- Important properties

Helly’s Theorem

Let C_1, \ldots, C_m be a family of convex sets in \mathbb{R}^d. If any $d+1$ sets have non-empty intersection, then $\bigcap_{i=1}^m C_i \neq \emptyset$.

Homology of a d-representable complex:

Let X be d-representable. Then, for any $k \geq d$, the k-th homology group of X vanishes. This is a consequence of the Nerve Theorem: The homology of $N(\mathcal{F})$ is the same as that of the union of $\bigcup_{C \in \mathcal{F}} C$.

\[
\mathcal{F} = \begin{align*}
\text{and} \quad N(\mathcal{F}) = \begin{cases}
\text{triangle} \\
\text{pentagon}
\end{cases}
\end{align*}
\]
Representability - Important properties

Helly’s Theorem
Let C_1, \ldots, C_m be a family of convex sets in \mathbb{R}^d. If any $d + 1$ sets have non-empty intersection, then $\bigcap_{i=1}^m C_i \neq \emptyset$.

Homology of a d-representable complex:
Let X be d-representable. Then, for any $k \geq d$, the k-th homology group of X vanishes. This is a consequence of the Nerve Theorem: The homology of $N(\mathcal{F})$ is the same as that of the union of $\bigcup_{C \in \mathcal{F}} C$.
Boxicity in terms of representability

The **clique complex** \(X(G) \)
of graph \(G = (V,E) \):
Boxicity in terms of representability

The **clique complex** $X(G)$ of graph $G = (V, E)$:
Vertex set: V,

\[\text{box}(G) \leq k \text{ if and only if } X(G) \text{ can be written as the intersection of } k \text{ 1-representable complexes}. \]

(Follows from fact that $G = G_1 \cap \cdots \cap G_k$ iff $X(G) = X(G_1) \cap \cdots \cap X(G_k)$.)
Boxicity in terms of representability

The **clique complex** $X(G)$ of graph $G = (V, E)$:

- **Vertex set**: V,
- **Simplices**: all cliques of G.

$\text{box}(G) \leq k$ if and only if $X(G)$ can be written as the intersection of k 1-representable complexes.

(Follows from fact that $G = G_1 \cap \cdots \cap G_k$ iff $X(G) = X(G_1) \cap \cdots \cap X(G_k)$.)
Boxicity in terms of representability

The **clique complex** \(X(G) \) of graph \(G = (V, E) \):
- Vertex set: \(V \),
- Simplices: all cliques of \(G \).

\[\text{Boxicity } \text{of } G = \text{the minimum integer } k \text{ such that } G \text{ is } k-representable. \]
Boxicity in terms of representability

The clique complex $X(G)$ of graph $G = (V, E)$:
- Vertex set: V,
- Simplices: all cliques of G.

\[\text{Boxicity: } \text{box}(G) \leq k \text{ if and only if } X(G) \text{ can be written as the intersection of } k \text{ 1-representable complexes.} \]

(Follows from fact that $G = G_1 \cap \cdots \cap G_k$ iff $X(G) = X(G_1) \cap \cdots \cap X(G_k)$.)
Boxicity in terms of representability

The **clique complex** $X(G)$ of graph $G = (V, E)$:
- Vertex set: V,
- Simplices: all cliques of G.

- **1-Representable complex** = Nerve of a family of intervals

\[
\text{box}(G) \leq k \text{ if and only if } X(G) \text{ can be written as the intersection of } k \text{ 1-representable complexes.}
\]
Boxicity in terms of representability

The **clique complex** $X(G)$ of graph $G = (V, E)$:
- Vertex set: V,
- Simplices: all cliques of G.

- **1-Representable complex** = Nerve of a family of intervals
 = **Clique complex** of an interval graph.

$\text{box}(G) \leq k$ if and only if $X(G)$ can be written as the intersection of k 1-representable complexes.

(Follows from fact that $G = G_1 \cap \cdots \cap G_k$ iff $X(G) = X(G_1) \cap \cdots \cap X(G_k)$.)
Boxicity in terms of representability

The **clique complex** $X(G)$ of graph $G = (V, E)$:
- Vertex set: V,
- Simplices: all cliques of G.

- **1-Representable complex** = Nerve of a family of intervals
 = **Clique complex** of an interval graph.
Boxicity in terms of representability

The **clique complex** $X(G)$ of graph $G = (V, E)$:
- **Vertex set**: V,
- **Simplices**: all cliques of G.

- **1-Representable complex** = Nerve of a family of intervals
 = **Clique complex** of an interval graph.
Boxicity in terms of representability

The **clique complex** $X(G)$ of graph $G = (V, E)$:
- Vertex set: V,
- Simplices: all cliques of G.

- **1-Representable complex** = Nerve of a family of intervals
 = Clique complex of an interval graph.

$\text{box}(G) \leq k$ if and only if $X(G)$ can be written as the intersection of k 1-representable complexes.

(Follows from fact that $G = G_1 \cap \ldots \cap G_k$ iff $X(G) = X(G_1) \cap \ldots \cap X(G_k)$.)
Boxicity in terms of representability

The **clique complex** \(X(G) \) of graph \(G = (V, E) \):
- Vertex set: \(V \),
- Simplices: all cliques of \(G \).

- **1-Representable complex** = Nerve of a family of intervals
 = Clique complex of an interval graph.

- \(\text{box}(G) \leq k \) if and only if \(X(G) \) can be written as the intersection of \(k \) 1-representable complexes.
Boxicity in terms of representability

The clique complex $X(G)$ of graph $G = (V, E)$:
Vertex set: V,
Simplices: all cliques of G.

- **1-Representable complex** = Nerve of a family of intervals
 = Clique complex of an interval graph.

- $\text{box}(G) \leq k$ if and only if $X(G)$ can be written as the
 intersection of k 1-representable complexes. (Follows from fact
 that $G = G_1 \cap \cdots \cap G_k$ iff $X(G) = X(G_1) \cap \cdots \cap X(G_k)$.)
d-Boxicity

Let X be a simplicial complex.
Let X be a simplicial complex.

$$box_d(X) = \text{minimal } k \text{ such that } X \text{ is the intersection of } k d\text{-representable complexes.}$$
Let X be a simplicial complex.

$\text{box}_d(X) = \text{minimal } k \text{ such that } X \text{ is the intersection of } k$

d-representable complexes.

$\bullet \text{box}(G) = \text{box}_1(X(G))$, where $X(G)$ is the clique complex of G.

d-Boxicity

$H_2(X) \neq 0 \Rightarrow X \text{ is not } 2\text{-representable}$

$\text{box}_2(X) = 2$
d-Boxicity

Let X be a simplicial complex.

$\text{box}_d(X) =$ minimal k such that X is the intersection of k d-representable complexes.

$\bullet \text{box}(G) = \text{box}_1(X(G))$, where $X(G)$ is the clique complex of G.

Example ($d = 2$):

[Diagram of a simplicial complex X]
d-Boxicity

Let X be a simplicial complex.

\[\text{box}_d(X) = \text{minimal } k \text{ such that } X \text{ is the intersection of } k \text{ } d\text{-representable complexes.} \]

- $\text{box}(G) = \text{box}_1(X(G))$, where $X(G)$ is the clique complex of G.

Example (d = 2):

\[H_2(X) = \mathbb{Z} \neq 0 \]
d-Boxicity

Let X be a simplicial complex.

\[\text{box}_d(X) = \text{minimal } k \text{ such that } X \text{ is the intersection of } k \text{ } d\text{-representable complexes.} \]

\[\text{box}(G) = \text{box}_1(X(G)), \text{ where } X(G) \text{ is the clique complex of } G. \]

Example (d = 2):

\[H_2(X) = \mathbb{Z} \neq 0 \]

\[\implies X \text{ is not 2-representable} \]
d-Boxicity

Let X be a simplicial complex.

$$\text{box}_d(X) = \text{minimal } k \text{ such that } X \text{ is the intersection of } k \text{ } d\text{-representable complexes.}$$

- $\text{box}(G) = \text{box}_1(X(G))$, where $X(G)$ is the **clique complex** of G.

Example ($d = 2$):

$$H_2(X) = \mathbb{Z} \neq 0 \quad \implies \quad X \text{ is not 2-representable}$$
d-Boxicity

Let X be a simplicial complex.

$\text{box}_d(X) = \text{minimal } k \text{ such that } X \text{ is the intersection of } k$

d-representable complexes.

$\bullet \text{box}(G) = \text{box}_1(X(G))$, where $X(G)$ is the **clique complex** of G.

Example ($d = 2$):

$X = \begin{array}{c}
\begin{array}{c}
\text{Box } \text{complexes intersecting to form } X
\end{array}
\end{array}$

$H_2(X) = \mathbb{Z} \neq 0$

$\implies X$ is not 2-representable

$\text{box}_2(X) = 2$
Missing faces

Let X be a simplicial complex on vertex set V.

$h(X) = \text{maximum dimension of a missing face.}$

• X is the clique complex of a graph $\iff h(X) = 1$ (missing faces are the edges of the complement graph of G).
Missing faces

Let X be a simplicial complex on vertex set V.
$\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$.

$h(X) = \text{maximum dimension of a missing face.}$

X is the clique complex of a graph $\iff h(X) = 1$ (missing faces are the edges of the complement graph of G).
Missing faces

Let X be a simplicial complex on vertex set V. $\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$. $h(X) =$ maximum dimension of a missing face.
Missing faces

Let X be a simplicial complex on vertex set V. $	au \subset V$ is a **missing face** of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$. $h(X) = \text{maximum dimension of a missing face.}$
Missing faces

Let X be a simplicial complex on vertex set V.

$	au \subset V$ is a missing face of X if $\tau \not\in X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$.

$h(X) = \text{maximum dimension of a missing face.}$
Missing faces

Let X be a simplicial complex on vertex set V. $\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$. $h(X) = \text{maximum dimension of a missing face.}$
Missing faces

Let X be a simplicial complex on vertex set V. $	au \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$. $h(X)$ = maximum dimension of a missing face.
Missing faces

Let X be a simplicial complex on vertex set V.
$	au \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subset \tau$.

$h(X) =$ maximum dimension of a missing face.

- X is the clique complex of a graph $\iff h(X) = 1$
Missing faces

Let X be a simplicial complex on vertex set V. $\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subset \tau$. $h(X) = \text{maximum dimension of a missing face.}$

$h(X) = 2$

- X is the clique complex of a graph $\iff h(X) = 1$ (missing faces are the edges of the complement graph of G).
Claim: If X is d-representable, then $h(X) \leq d$.
Claim: If X is d-representable, then $h(X) \leq d$.

Proof: Let $X = N(\mathcal{F})$.
Claim: If X is d-representable, then $h(X) \leq d$.

Proof: Let $X = N(\mathcal{F})$.
Assume for contradiction that there is a missing face τ of dimension $d + 1$.

Fact: If $X = X_1 \cap \cdots \cap X_k$, then $h(X) \leq \max\{h(X_i) : i = 1, \ldots, k\}$.

As a consequence:
If $\text{box}_d(X) < \infty$ then $h(X) \leq d$.
Claim: If X is d-representable, then $h(X) \leq d$.

Proof: Let $X = N(\mathcal{F})$.
Assume for contradiction that there is a missing face τ of dimension $d + 1$.
This corresponds to a family of sets $F_1, \ldots, F_{d+2} \in \mathcal{F}$, such that any $d + 1$ of them intersect, but $\cap_{i=1}^{d+2} F_i = \emptyset$.
Claim: If X is d-representable, then $h(X) \leq d$.

Proof: Let $X = N(\mathcal{F})$. Assume for contradiction that there is a missing face τ of dimension $d + 1$. This corresponds to a family of sets $F_1, \ldots, F_{d+2} \in \mathcal{F}$, such that any $d + 1$ of them intersect, but $\cap_{i=1}^{d+2} F_i = \emptyset$. This is a contradiction to Helly’s Theorem.
Claim: If X is d-representable, then $h(X) \leq d$.

Proof: Let $X = N(F)$.
Assume for contradiction that there is a missing face τ of dimension $d + 1$.
This corresponds to a family of sets $F_1, \ldots, F_{d+2} \in F$, such that any $d + 1$ of them intersect, but $\cap_{i=1}^{d+2} F_i = \emptyset$. This is a contradiction to Helly's Theorem.

Fact: If $X = X_1 \cap \cdots \cap X_k$, then

$$h(X) \leq \max \{ h(X_i) : i = 1, \ldots, k \}.$$
Claim: If X is d-representable, then $h(X) \leq d$.

Proof: Let $X = N(F)$. Assume for contradiction that there is a missing face τ of dimension $d + 1$. This corresponds to a family of sets $F_1, \ldots, F_{d+2} \in \mathcal{F}$, such that any $d + 1$ of them intersect, but $\bigcap_{i=1}^{d+2} F_i = \emptyset$. This is a contradiction to Helly’s Theorem.

Fact: If $X = X_1 \cap \cdots \cap X_k$, then

$$h(X) \leq \max\{h(X_i) : i = 1, \ldots, k\}.$$

As a consequence:
Claim: If \(X \) is \(d \)-representable, then \(h(X) \leq d \).

Proof: Let \(X = N(\mathcal{F}) \).
Assume for contradiction that there is a missing face \(\tau \) of dimension \(d + 1 \).
This corresponds to a family of sets \(F_1, \ldots, F_{d+2} \in \mathcal{F} \), such that
any \(d + 1 \) of them intersect, but \(\cap_{i=1}^{d+2} F_i = \emptyset \).
This is a contradiction to Helly's Theorem.

Fact: If \(X = X_1 \cap \cdots \cap X_k \), then
\[
h(X) \leq \max\{h(X_i) : i = 1, \ldots, k\}.
\]

As a consequence:
If \(\text{box}_d(X) < \infty \) then \(h(X) \leq d \).
Steiner Systems

\[\mathcal{F} = \text{family of subsets of size } k \text{ of a set } V \text{ of size } n. \]
Steiner Systems

\[\mathcal{F} = \text{family of subsets of size } k \text{ of a set } V \text{ of size } n. \]

- If any subset of \(V \) of size \(t \) is contained in exactly one set of \(\mathcal{F} \), \(\mathcal{F} \) is a Steiner \((t, k, n)\)-system.

Example: Steiner triple systems \((2, 3, n)\)-systems

Any 2 vertices are contained in exactly one triple.

Example: Steiner \((1, 2, n)\)-system

Keevash (’14): For infinitely many values of \(n \), Steiner \((t, k, n)\)-systems exist.
Steiner Systems

\(\mathcal{F} \) = family of subsets of size \(k \) of a set \(V \) of size \(n \).

- If any subset of \(V \) of size \(t \) is contained in exactly one set of \(\mathcal{F} \),
 \(\mathcal{F} \) is a Steiner \((t, k, n)\)-system.

Example: Steiner triple systems \(((2, 3, n)\)-systems)

Any 2 vertices are contained in exactly one triple.

Example: Steiner \((1, 2, n)\)-system

Keevash ('14): For infinitely many values of \(n \), Steiner \((t, k, n)\)-systems exist.
Steiner Systems

\(\mathcal{F} \) = family of subsets of size \(k \) of a set \(V \) of size \(n \).

- If any subset of \(V \) of size \(t \) is contained in exactly one set of \(\mathcal{F} \), \(\mathcal{F} \) is a Steiner \((t, k, n)\)-system.

Example: Steiner triple systems \(((2, 3, n)\)-systems\)

Any 2 vertices are contained in exactly one triple.
Steiner Systems

\[F = \text{family of subsets of size } k \text{ of a set } V \text{ of size } n. \]

- If any subset of \(V \) of size \(t \) is contained in exactly one set of \(F \), \(F \) is a Steiner \((t, k, n)\)-system.

Example: Steiner triple systems \(((2, 3, n)\)-systems) \(\)

Any 2 vertices are contained in exactly one triple.
Steiner Systems

\[\mathcal{F} = \text{family of subsets of size } k \text{ of a set } V \text{ of size } n. \]

- If any subset of \(V \) of size \(t \) is contained in exactly one set of \(\mathcal{F} \), \(\mathcal{F} \) is a **Steiner \((t, k, n)\)-system**.

Example: Steiner triple systems (\((2, 3, n)\)-systems)

Any 2 vertices are contained in exactly one triple.

Example: Steiner \((1, 2, n)\)-system
Steiner Systems

\(\mathcal{F} = \) family of subsets of size \(k \) of a set \(V \) of size \(n \).

- If any subset of \(V \) of size \(t \) is contained in exactly one set of \(\mathcal{F} \), \(\mathcal{F} \) is a Steiner \((t, k, n)\)-system.

Example: Steiner triple systems \(((2, 3, n)\)-systems)

Any 2 vertices are contained in exactly one triple.

Example: Steiner \((1, 2, n)\)-system

- Keevash ('14): For infinitely many values of \(n \), Steiner \((t, k, n)\)-systems exist.
Previously known results

Theorem (Witsenhausen '80):

Let X be a simplicial complex with n vertices satisfying $h(X) = d$. Then

$$\text{box}_d(X) \leq \left\lfloor \frac{1}{2} \binom{n}{d} \right\rfloor.$$
Previously known results

Theorem (Witsenhausen '80):

Let X be a simplicial complex with n vertices satisfying $h(X) = d$. Then

$$\text{box}_d(X) \leq \left\lfloor \frac{1}{2} \binom{n}{d} \right\rfloor.$$

If the missing faces of X form a Steiner triple system, then

$$\text{box}_2(X) \geq \frac{1}{3} \binom{n}{2}.$$
Previously known results

Theorem (Witsenhausen '80):
Let X be a simplicial complex with n vertices satisfying $h(X) = d$. Then

$$\text{box}_d(X) \leq \left\lfloor \frac{1}{2} \binom{n}{d} \right\rfloor.$$

If the missing faces of X form a Steiner triple system, then

$$\text{box}_2(X) \geq \frac{1}{3} \binom{n}{2}.$$
Main result

Theorem (L. ’20):
Let X be a simplicial complex with n vertices satisfying $h(X) = d$. Then

$$\text{box}_d(X) \leq \left\lfloor \frac{1}{d + 1} \binom{n}{d} \right\rfloor.$$

Remarks.

- For $d = 1$, we recover Roberts’ Theorem.
- For $d \geq 2$, this improves previous bounds due to Witsenhausen.
Main result

Theorem (L. ’20):
Let X be a simplicial complex with n vertices satisfying $h(X) = d$. Then

$$
\text{box}_d(X) \leq \left\lfloor \frac{1}{d + 1} \binom{n}{d} \right\rfloor.
$$

Moreover, $\text{box}_d(X) = \frac{1}{d + 1} \binom{n}{d}$ if and only if the missing faces of X form a Steiner $(d, d + 1, n)$-system.
Main result

Theorem (L. '20):

Let X be a simplicial complex with n vertices satisfying $h(X) = d$. Then

$$\text{box}_d(X) \leq \left\lfloor \frac{1}{d+1} \binom{n}{d} \right\rfloor.$$

Moreover, $\text{box}_d(X) = \frac{1}{d+1} \binom{n}{d}$ if and only if the missing faces of X form a Steiner $(d, d + 1, n)$-system.
Main result

Theorem (L. '20):
Let X be a simplicial complex with n vertices satisfying $h(X) = d$. Then

$$\text{box}_d(X) \leq \left\lfloor \frac{1}{d+1} \binom{n}{d} \right\rfloor.$$

Moreover, $\text{box}_d(X) = \frac{1}{d+1} \binom{n}{d}$ if and only if the missing faces of X form a Steiner $(d, d+1, n)$-system.

Remarks.
- For $d = 1$, we recover Roberts’ Theorem.
Main result

Theorem (L. ’20):

Let X be a simplicial complex with n vertices satisfying $h(X) = d$. Then

$$\text{box}_d(X) \leq \left\lfloor \frac{1}{d+1} \binom{n}{d} \right\rfloor.$$

Moreover, $\text{box}_d(X) = \frac{1}{d+1} \binom{n}{d}$ if and only if the missing faces of X form a Steiner $(d, d + 1, n)$-system.

Remarks.

- For $d = 1$, we recover Roberts’ Theorem.
- For $d \geq 2$, this improves previous bounds due to Witsenhausen.
A bound on representability

A main ingredient in the proof of the bound $\text{box}_d(X) \leq \left\lfloor \frac{1}{d+1} \binom{n}{d} \right\rfloor$ is the following result:
A bound on representability

A main ingredient in the proof of the bound $\boxd(X) \leq \left\lfloor \frac{1}{d+1} \binom{n}{d} \right\rfloor$ is the following result:

Theorem (L. ’20):
Let X be a simplicial complex on vertex set V.

Let X be a simplicial complex on vertex set V. Then, X is $(|U| - 1)$-representable.
A bound on representability

A main ingredient in the proof of the bound \(\text{box}_d(X) \leq \left\lfloor \frac{1}{d+1} \binom{n}{d} \right\rfloor \) is the following result:

Theorem (L. ’20):

Let \(X \) be a simplicial complex on vertex set \(V \). Let \(U \subset V \) such that \(U \notin X \),
A bound on representability

A main ingredient in the proof of the bound $\text{box}_d(X) \leq \left\lfloor \frac{1}{d+1} \binom{n}{d} \right\rfloor$ is the following result:

Theorem (L. ’20):

Let X be a simplicial complex on vertex set V. Let $U \subset V$ such that $U \notin X$, and for every missing face τ of X, $|\tau \setminus U| \leq 1$.
A bound on representability

A main ingredient in the proof of the bound $\text{box}_d(X) \leq \left\lfloor \frac{1}{d+1} \binom{n}{d} \right\rfloor$ is the following result:

Theorem (L. ’20):

Let X be a simplicial complex on vertex set V. Let $U \subset V$ such that $U \notin X$, and for every missing face τ of X, $|\tau \setminus U| \leq 1$. Then, X is $(|U| - 1)$-representable.
A bound on representability

A main ingredient in the proof of the bound $\text{box}_d(X) \leq \left\lfloor \frac{1}{d+1} \binom{n}{d} \right\rfloor$ is the following result:

Theorem (L. '20):

Let X be a simplicial complex on vertex set V. Let $U \subseteq V$ such that $U \notin X$, and for every missing face τ of X, $|\tau \setminus U| \leq 1$. Then, X is $(|U| - 1)$-representable.
A bound on representability

A main ingredient in the proof of the bound $\text{box}_d(X) \leq \left\lfloor \frac{1}{d+1} \binom{n}{d} \right\rfloor$ is the following result:

Theorem (L. '20):

Let X be a simplicial complex on vertex set V. Let $U \subset V$ such that $U \notin X$, and for every missing face τ of X, $|\tau \setminus U| \leq 1$. Then, X is $(|U| - 1)$-representable.
A bound on representability

A main ingredient in the proof of the bound $\text{box}_d(X) \leq \left\lfloor \frac{1}{d+1} \binom{n}{d} \right\rfloor$ is the following result:

Theorem (L. ’20):

Let X be a simplicial complex on vertex set V. Let $U \subset V$ such that $U \notin X$, and for every missing face τ of X, $|\tau \setminus U| \leq 1$. Then, X is $(|U| - 1)$-representable.

Missing faces:

\[
X = \begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
U
\end{array}
\]

\[
\text{Missing faces:}
\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5
\end{array}
\]
A bound on representability

A main ingredient in the proof of the bound \(\text{box}_d(X) \leq \left\lfloor \frac{1}{d+1} \binom{n}{d} \right\rfloor \) is the following result:

Theorem (L. ’20):
Let \(X \) be a simplicial complex on vertex set \(V \). Let \(U \subset V \) such that \(U \notin X \), and for every missing face \(\tau \) of \(X \), \(|\tau \setminus U| \leq 1\). Then, \(X \) is \((|U| - 1)\)-representable.

\[X = \begin{matrix}
1 & 3 & 5 \\
2 & 4 & U
\end{matrix} \quad \begin{matrix}
1 & 3 & 4 & 5 \\
2 & 3 & 5 & 4
\end{matrix} \]

\[\implies X \text{ is 2-representable.} \]
A bound on representability– Example

$X = \begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
\end{array}$

Missing faces:

$\begin{array}{c}
1 \\
2 \\
3 \\
4 \\
5 \\
\end{array}$
A bound on representability—Example

\[X = \]

Missing faces:

\[F_2 \quad F_4 \quad F_5 \]
A bound on representability—Example

\[X = \]

Missing faces:

- \(F_2 \)
- \(F_5 \)
- \(F_4 \)
A bound on representability – Example

\[X = \]

\[\text{Missing faces:} \]

\[F_2 \quad F_1 \quad F_4 \quad F_5 \]
A bound on representability – Example

\[X = \]

\begin{align*}
&F_2 \\ &F_1 \\ &F_5 \\
\end{align*}

Missing faces:
A bound on representability – Example

\[X = \]

Missing faces:

\[F_2 \]
\[F_3 \]
\[F_4 \]
\[F_5 \]
A bound on representability—Example

\[X = \]

\[\text{Missing faces:} \]

\[F_2 \]

\[F_3 \]

\[F_4 \]

\[F_5 \]
A bound on representability – Example

\[X = \]

Missing faces:

\[F_5 \]

\[F_4 \]

\[F_3 \]

\[F_2 \]

\[F_1 \]
A bound on representability

The construction used in the proof is based on ideas by Wegner.
A bound on representability

The construction used in the proof is based on ideas by Wegner. In fact, it can be seen as an extension of the following:

Theorem (Wegner ’67):

Let X be a simplicial complex with n vertices. Then X is $(n - 1)$-representable.

Moreover, if X is not the boundary of an $(n - 1)$-dimensional simplex, then it is $(n - 2)$-representable.
A bound on representability

The construction used in the proof is based on ideas by Wegner. In fact, it can be seen as an extension of the following:

Theorem (Wegner ’67):
Let X be a simplicial complex with n vertices. Then X is $(n - 1)$-representable.
Moreover, if X is not the boundary of an $(n - 1)$-dimensional simplex, then it is $(n - 2)$-representable.
The extremal case

Let X be a simplicial complex on vertex set V.
The extremal case

Let X be a simplicial complex on vertex set V. For $U \subset V$, let $X[U] = \{ \sigma \in X : \sigma \subset U \}$ be the subcomplex of X induced by U.

- $H^k(X)$ be the k-th (reduced) homology group of X with coefficients in Q.
- If $H^k(X[U]) = 0$ for all $U \subset V$ and all $k \geq d$, X is called d-Leray.
- X is d-representable \Rightarrow X is d-Leray. (Since any induced subcomplex of X is also d-representable).

Theorem (L. ‘20): Let X be a simplicial complex whose set of missing faces M forms a Steiner $(d, d+1, n)$-system. Then, X cannot be written as the intersection of less than $1^{d+1}(nd)$ d-Leray complexes.

\Rightarrow box $d(X) = 1^{d+1}(nd)$.
The extremal case

Let X be a simplicial complex on vertex set V. For $U \subset V$, let $X[U] = \{ \sigma \in X : \sigma \subset U \}$ be the subcomplex of X induced by U.

- Let $H_k(X)$ be the k-th (reduced) homology group of X with coefficients in \mathbb{Q}.

• If $H_k(X[U]) = 0$ for all $U \subset V$ and all $k \geq d$, X is called d-Leray.

• X is d-representable \Rightarrow X is d-Leray. (Since any induced subcomplex of X is also d-representable).

Theorem (L. '20): Let X be a simplicial complex whose set of missing faces M forms a Steiner $(d, d+1, n)$-system. Then, X cannot be written as the intersection of less than $1^{d+1}(n^d)$ d-Leray complexes.

$\Rightarrow \bigotimes_{d}^{}(X) = 1^{d+1}(n^d)$.
The extremal case

Let X be a simplicial complex on vertex set V. For $U \subset V$, let $X[U] = \{ \sigma \in X : \sigma \subset U \}$ be the subcomplex of X induced by U.

- Let $H_k(X)$ be the k-th (reduced) homology group of X with coefficients in \mathbb{Q}.
- If $H_k(X[U]) = 0$ for all $U \subset V$ and all $k \geq d$, X is called d-Leray.
The extremal case

Let X be a simplicial complex on vertex set V. For $U \subset V$, let $X[U] = \{\sigma \in X : \sigma \subset U\}$ be the subcomplex of X induced by U.

- Let $H_k(X)$ be the k-th (reduced) homology group of X with coefficients in \mathbb{Q}.
- If $H_k(X[U]) = 0$ for all $U \subset V$ and all $k \geq d$, X is called d-Leray.
- X is d-representable $\implies X$ is d-Leray.

Theorem (L. '20):

Let X be a simplicial complex whose set of missing faces M forms a Steiner $(d, d+1, n)$-system. Then, X cannot be written as the intersection of less than $1^{d+1}(n^d)$ d-Leray complexes.

$\implies \text{box } d(X) = 1^{d+1}(n^d)$.
The extremal case

Let \(X \) be a simplicial complex on vertex set \(V \).

For \(U \subset V \), let \(X[U] = \{ \sigma \in X : \sigma \subset U \} \) be the subcomplex of \(X \) induced by \(U \).

- Let \(H_k(X) \) be the \(k \)-th (reduced) homology group of \(X \) with coefficients in \(\mathbb{Q} \).
- If \(H_k(X[U]) = 0 \) for all \(U \subset V \) and all \(k \geq d \), \(X \) is called \(d \)-Leray.
- \(X \) is \(d \)-representable \(\implies \) \(X \) is \(d \)-Leray.

(Since any induced subcomplex of \(X \) is also \(d \)-representable).
The extremal case

Let X be a simplicial complex on vertex set V. For $U \subset V$, let $X[U] = \{\sigma \in X : \sigma \subset U\}$ be the subcomplex of X induced by U.

- Let $H_k(X)$ be the k-th (reduced) homology group of X with coefficients in \mathbb{Q}.
- If $H_k(X[U]) = 0$ for all $U \subset V$ and all $k \geq d$, X is called d-Leray.
- X is d-representable $\implies X$ is d-Leray.

(Theorem (L. '20):

Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d + 1, n)$-system.
The extremal case

Let X be a simplicial complex on vertex set V. For $U \subset V$, let $X[U] = \{ \sigma \in X : \sigma \subset U \}$ be the subcomplex of X induced by U.

- Let $H_k(X)$ be the k-th (reduced) homology group of X with coefficients in \mathbb{Q}.
- If $H_k(X[U]) = 0$ for all $U \subset V$ and all $k \geq d$, X is called d-Leray.
- X is d-representable $\implies X$ is d-Leray.

(Theorem (L. ’20):

Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system. Then, X cannot be written as the intersection of less than $\frac{1}{d+1} \binom{n}{d}$ d-Leray complexes.
The extremal case

Let X be a simplicial complex on vertex set V. For $U \subset V$, let $X[U] = \{\sigma \in X : \sigma \subset U\}$ be the subcomplex of X induced by U.

- Let $H_k(X)$ be the k-th (reduced) homology group of X with coefficients in \mathbb{Q}.
- If $H_k(X[U]) = 0$ for all $U \subset V$ and all $k \geq d$, X is called d-Leray.
- X is d-representable $\implies X$ is d-Leray.
 (Since any induced subcomplex of X is also d-representable).

Theorem (L. ’20):

Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d + 1, n)$-system. Then, X cannot be written as the intersection of less than $\frac{1}{d+1}(\binom{n}{d})$ d-Leray complexes.

$\implies \text{box}_d(X) = \frac{1}{d+1}(\binom{n}{d})$.
A tool for computing homology:
Let K be a simplicial complex on vertex set W, and \mathcal{N} its set of missing faces.
The extremal case - Sketch of proof

A tool for computing homology:
Let K be a simplicial complex on vertex set W, and \mathcal{N} its set of missing faces. Define

$$\Gamma(K) = \left\{ \mathcal{N}' \subset \mathcal{N} : \bigcup_{\tau \in \mathcal{N}'} \tau \neq W \right\}.$$
The extremal case- Sketch of proof

A tool for computing homology:
Let \(K \) be a simplicial complex on vertex set \(W \), and \(\mathcal{N} \) its set of missing faces. Define

\[
\Gamma(K) = \left\{ \mathcal{N}' \subset \mathcal{N} : \bigcup_{\tau \in \mathcal{N}'} \tau \neq W \right\}.
\]

\[\text{Theorem (Björner, Butler, Matveev '97): If } K \text{ is not the complete complex on } W, \text{ then for all } j \geq 0 \]

\[H_j(K) \cong |W| - j - 3(\Gamma(K)).\]
The extremal case - Sketch of proof

A tool for computing homology:

Let K be a simplicial complex on vertex set W, and \mathcal{N} its set of missing faces. Define

$$\Gamma(K) = \left\{ \mathcal{N}' \subset \mathcal{N} : \bigcup_{\tau \in \mathcal{N}'} \tau \neq W \right\}.$$
The extremal case—Sketch of proof

A tool for computing homology:

Let K be a simplicial complex on vertex set W, and N its set of missing faces. Define

$$\Gamma(K) = \left\{ N' \subset N : \bigcup_{\tau \in N'} \tau \neq W \right\}.$$
The extremal case - Sketch of proof

A tool for computing homology:
Let K be a simplicial complex on vertex set W, and \mathcal{N} its set of missing faces. Define

$$\Gamma(K) = \left\{ \mathcal{N}' \subset \mathcal{N} : \bigcup_{\tau \in \mathcal{N}'} \tau \neq W \right\}.$$

Theorem (Björner, Butler, Matveev ’97):
If K is not the complete complex on W, then for all $j \geq 0$

$$H_j(K) \cong H_{|W|-j-3}(\Gamma(K)).$$
The extremal case- Sketch of proof

Theorem (L. ’20):

Let X be a simplicial complex whose set of missing faces M forms a Steiner $(d, d + 1, n)$-system. Then, X cannot be written as the intersection of less than $\frac{1}{d+1} \binom{n}{d}$ d-Leray complexes.
The extremal case- Sketch of proof

Theorem (L. ’20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system. Then, X cannot be written as the intersection of less than $\frac{1}{d+1} \binom{n}{d}$ d-Leray complexes.

Proof:
Assume for contradiction that $X = X_1 \cap \cdots \cap X_k$, where the X_i’s are d-Leray and $k < \frac{1}{d+1} \binom{n}{d}$.

\[\text{Fact: } M_i = \bigcup_{i=1}^{k} M_i. \]
\[\text{Since } |\mathcal{M}| = \frac{1}{d+1} \binom{n}{d} > k, \text{ there is some } i \text{ such that } |M_i| \geq 2. \]
\[\text{Choose } i \text{ and } \tau_1, \tau_2 \in M_i \text{ such that } |\tau_1 \cap \tau_2| \text{ is maximal.} \]
\[Y = X_i [\tau_1 \cup \tau_2]. \]
\[\text{Since } X_i \text{ is } d\text{-Leray, we must have } H_j(Y) = 0 \text{ for all } j \geq d. \]
The extremal case- Sketch of proof

Theorem (L. ’20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system.
Then, X cannot be written as the intersection of less than $\frac{1}{d+1} \binom{n}{d}$ d-Leray complexes.

Proof:
Assume for contradiction that $X = X_1 \cap \cdots \cap X_k$, where the X_i’s are d-Leray and $k < \frac{1}{d+1} \binom{n}{d}$.
Let \mathcal{M}_i be the set of missing faces of X_i.
The extremal case- Sketch of proof

Theorem (L. '20):
Let \(X \) be a simplicial complex whose set of missing faces \(\mathcal{M} \) forms a Steiner \((d, d+1, n)\)-system.
Then, \(X \) cannot be written as the intersection of less than \(\frac{1}{d+1} \binom{n}{d} \) \(d \)-Leray complexes.

Proof:
Assume for contradiction that \(X = X_1 \cap \cdots \cap X_k \), where the \(X_i \)'s are \(d \)-Leray and \(k < \frac{1}{d+1} \binom{n}{d} \).
Let \(\mathcal{M}_i \) be the set of missing faces of \(X_i \). Fact: \(\mathcal{M} = \bigcup_{i=1}^{k} \mathcal{M}_i \).
The extremal case- Sketch of proof

Theorem (L. ’20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system.
Then, X cannot be written as the intersection of less than $\frac{1}{d+1} \binom{n}{d}$ d-Leray complexes.

Proof:
Assume for contradiction that $X = X_1 \cap \cdots \cap X_k$, where the X_i’s are d-Leray and $k < \frac{1}{d+1} \binom{n}{d}$.
Let \mathcal{M}_i be the set of missing faces of X_i. **Fact:** $\mathcal{M} = \bigcup_{i=1}^{k} \mathcal{M}_i$.
Since $|\mathcal{M}| = \frac{1}{d+1} \binom{n}{d} > k$, there is some i such that $|\mathcal{M}_i| \geq 2$.
The extremal case- Sketch of proof

Theorem (L. ’20):
Let \(X\) be a simplicial complex whose set of missing faces \(\mathcal{M}\) forms a Steiner \((d, d+1, n)\)-system. Then, \(X\) cannot be written as the intersection of less than \(\frac{1}{d+1} \binom{n}{d}\) \(d\)-Leray complexes.

Proof:
Assume for contradiction that \(X = X_1 \cap \cdots \cap X_k\), where the \(X_i\)'s are \(d\)-Leray and \(k < \frac{1}{d+1} \binom{n}{d}\).
Let \(\mathcal{M}_i\) be the set of missing faces of \(X_i\). \textbf{Fact:} \(\mathcal{M} = \bigcup_{i=1}^{k} \mathcal{M}_i\).
Since \(|\mathcal{M}| = \frac{1}{d+1} \binom{n}{d} > k\), there is some \(i\) such that \(|\mathcal{M}_i| \geq 2\).
Choose \(i\) and \(\tau_1, \tau_2 \in \mathcal{M}_i\) such that \(|\tau_1 \cap \tau_2|\) is maximal.
The extremal case- Sketch of proof

Theorem (L. ’20):
Let X be a simplicial complex whose set of missing faces M forms a Steiner $(d, d + 1, n)$-system. Then, X cannot be written as the intersection of less than $\frac{1}{d+1} \binom{n}{d}$ d-Leray complexes.

Proof:
Assume for contradiction that $X = X_1 \cap \cdots \cap X_k$, where the X_i’s are d-Leray and $k < \frac{1}{d+1} \binom{n}{d}$.
Let M_i be the set of missing faces of X_i. **Fact:** $M = \bigcup_{i=1}^{k} M_i$.
Since $|M| = \frac{1}{d+1} \binom{n}{d} > k$, there is some i such that $|M_i| \geq 2$.
Choose i and $\tau_1, \tau_2 \in M_i$ such that $|\tau_1 \cap \tau_2|$ is maximal.
Let $Y = X_i[\tau_1 \cup \tau_2]$.

The extremal case- Sketch of proof

Theorem (L. ’20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d + 1, n)$-system.
Then, X cannot be written as the intersection of less than $\frac{1}{d+1} \binom{n}{d}$ d-Leray complexes.

Proof:
Assume for contradiction that $X = X_1 \cap \cdots \cap X_k$, where the X_i’s are d-Leray and $k < \frac{1}{d+1} \binom{n}{d}$.
Let \mathcal{M}_i be the set of missing faces of X_i. Fact: $\mathcal{M} = \bigcup_{i=1}^{k} \mathcal{M}_i$.
Since $|\mathcal{M}| = \frac{1}{d+1} \binom{n}{d} > k$, there is some i such that $|\mathcal{M}_i| \geq 2$.
Choose i and $\tau_1, \tau_2 \in \mathcal{M}_i$ such that $|\tau_1 \cap \tau_2|$ is maximal.
Let $Y = X_i[\tau_1 \cup \tau_2]$. Since X_i is d-Leray, we must have $H_j(Y) = 0$ for all $j \geq d$.

The extremal case- Sketch of proof

Claim: $\Gamma(Y)$ is disconnected.
The extremal case- Sketch of proof

Claim: \(\Gamma(Y) \) is disconnected. \((\text{We omit the proof})\)
The extremal case- Sketch of proof

Claim: \(\Gamma(Y) \) is disconnected. \((\text{We omit the proof})\)
Therefore,

\[
H_{|\tau_1 \cup \tau_2| - 3}(Y) = H_0(\Gamma(Y)) \neq 0.
\]
Claim: $\Gamma(Y)$ is disconnected. (We omit the proof)

Therefore,

$$H|_{\tau_1 \cup \tau_2}|^{-3}(Y) = H_0(\Gamma(Y)) \neq 0.$$

Since \mathcal{M} is a Steiner $(d, d + 1, n)$-system, $|\tau_1 \cap \tau_2| < d.$
The extremal case- Sketch of proof

Claim: $\Gamma(Y)$ is disconnected. (We omit the proof)

Therefore,

$$H|_{\tau_1 \cup \tau_2} - 3(Y) = H_0(\Gamma(Y)) \neq 0.$$

Since \mathcal{M} is a Steiner $(d, d + 1, n)$-system, $|\tau_1 \cap \tau_2| < d$. So,

$$|\tau_1 \cup \tau_2| - 3 =$$
The extremal case - Sketch of proof

Claim: $\Gamma(Y)$ is disconnected. (We omit the proof)

Therefore,

$$H|_{\tau_1 \cup \tau_2} - 3(Y) = H_0(\Gamma(Y)) \neq 0.$$

Since \mathcal{M} is a Steiner $(d, d + 1, n)$-system, $|\tau_1 \cap \tau_2| < d$.

So,

$$|\tau_1 \cup \tau_2| - 3 = |\tau_1| + |\tau_2| - |\tau_1 \cap \tau_2| - 3$$
Claim: $\Gamma(Y)$ is disconnected. (We omit the proof)

Therefore,

$$H_{|\tau_1 \cup \tau_2| - 3}(Y) = H_0(\Gamma(Y)) \neq 0.$$

Since \mathcal{M} is a Steiner $(d, d + 1, n)$-system, $|\tau_1 \cap \tau_2| < d$.

So,

$$|\tau_1 \cup \tau_2| - 3 = |\tau_1| + |\tau_2| - |\tau_1 \cap \tau_2| - 3 \geq (d+1) + (d+1) - (d-1) - 3 = d.$$
Claim: $\Gamma(Y)$ is disconnected. (We omit the proof)

Therefore,

$$H|_{\tau_1 \cup \tau_2}|_3(Y) = H_0(\Gamma(Y)) \neq 0.$$

Since \mathcal{M} is a Steiner $(d, d+1, n)$-system, $|\tau_1 \cap \tau_2| < d$.

So,

$$|\tau_1 \cup \tau_2|_3 = |\tau_1| + |\tau_2| - |\tau_1 \cap \tau_2| - 3 \geq (d+1) + (d+1) - (d-1) - 3 = d.$$

A contradiction to $H_j(Y) = 0$ for all $j \geq d$.

Representability of complexes without large missing faces

Let \(X \) be a simplicial complex on vertex set \(V \).

\[
\text{rep}(X) = \text{minimal } d \text{ such that } X \text{ is } d\text{-representable.}
\]

Assume \(|V| = n \).

- Wegner ('67): \(\text{rep}(X) \leq n - 1 \).
 (Equality iff \(X \) is boundary of \((n-1) \)-dimensional simplex).
- Roberts, Witsenhausen: If \(X \) is a clique complex (i.e. \(h(X) = 1 \)), then \(\text{rep}(X) \leq n^2 \).
 (Equality iff missing faces form a complete matching).

What is the correct bound if \(h(X) \leq d \) for some \(d \geq 2 \)?
Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V.
rep(X) = minimal d such that X is d-representable.
Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V.

$\text{rep}(X) =$ minimal d such that X is d-representable.

Assume $|V| = n$.

Let X be a simplicial complex on vertex set V.

\[\text{rep}(X) = \text{minimal } d \text{ such that } X \text{ is } d\text{-representable.} \]

Assume $|V| = n$. How large can \text{rep}(X) be?
Let X be a simplicial complex on vertex set V.

$\text{rep}(X) =$ minimal d such that X is d-representable.

Assume $|V| = n$. How large can $\text{rep}(X)$ be?

- Wegner (’67): $\text{rep}(X) \leq n - 1$.

Representability of complexes without large missing faces
Let X be a simplicial complex on vertex set V.

$\text{rep}(X) =$ minimal d such that X is d-representable.

Assume $|V| = n$. How large can $\text{rep}(X)$ be?

- **Wegner ('67):** $\text{rep}(X) \leq n - 1$. (Equality iff X is boundary of $(n - 1)$-dimensional simplex).
Let X be a simplicial complex on vertex set V.

$\text{rep}(X) =$ minimal d such that X is d-representable.

Assume $|V| = n$. How large can $\text{rep}(X)$ be?

- Wegner ('67): $\text{rep}(X) \leq n - 1$. (Equality iff X is boundary of $(n - 1)$-dimensional simplex).
- Roberts, Witsenhausen: If X is a clique complex (i.e. $h(X) = 1$), then $\text{rep}(X) \leq \frac{n}{2}$.
Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V.

$\text{rep}(X) =$ minimal d such that X is d-representable.

Assume $|V| = n$. How large can $\text{rep}(X)$ be?

• Wegner ('67): $\text{rep}(X) \leq n - 1$. (Equality iff X is boundary of $(n - 1)$-dimensional simplex).

• Roberts, Witsenhausen: If X is a clique complex (i.e. $h(X) = 1$), then $\text{rep}(X) \leq \frac{n}{2}$. (Equality iff missing faces form a complete matching).
Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V.

$\text{rep}(X)$ = minimal d such that X is d-representable.

Assume $|V| = n$. How large can $\text{rep}(X)$ be?

- Wegner ('67): $\text{rep}(X) \leq n - 1$. (Equality iff X is boundary of $(n - 1)$-dimensional simplex).
- Roberts, Witsenhausen: If X is a clique complex (i.e. $h(X) = 1$), then $\text{rep}(X) \leq \frac{n}{2}$. (Equality iff missing faces form a complete matching).

What is the correct bound if $h(X) \leq d$ for some $d \geq 2$?
Conjecture:
Let X be a simplicial complex on n vertices, with $h(X) \leq d$. Then

$$\text{rep}(X) \leq \left\lfloor \frac{dn}{d + 1} \right\rfloor.$$
Conjecture:
Let X be a simplicial complex on n vertices, with $h(X) \leq d$. Then

$$\text{rep}(X) \leq \left\lfloor \frac{dn}{d + 1} \right\rfloor.$$

Moreover, $\text{rep}(X) = \frac{dn}{d + 1}$ if and only if the missing faces of X consist of $\frac{n}{d+1}$ pairwise disjoint sets of size $d + 1$.
A special case:

Let X be a complex whose missing faces form a Steiner triple system. What is $\text{rep}(X)$?
A special case:

Let X be a complex whose missing faces form a Steiner triple system. What is $\text{rep}(X)$?
A special case:

Let X be a complex whose missing faces form a Steiner triple system. What is $\text{rep}(X)$?

$\text{rep}(X) = 4$. Indeed, using a different construction, we can show $\text{rep}(X) = 4$. Does $\text{rep}(X) \leq 5$ hold?
A special case:

Let X be a complex whose missing faces form a Steiner triple system. What is $\text{rep}(X)$?

$\implies \text{rep}(X) \leq 5$
A special case:

Let X be a complex whose missing faces form a Steiner triple system. What is $\text{rep}(X)$?

$\implies \text{rep}(X) \leq 5 > \left\lfloor \frac{2 \cdot 7}{3} \right\rfloor = 4.$
A special case:

Let X be a complex whose missing faces form a Steiner triple system. What is $\text{rep}(X)$?

$$\implies \text{rep}(X) \leq 5 > \left\lfloor \frac{2 \cdot 7}{3} \right\rfloor = 4.$$

Indeed, using a different construction, can show $\text{rep}(X) = 4$.
Representability of complexes without large missing faces

A special case:

Let X be a complex whose missing faces form a Steiner triple system. What is $\text{rep}(X)$?

\[\Rightarrow \quad \text{rep}(X) \leq 5 > \left\lfloor \frac{2 \cdot 7}{3} \right\rfloor = 4. \]

Indeed, using a different construction, can show $\text{rep}(X) = 4$.
Representability of complexes without large missing faces

A special case:

Let X be a complex whose missing faces form a Steiner triple system. What is $\text{rep}(X)$?

$$\implies \text{rep}(X) \leq 5 > \left\lfloor \frac{2 \cdot 7}{3} \right\rfloor = 4.$$

Indeed, using a different construction, can show $\text{rep}(X) = 4$.

Representability of complexes without large missing faces

A special case:

Let X be a complex whose missing faces form a Steiner triple system. What is $\text{rep}(X)$?

Indeed, using a different construction, can show $\text{rep}(X) = 4$.

$$\implies \text{rep}(X) \leq 5 > \left\lfloor \frac{2 \cdot 7}{3} \right\rfloor = 4.$$
Representability of complexes without large missing faces

A special case:

Let X be a complex whose missing faces form a Steiner triple system. What is $\text{rep}(X)$?

Indeed, using a different construction, can show $\text{rep}(X) = 4$.

$\implies \text{rep}(X) \leq 5 > \left\lfloor \frac{2 \cdot 7}{3} \right\rfloor = 4.$

$\implies \text{rep}(X) \leq 7 > \frac{2 \cdot 9}{3} - 1 = 5$
A special case:

Let X be a complex whose missing faces form a Steiner triple system. What is $\text{rep}(X)$?

\[\implies \text{rep}(X) \leq 5 > \left\lfloor \frac{2.7}{3} \right\rfloor = 4. \]

Indeed, using a different construction, can show $\text{rep}(X) = 4$.

\[\implies \text{rep}(X) \leq 7 > \frac{2.9}{3} - 1 = 5 \]

Does $\text{rep}(X) \leq 5$ hold?
Thank you!