Representability and boxicity of simplicial complexes

Alan Lew
Technion - Israel Institute of Technology

Bar-Ilan University Combinatorics Seminar December 2020

Boxicity

Interval graph $=$ intersection graph of a family of intervals in \mathbb{R}.

Boxicity

Interval graph $=$ intersection graph of a family of intervals in \mathbb{R}.

Boxicity

Interval graph $=$ intersection graph of a family of intervals in \mathbb{R}.

Boxicity

Interval graph $=$ intersection graph of a family of intervals in \mathbb{R}.

Boxicity

Interval graph $=$ intersection graph of a family of intervals in \mathbb{R}.

Let G be a graph.
$\operatorname{box}(G)=$ minimal k such that G is the intersection of k interval graphs.

Boxicity

Interval graph $=$ intersection graph of a family of intervals in \mathbb{R}.

Let G be a graph.
$\operatorname{box}(G)=\operatorname{minimal} k$ such that G is the intersection of k interval graphs.

- $\operatorname{box}(G)=1 \Longleftrightarrow G$ is an interval graph.

Boxicity- Example

Let G be the cycle of length 4 .

Boxicity- Example

Let G be the cycle of length 4 .

$$
60 \times(5)=?
$$

Boxicity- Example

Let G be the cycle of length 4 .

$$
b \times x(\bar{D})=?
$$

Easy to check- G is not an interval graph

Boxicity- Example

Let G be the cycle of length 4 .

$$
60 \times(\bar{L})=?
$$

Easy to check- G is not an interval graph (so box $(G)>1$).

Boxicity- Example

Let G be the cycle of length 4 .

$$
0_{0} \times(1-1)=
$$

Easy to check- G is not an interval graph (so box $(G)>1$).

Boxicity- Example

Let G be the cycle of length 4 .

$$
60 \times(1)=?
$$

Easy to check- G is not an interval graph (so box $(G)>1$).

Boxicity- Example

Let G be the cycle of length 4 .

$$
\left.\operatorname{co}^{1-1}\right)=
$$

Easy to check- G is not an interval graph (so box $(G)>1$).

Boxicity- Example

Let G be the cycle of length 4 .

$$
60 \times(\bar{L})=?
$$

Easy to check- G is not an interval graph (so box $(G)>1$).

Boxicity- Example

Let G be the cycle of length 4 .

$$
60 \times(5)=2
$$

Easy to check- G is not an interval graph (so box $(G)>1$).

Boxicity- An equivalent definition

$\operatorname{box}(G) \leq k \Longleftrightarrow G$ is the intersection graph of a family of axis-parallel boxes in \mathbb{R}^{k}.

Boxicity- An equivalent definition

$\operatorname{box}(G) \leq k \Longleftrightarrow G$ is the intersection graph of a family of axis-parallel boxes in \mathbb{R}^{k}.

Example
Dive

Boxicity- An equivalent definition

$\operatorname{box}(G) \leq k \Longleftrightarrow G$ is the intersection graph of a family of axis-parallel boxes in \mathbb{R}^{k}.

Example

$$
\Sigma=\Sigma
$$

Boxicity- An equivalent definition

$\operatorname{box}(G) \leq k \Longleftrightarrow G$ is the intersection graph of a family of axis-parallel boxes in \mathbb{R}^{k}.

Example

Boxicity- Roberts' Theorem

Theorem (Roberts '69, Witsenhausen '80)
Let G be a graph on n vertices. Then

$$
\operatorname{box}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor
$$

Boxicity- Roberts' Theorem

Theorem (Roberts '69, Witsenhausen '80)

Let G be a graph on n vertices. Then

$$
\operatorname{box}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor
$$

Moreover, $\operatorname{box}(G)=\frac{n}{2}$ if and only if G is the complete $\frac{n}{2}$-partite graph with sides of size 2.

Boxicity- Roberts' Theorem

Theorem (Roberts '69, Witsenhausen '80)
Let G be a graph on n vertices. Then

$$
\operatorname{box}(G) \leq\left\lfloor\frac{n}{2}\right\rfloor
$$

Moreover, $\operatorname{box}(G)=\frac{n}{2}$ if and only if G is the complete $\frac{n}{2}$-partite graph with sides of size 2 .

Representability

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of sets.

Representability

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of sets.
The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:

Representability

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of sets.
The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:

- A vertex is assigned to each set of the family.

Representability

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of sets.
The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:

- A vertex is assigned to each set of the family.
- Simplices correspond to subfamilies with non-empty intersection.

Representability

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of sets.
The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:

- A vertex is assigned to each set of the family.
- Simplices correspond to subfamilies with non-empty intersection.

Representability

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of sets.
The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:

- A vertex is assigned to each set of the family.
- Simplices correspond to subfamilies with non-empty intersection.

$N(F)=$

Representability

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of sets.
The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:

- A vertex is assigned to each set of the family.
- Simplices correspond to subfamilies with non-empty intersection.

Representability

Let $\mathcal{F}=\left\{F_{1}, \ldots, F_{n}\right\}$ be a family of sets.
The nerve $N(\mathcal{F})$ of the family is the following simplicial complex:

- A vertex is assigned to each set of the family.
- Simplices correspond to subfamilies with non-empty intersection.

d-Representable complex $=$ nerve of a family of convex sets in \mathbb{R}^{d}.

Representability- Important properties

Helly's Theorem
Let C_{1}, \ldots, C_{m} be a family of convex sets in \mathbb{R}^{d}.

Representability- Important properties

Helly's Theorem
Let C_{1}, \ldots, C_{m} be a family of convex sets in \mathbb{R}^{d}. If any $d+1$ sets have non-empty intersection, then $\cap_{i=1}^{m} C_{i} \neq \emptyset$.

Representability- Important properties

Helly's Theorem
Let C_{1}, \ldots, C_{m} be a family of convex sets in \mathbb{R}^{d}. If any $d+1$ sets have non-empty intersection, then $\cap_{i=1}^{m} C_{i} \neq \emptyset$.

Representability- Important properties

Helly's Theorem

Let C_{1}, \ldots, C_{m} be a family of convex sets in \mathbb{R}^{d}. If any $d+1$ sets have non-empty intersection, then $\cap_{i=1}^{m} C_{i} \neq \emptyset$.

Representability- Important properties

Helly's Theorem

Let C_{1}, \ldots, C_{m} be a family of convex sets in \mathbb{R}^{d}. If any $d+1$ sets have non-empty intersection, then $\cap_{i=1}^{m} C_{i} \neq \emptyset$.

Homology of a d-representable complex:
Let X be d-representable. Then, for any $k \geq d$, the k-th homology group of X vanishes.

Representability- Important properties

Helly's Theorem

Let C_{1}, \ldots, C_{m} be a family of convex sets in \mathbb{R}^{d}. If any $d+1$ sets have non-empty intersection, then $\cap_{i=1}^{m} C_{i} \neq \emptyset$.

Homology of a d-representable complex:
Let X be d-representable. Then, for any $k \geq d$, the k-th homology group of X vanishes.
This is a consequence of the Nerve Theorem: The homology of $N(\mathcal{F})$ is the same as that of the union of $\cup_{C \in \mathcal{F}} C$.

Representability- Important properties

Helly's Theorem

Let C_{1}, \ldots, C_{m} be a family of convex sets in \mathbb{R}^{d}. If any $d+1$ sets have non-empty intersection, then $\cap_{i=1}^{m} C_{i} \neq \emptyset$.

Homology of a d-representable complex:
Let X be d-representable. Then, for any $k \geq d$, the k-th homology group of X vanishes.
This is a consequence of the Nerve Theorem: The homology of $N(\mathcal{F})$ is the same as that of the union of $\cup_{C \in \mathcal{F}} C$.

Representability- Important properties

Helly's Theorem

Let C_{1}, \ldots, C_{m} be a family of convex sets in \mathbb{R}^{d}. If any $d+1$ sets have non-empty intersection, then $\cap_{i=1}^{m} C_{i} \neq \emptyset$.

Homology of a d-representable complex:
Let X be d-representable. Then, for any $k \geq d$, the k-th homology group of X vanishes.
This is a consequence of the Nerve Theorem: The homology of $N(\mathcal{F})$ is the same as that of the union of $\cup_{C \in \mathcal{F}} C$.

Boxicity in terms of representability

The clique complex $X(G)$
of graph $G=(V, E)$:

Boxicity in terms of representability

The clique complex $X(G)$
of graph $G=(V, E)$:
Vertex set: V,

Boxicity in terms of representability

The clique complex $X(G)$
of graph $G=(V, E)$:
Vertex set: V,
Simplices: all cliques of G.

Boxicity in terms of representability

The clique complex $X(G)$ of graph $G=(V, E)$:
Vertex set: V,
Simplices: all cliques of G.

Boxicity in terms of representability

The clique complex $X(G)$ of graph $G=(V, E)$:
Vertex set: V,
Simplices: all cliques of G.

Boxicity in terms of representability

The clique complex $X(G)$
of graph $G=(V, E)$:
Vertex set: V, Simplices: all cliques of G.

- 1-Representable complex $=$ Nerve of a family of intervals

Boxicity in terms of representability

The clique complex $X(G)$
of graph $G=(V, E)$:
Vertex set: V,
Simplices: all cliques of G.

- 1-Representable complex $=$ Nerve of a family of intervals $=$ Clique complex of an interval graph.

Boxicity in terms of representability

The clique complex $X(G)$
of graph $G=(V, E)$:
Vertex set: V,
Simplices: all cliques of G.

- 1-Representable complex $=$ Nerve of a family of intervals $=$ Clique complex of an interval graph.

Boxicity in terms of representability

The clique complex $X(G)$
of graph $G=(V, E)$:
Vertex set: V,
Simplices: all cliques of G.

- 1-Representable complex $=$ Nerve of a family of intervals $=$ Clique complex of an interval graph.

Boxicity in terms of representability

The clique complex $X(G)$
of graph $G=(V, E)$:
Vertex set: V,
Simplices: all cliques of G.

- 1-Representable complex $=$ Nerve of a family of intervals $=$ Clique complex of an interval graph.

Boxicity in terms of representability

The clique complex $X(G)$ of graph $G=(V, E)$:
Vertex set: V,
Simplices: all cliques of G.

- 1-Representable complex $=$ Nerve of a family of intervals $=$ Clique complex of an interval graph.

- box $(G) \leq k$ if and only if $X(G)$ can be written as the intersection of k 1-representable complexes.

Boxicity in terms of representability

The clique complex $X(G)$ of graph $G=(V, E)$:
Vertex set: V,
Simplices: all cliques of G.

- 1-Representable complex $=$ Nerve of a family of intervals $=$ Clique complex of an interval graph.

- box $(G) \leq k$ if and only if $X(G)$ can be written as the intersection of k 1-representable complexes. (Follows from fact that $G=G_{1} \cap \cdots \cap G_{k}$ iff $\left.X(G)=X\left(G_{1}\right) \cap \cdots \cap X\left(G_{k}\right)\right)$.

d-Boxicity

Let X be a simplicial complex.

d-Boxicity

Let X be a simplicial complex. box $_{d}(X)=$ minimal k such that X is the intersection of k d-representable complexes.

d-Boxicity

Let X be a simplicial complex.
box $_{d}(X)=$ minimal k such that X is the intersection of k d-representable complexes.

- $\operatorname{box}(\mathrm{G})=\operatorname{box}_{1}(X(G))$, where $X(G)$ is the clique complex of G.

d-Boxicity

Let X be a simplicial complex.
box $_{d}(X)=$ minimal k such that X is the intersection of k d-representable complexes.

- $\operatorname{box}(\mathrm{G})=\operatorname{box}_{1}(X(G))$, where $X(G)$ is the clique complex of G.

Example $(d=2)$:

d-Boxicity

Let X be a simplicial complex.
box $_{d}(X)=$ minimal k such that X is the intersection of k d-representable complexes.

- $\operatorname{box}(G)=\operatorname{box}_{1}(X(G))$, where $X(G)$ is the clique complex of G.

Example $(d=2)$:

$H_{2}(X)=\mathbb{Z} \neq 0$

d-Boxicity

Let X be a simplicial complex.
box $_{d}(X)=$ minimal k such that X is the intersection of k d-representable complexes.

- $\operatorname{box}(\mathrm{G})=\operatorname{box}_{1}(X(G))$, where $X(G)$ is the clique complex of G.

Example $(d=2)$:

$H_{2}(X)=\mathbb{Z} \neq 0$
$\Longrightarrow X$ is not 2-representable

d-Boxicity

Let X be a simplicial complex.
box $_{d}(X)=$ minimal k such that X is the intersection of k
d-representable complexes.

- $\operatorname{box}(\mathrm{G})=\operatorname{box}_{1}(X(G))$, where $X(G)$ is the clique complex of G.

Example $(d=2)$:

$H_{2}(X)=\mathbb{Z} \neq 0$
$\Longrightarrow X$ is not 2-representable

d-Boxicity

Let X be a simplicial complex.
box $_{d}(X)=$ minimal k such that X is the intersection of k
d-representable complexes.

- $\operatorname{box}(\mathrm{G})=\operatorname{box}_{1}(X(G))$, where $X(G)$ is the clique complex of G.

Example $(d=2)$:

$H_{2}(X)=\mathbb{Z} \neq 0$
$\Longrightarrow X$ is not 2-representable

$\operatorname{box}_{2}(X)=2$

Missing faces

Let X be a simplicial complex on vertex set V.

Missing faces

Let X be a simplicial complex on vertex set V.
$\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$.

Missing faces

Let X be a simplicial complex on vertex set V. $\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$. $h(X)=$ maximum dimension of a missing face.

Missing faces

Let X be a simplicial complex on vertex set V. $\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$.
$h(X)=$ maximum dimension of a missing face.

Missing faces

Let X be a simplicial complex on vertex set V. $\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$.
$h(X)=$ maximum dimension of a missing face.

Missing faces

Let X be a simplicial complex on vertex set V. $\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$.
$h(X)=$ maximum dimension of a missing face.

Missing faces

Let X be a simplicial complex on vertex set V. $\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$.
$h(X)=$ maximum dimension of a missing face.

Missing faces

Let X be a simplicial complex on vertex set V. $\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$. $h(X)=$ maximum dimension of a missing face.

- X is the clique complex of a graph $\Longleftrightarrow h(X)=1$

Missing faces

Let X be a simplicial complex on vertex set V. $\tau \subset V$ is a missing face of X if $\tau \notin X$ but $\sigma \in X$ for all $\sigma \subsetneq \tau$. $h(X)=$ maximum dimension of a missing face.

- X is the clique complex of a graph $\Longleftrightarrow h(X)=1$ (missing faces are the edges of the complement graph of G).

Missing faces and Helly Theorem

Claim: If X is d-representable, then $h(X) \leq d$.

Missing faces and Helly Theorem

Claim: If X is d-representable, then $h(X) \leq d$.
Proof: Let $X=N(\mathcal{F})$.

Missing faces and Helly Theorem

Claim: If X is d-representable, then $h(X) \leq d$.
Proof: Let $X=N(\mathcal{F})$.
Assume for contradiction that there is a missing face τ of dimension $d+1$.

Missing faces and Helly Theorem

Claim: If X is d-representable, then $h(X) \leq d$.
Proof: Let $X=N(\mathcal{F})$.
Assume for contradiction that there is a missing face τ of dimension $d+1$.
This corresponds to a family of sets $F_{1}, \ldots, F_{d+2} \in \mathcal{F}$, such that any $d+1$ of them intersect, but $\cap{ }_{i=1}^{d+2} F_{i}=\emptyset$.

Missing faces and Helly Theorem

Claim: If X is d-representable, then $h(X) \leq d$.
Proof: Let $X=N(\mathcal{F})$.
Assume for contradiction that there is a missing face τ of dimension $d+1$.
This corresponds to a family of sets $F_{1}, \ldots, F_{d+2} \in \mathcal{F}$, such that any $d+1$ of them intersect, but $\cap \frac{d+2}{d=1} F_{i}=\emptyset$. This is a contradiction to Helly's Theorem.

Missing faces and Helly Theorem

Claim: If X is d-representable, then $h(X) \leq d$.
Proof: Let $X=N(\mathcal{F})$.
Assume for contradiction that there is a missing face τ of dimension $d+1$.
This corresponds to a family of sets $F_{1}, \ldots, F_{d+2} \in \mathcal{F}$, such that any $d+1$ of them intersect, but $\cap i=1 ~ ~_{i}^{d+2}=\emptyset$. This is a contradiction to Helly's Theorem.
Fact: If $X=X_{1} \cap \cdots \cap X_{k}$, then

$$
h(X) \leq \max \left\{h\left(X_{i}\right): i=1, \ldots, k\right\} .
$$

Missing faces and Helly Theorem

Claim: If X is d-representable, then $h(X) \leq d$.
Proof: Let $X=N(\mathcal{F})$.
Assume for contradiction that there is a missing face τ of dimension $d+1$.
This corresponds to a family of sets $F_{1}, \ldots, F_{d+2} \in \mathcal{F}$, such that any $d+1$ of them intersect, but $\cap i=1 ~ ~_{i}^{d+2}=\emptyset$. This is a contradiction to Helly's Theorem.
Fact: If $X=X_{1} \cap \cdots \cap X_{k}$, then

$$
h(X) \leq \max \left\{h\left(X_{i}\right): i=1, \ldots, k\right\} .
$$

As a consequence:

Missing faces and Helly Theorem

Claim: If X is d-representable, then $h(X) \leq d$.
Proof: Let $X=N(\mathcal{F})$.
Assume for contradiction that there is a missing face τ of dimension $d+1$.
This corresponds to a family of sets $F_{1}, \ldots, F_{d+2} \in \mathcal{F}$, such that any $d+1$ of them intersect, but $\cap i=1 ~ d+2 F_{i}=\emptyset$. This is a contradiction to Helly's Theorem.
Fact: If $X=X_{1} \cap \cdots \cap X_{k}$, then

$$
h(X) \leq \max \left\{h\left(X_{i}\right): i=1, \ldots, k\right\} .
$$

As a consequence:
If $\operatorname{box}_{d}(X)<\infty$ then $h(X) \leq d$.

Steiner Systems

$\mathcal{F}=$ family of subsets of size k of a set V of size n.

Steiner Systems

$\mathcal{F}=$ family of subsets of size k of a set V of size n.

- If any subset of V of size t is contained in exactly one set of \mathcal{F}, \mathcal{F} is a Steiner (t, k, n)-system.

Steiner Systems

$\mathcal{F}=$ family of subsets of size k of a set V of size n.

- If any subset of V of size t is contained in exactly one set of \mathcal{F}, \mathcal{F} is a Steiner (t, k, n)-system.

Example: Steiner triple systems ((2, 3, n)-systems)

Steiner Systems

$\mathcal{F}=$ family of subsets of size k of a set V of size n.

- If any subset of V of size t is contained in exactly one set of \mathcal{F}, \mathcal{F} is a Steiner (t, k, n)-system.

Example: Steiner triple systems ((2, 3, n)-systems)

Any 2 vertices are contained in exactly one triple.

Steiner Systems

$\mathcal{F}=$ family of subsets of size k of a set V of size n.

- If any subset of V of size t is contained in exactly one set of \mathcal{F}, \mathcal{F} is a Steiner (t, k, n)-system.

Example: Steiner triple systems ((2, 3, n)-systems)

Any 2 vertices are contained in exactly one triple.

Steiner Systems

$\mathcal{F}=$ family of subsets of size k of a set V of size n.

- If any subset of V of size t is contained in exactly one set of \mathcal{F}, \mathcal{F} is a Steiner (t, k, n)-system.

Example: Steiner triple systems ((2, 3, n)-systems)

Any 2 vertices are contained in exactly one triple.
Example: Steiner (1, 2, n)-system

Steiner Systems

$\mathcal{F}=$ family of subsets of size k of a set V of size n.

- If any subset of V of size t is contained in exactly one set of \mathcal{F}, \mathcal{F} is a Steiner (t, k, n)-system.

Example: Steiner triple systems ((2, 3, n)-systems)

Any 2 vertices are contained in exactly one triple.
Example: Steiner (1, 2, n)-system

- Keevash ('14): For infinitely many values of n, Steiner
(t, k, n)-systems exist.

Previously known results

Theorem (Witsenhausen '80):
Let X be a simplicial complex with n vertices satisfying $h(X)=d$. Then

$$
\operatorname{box}_{d}(X) \leq\left\lfloor\frac{1}{2}\binom{n}{d}\right\rfloor .
$$

Previously known results

Theorem (Witsenhausen '80):
Let X be a simplicial complex with n vertices satisfying $h(X)=d$. Then

$$
\operatorname{box}_{d}(X) \leq\left\lfloor\frac{1}{2}\binom{n}{d}\right\rfloor .
$$

If the missing faces of X form a Steiner triple system, then

$$
\operatorname{box}_{2}(X) \geq \frac{1}{3}\binom{n}{2}
$$

Previously known results

Theorem (Witsenhausen '80):
Let X be a simplicial complex with n vertices satisfying $h(X)=d$. Then

$$
\operatorname{box}_{d}(X) \leq\left\lfloor\frac{1}{2}\binom{n}{d}\right\rfloor .
$$

If the missing faces of X form a Steiner triple system, then

$$
\operatorname{box}_{2}(X) \geq \frac{1}{3}\binom{n}{2}
$$

Main result

Theorem (L. '20):
Let X be a simplicial complex with n vertices satisfying $h(X)=d$. Then

$$
\operatorname{box}_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor .
$$

Main result

Theorem (L. '20):
Let X be a simplicial complex with n vertices satisfying $h(X)=d$. Then

$$
\operatorname{box}_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor .
$$

Moreover, box $_{d}(X)=\frac{1}{d+1}\binom{n}{d}$ if and only if the missing faces of X form a Steiner $(d, d+1, n)$-system.

Main result

Theorem (L. '20):
Let X be a simplicial complex with n vertices satisfying $h(X)=d$. Then

$$
\operatorname{box}_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor
$$

Moreover, box $_{d}(X)=\frac{1}{d+1}\binom{n}{d}$ if and only if the missing faces of X form a Steiner $(d, d+1, n)$-system.

Main result

Theorem (L. '20):
Let X be a simplicial complex with n vertices satisfying $h(X)=d$. Then

$$
\operatorname{box}_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor
$$

Moreover, box $_{d}(X)=\frac{1}{d+1}\binom{n}{d}$ if and only if the missing faces of X form a Steiner $(d, d+1, n)$-system.

Remarks.

- For $d=1$, we recover Roberts' Theorem.

Main result

Theorem (L. '20):
Let X be a simplicial complex with n vertices satisfying $h(X)=d$. Then

$$
\operatorname{box}_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor
$$

Moreover, box $_{d}(X)=\frac{1}{d+1}\binom{n}{d}$ if and only if the missing faces of X form a Steiner $(d, d+1, n)$-system.

Remarks.

- For $d=1$, we recover Roberts' Theorem.
- For $d \geq 2$, this improves previous bounds due to Witsenhausen.

A bound on representability

A main ingredient in the proof of the bound box $_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor$ is the following result:

A bound on representability

A main ingredient in the proof of the bound box $_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor$ is the following result:

Theorem (L. '20):
Let X be a simplicial complex on vertex set V.

A bound on representability

A main ingredient in the proof of the bound box $_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor$ is the following result:

Theorem (L. '20):
Let X be a simplicial complex on vertex set V. Let $U \subset V$ such that $U \notin X$,

A bound on representability

A main ingredient in the proof of the bound box $_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor$ is the following result:

Theorem (L. '20):
Let X be a simplicial complex on vertex set V. Let $U \subset V$ such that $U \notin X$, and for every missing face τ of $X,|\tau \backslash U| \leq 1$.

A bound on representability

A main ingredient in the proof of the bound $\operatorname{box}_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor$ is the following result:

Theorem (L. '20):
Let X be a simplicial complex on vertex set V. Let $U \subset V$ such that $U \notin X$, and for every missing face τ of $X,|\tau \backslash U| \leq 1$. Then, X is $(|U|-1)$-representable.

A bound on representability

A main ingredient in the proof of the bound box ${ }_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor$ is the following result:
Theorem (L. '20):
Let X be a simplicial complex on vertex set V. Let $U \subset V$ such that $U \notin X$, and for every missing face τ of $X,|\tau \backslash U| \leq 1$. Then, X is $(|U|-1)$-representable.

A bound on representability

A main ingredient in the proof of the bound box $_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor$ is the following result:

Theorem (L. '20):
Let X be a simplicial complex on vertex set V. Let $U \subset V$ such that $U \notin X$, and for every missing face τ of $X,|\tau \backslash U| \leq 1$. Then, X is $(|U|-1)$-representable.

A bound on representability

A main ingredient in the proof of the bound box $_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor$ is the following result:

Theorem (L. '20):
Let X be a simplicial complex on vertex set V. Let $U \subset V$ such that $U \notin X$, and for every missing face τ of $X,|\tau \backslash U| \leq 1$. Then, X is $(|U|-1)$-representable.

A bound on representability

A main ingredient in the proof of the bound box ${ }_{d}(X) \leq\left\lfloor\frac{1}{d+1}\binom{n}{d}\right\rfloor$ is the following result:
Theorem (L. '20):
Let X be a simplicial complex on vertex set V. Let $U \subset V$ such that $U \notin X$, and for every missing face τ of $X,|\tau \backslash U| \leq 1$. Then, X is $(|U|-1)$-representable.

A bound on representability- Example

A bound on representability

The construction used in the proof is based on ideas by Wegner.

A bound on representability

The construction used in the proof is based on ideas by Wegner. In fact, it can be seen as an extension of the following:

Theorem (Wegner '67):
Let X be a simplicial complex with n vertices. Then X is ($n-1$)-representable.

A bound on representability

The construction used in the proof is based on ideas by Wegner. In fact, it can be seen as an extension of the following:

Theorem (Wegner '67):
Let X be a simplicial complex with n vertices. Then X is ($n-1$)-representable.
Moreover, if X is not the boundary of an ($n-1$)-dimensional simplex, then it is $(n-2)$-representable.

The extremal case

Let X be a simplicial complex on vertex set V.

The extremal case

Let X be a simplicial complex on vertex set V.
For $U \subset V$, let $X[U]=\{\sigma \in X: \sigma \subset U\}$ be the subcomplex of X induced by U.

The extremal case

Let X be a simplicial complex on vertex set V.
For $U \subset V$, let $X[U]=\{\sigma \in X: \sigma \subset U\}$ be the subcomplex of X induced by U.

- Let $H_{k}(X)$ be the k-th (reduced) homology group of X with coefficients in \mathbb{Q}.

The extremal case

Let X be a simplicial complex on vertex set V.
For $U \subset V$, let $X[U]=\{\sigma \in X: \sigma \subset U\}$ be the subcomplex of X induced by U.

- Let $H_{k}(X)$ be the k-th (reduced) homology group of X with coefficients in \mathbb{Q}.
- If $H_{k}(X[U])=0$ for all $U \subset V$ and all $k \geq d, X$ is called d-Leray.

The extremal case

Let X be a simplicial complex on vertex set V.
For $U \subset V$, let $X[U]=\{\sigma \in X: \sigma \subset U\}$ be the subcomplex of X induced by U.

- Let $H_{k}(X)$ be the k-th (reduced) homology group of X with coefficients in \mathbb{Q}.
- If $H_{k}(X[U])=0$ for all $U \subset V$ and all $k \geq d, X$ is called d-Leray.
- X is d-representable $\Longrightarrow X$ is d-Leray.

The extremal case

Let X be a simplicial complex on vertex set V.
For $U \subset V$, let $X[U]=\{\sigma \in X: \sigma \subset U\}$ be the subcomplex of X induced by U.

- Let $H_{k}(X)$ be the k-th (reduced) homology group of X with coefficients in \mathbb{Q}.
- If $H_{k}(X[U])=0$ for all $U \subset V$ and all $k \geq d, X$ is called d-Leray.
- X is d-representable $\Longrightarrow X$ is d-Leray.
(Since any induced subcomplex of X is also d-representable).

The extremal case

Let X be a simplicial complex on vertex set V.
For $U \subset V$, let $X[U]=\{\sigma \in X: \sigma \subset U\}$ be the subcomplex of X induced by U.

- Let $H_{k}(X)$ be the k-th (reduced) homology group of X with coefficients in \mathbb{Q}.
- If $H_{k}(X[U])=0$ for all $U \subset V$ and all $k \geq d, X$ is called d-Leray.
- X is d-representable $\Longrightarrow X$ is d-Leray.
(Since any induced subcomplex of X is also d-representable).
Theorem (L. '20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system.

The extremal case

Let X be a simplicial complex on vertex set V.
For $U \subset V$, let $X[U]=\{\sigma \in X: \sigma \subset U\}$ be the subcomplex of X induced by U.

- Let $H_{k}(X)$ be the k-th (reduced) homology group of X with coefficients in \mathbb{Q}.
- If $H_{k}(X[U])=0$ for all $U \subset V$ and all $k \geq d, X$ is called d-Leray.
- X is d-representable $\Longrightarrow X$ is d-Leray.
(Since any induced subcomplex of X is also d-representable).
Theorem (L. '20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system. Then, X cannot be written as the intersection of less than $\frac{1}{d+1}\binom{n}{d} d$-Leray complexes.

The extremal case

Let X be a simplicial complex on vertex set V.
For $U \subset V$, let $X[U]=\{\sigma \in X: \sigma \subset U\}$ be the subcomplex of X induced by U.

- Let $H_{k}(X)$ be the k-th (reduced) homology group of X with coefficients in \mathbb{Q}.
- If $H_{k}(X[U])=0$ for all $U \subset V$ and all $k \geq d, X$ is called d-Leray.
- X is d-representable $\Longrightarrow X$ is d-Leray.
(Since any induced subcomplex of X is also d-representable).
Theorem (L. '20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system. Then, X cannot be written as the intersection of less than $\frac{1}{d+1}\binom{n}{d} d$-Leray complexes.
$\Longrightarrow \operatorname{box}_{d}(X)=\frac{1}{d+1}\binom{n}{d}$.

The extremal case- Sketch of proof

A tool for computing homology:
Let K be a simplicial complex on vertex set W, and \mathcal{N} its set of missing faces.

The extremal case- Sketch of proof

A tool for computing homology:
Let K be a simplicial complex on vertex set W, and \mathcal{N} its set of missing faces. Define

$$
\Gamma(K)=\left\{\mathcal{N}^{\prime} \subset \mathcal{N}: \bigcup_{\tau \in \mathcal{N}^{\prime}} \tau \neq W\right\}
$$

The extremal case- Sketch of proof

A tool for computing homology:
Let K be a simplicial complex on vertex set W, and \mathcal{N} its set of missing faces. Define

$$
\Gamma(K)=\left\{\mathcal{N}^{\prime} \subset \mathcal{N}: \bigcup_{\tau \in \mathcal{N}^{\prime}} \tau \neq W\right\}
$$

The extremal case- Sketch of proof

A tool for computing homology:
Let K be a simplicial complex on vertex set W, and \mathcal{N} its set of missing faces. Define

$$
\Gamma(K)=\left\{\mathcal{N}^{\prime} \subset \mathcal{N}: \bigcup_{\tau \in \mathcal{N}^{\prime}} \tau \neq W\right\}
$$

The extremal case- Sketch of proof

A tool for computing homology:
Let K be a simplicial complex on vertex set W, and \mathcal{N} its set of missing faces. Define

$$
\Gamma(K)=\left\{\mathcal{N}^{\prime} \subset \mathcal{N}: \bigcup_{\tau \in \mathcal{N}^{\prime}} \tau \neq W\right\}
$$

The extremal case- Sketch of proof

A tool for computing homology:
Let K be a simplicial complex on vertex set W, and \mathcal{N} its set of missing faces. Define

$$
\Gamma(K)=\left\{\mathcal{N}^{\prime} \subset \mathcal{N}: \bigcup_{\tau \in \mathcal{N}^{\prime}} \tau \neq W\right\}
$$

Theorem (Björner, Butler, Matveev '97):
If K is not the complete complex on W, then for all $j \geq 0$

$$
H_{j}(K) \cong H_{|W|-j-3}(\Gamma(K))
$$

The extremal case- Sketch of proof

Theorem (L. '20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system.
Then, X cannot be written as the intersection of less than $\frac{1}{d+1}\binom{n}{d}$ d-Leray complexes.

The extremal case- Sketch of proof

Theorem (L. '20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system.
Then, X cannot be written as the intersection of less than $\frac{1}{d+1}\binom{n}{d}$ d-Leray complexes.

Proof:
Assume for contradiction that $X=X_{1} \cap \cdots \cap X_{k}$, where the X_{i} 's are d-Leray and $k<\frac{1}{d+1}\binom{n}{d}$.

The extremal case- Sketch of proof

Theorem (L. '20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system.
Then, X cannot be written as the intersection of less than $\frac{1}{d+1}\binom{n}{d}$ d-Leray complexes.

Proof:
Assume for contradiction that $X=X_{1} \cap \cdots \cap X_{k}$, where the X_{i} 's are d-Leray and $k<\frac{1}{d+1}\binom{n}{d}$.
Let \mathcal{M}_{i} be the set of missing faces of X_{i}.

The extremal case- Sketch of proof

Theorem (L. '20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system.
Then, X cannot be written as the intersection of less than $\frac{1}{d+1}\binom{n}{d}$ d-Leray complexes.

Proof:
Assume for contradiction that $X=X_{1} \cap \cdots \cap X_{k}$, where the X_{i} 's are d-Leray and $k<\frac{1}{d+1}\binom{n}{d}$.
Let \mathcal{M}_{i} be the set of missing faces of X_{i}. Fact: $\mathcal{M}=\cup_{i=1}^{k} \mathcal{M}_{i}$.

The extremal case- Sketch of proof

Theorem (L. '20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system.
Then, X cannot be written as the intersection of less than $\frac{1}{d+1}\binom{n}{d}$ d-Leray complexes.

Proof:
Assume for contradiction that $X=X_{1} \cap \cdots \cap X_{k}$, where the X_{i} 's are d-Leray and $k<\frac{1}{d+1}\binom{n}{d}$.
Let \mathcal{M}_{i} be the set of missing faces of X_{i}. Fact: $\mathcal{M}=\cup_{i=1}^{k} \mathcal{M}_{i}$. Since $|\mathcal{M}|=\frac{1}{d+1}\binom{n}{d}>k$, there is some i such that $\left|\mathcal{M}_{i}\right| \geq 2$.

The extremal case- Sketch of proof

Theorem (L. '20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system.
Then, X cannot be written as the intersection of less than $\frac{1}{d+1}\binom{n}{d}$ d-Leray complexes.

Proof:
Assume for contradiction that $X=X_{1} \cap \cdots \cap X_{k}$, where the X_{i} 's are d-Leray and $k<\frac{1}{d+1}\binom{n}{d}$.
Let \mathcal{M}_{i} be the set of missing faces of X_{i}. Fact: $\mathcal{M}=\cup_{i=1}^{k} \mathcal{M}_{i}$. Since $|\mathcal{M}|=\frac{1}{d+1}\binom{n}{d}>k$, there is some i such that $\left|\mathcal{M}_{i}\right| \geq 2$. Choose i and $\tau_{1}, \tau_{2} \in \mathcal{M}_{i}$ such that $\left|\tau_{1} \cap \tau_{2}\right|$ is maximal.

The extremal case- Sketch of proof

Theorem (L. '20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system.
Then, X cannot be written as the intersection of less than $\frac{1}{d+1}\binom{n}{d}$ d-Leray complexes.

Proof:
Assume for contradiction that $X=X_{1} \cap \cdots \cap X_{k}$, where the X_{i} 's are d-Leray and $k<\frac{1}{d+1}\binom{n}{d}$.
Let \mathcal{M}_{i} be the set of missing faces of X_{i}. Fact: $\mathcal{M}=\cup_{i=1}^{k} \mathcal{M}_{i}$. Since $|\mathcal{M}|=\frac{1}{d+1}\binom{n}{d}>k$, there is some i such that $\left|\mathcal{M}_{i}\right| \geq 2$. Choose i and $\tau_{1}, \tau_{2} \in \mathcal{M}_{i}$ such that $\left|\tau_{1} \cap \tau_{2}\right|$ is maximal. Let $Y=X_{i}\left[\tau_{1} \cup \tau_{2}\right]$.

The extremal case- Sketch of proof

Theorem (L. '20):
Let X be a simplicial complex whose set of missing faces \mathcal{M} forms a Steiner $(d, d+1, n)$-system.
Then, X cannot be written as the intersection of less than $\frac{1}{d+1}\binom{n}{d}$ d-Leray complexes.

Proof:
Assume for contradiction that $X=X_{1} \cap \cdots \cap X_{k}$, where the X_{i} 's are d-Leray and $k<\frac{1}{d+1}\binom{n}{d}$.
Let \mathcal{M}_{i} be the set of missing faces of X_{i}. Fact: $\mathcal{M}=\cup_{i=1}^{k} \mathcal{M}_{i}$. Since $|\mathcal{M}|=\frac{1}{d+1}\binom{n}{d}>k$, there is some i such that $\left|\mathcal{M}_{i}\right| \geq 2$. Choose i and $\tau_{1}, \tau_{2} \in \mathcal{M}_{i}$ such that $\left|\tau_{1} \cap \tau_{2}\right|$ is maximal. Let $Y=X_{i}\left[\tau_{1} \cup \tau_{2}\right]$. Since X_{i} is d-Leray, we must have $H_{j}(Y)=0$ for all $j \geq d$.

The extremal case- Sketch of proof

Claim: $\Gamma(Y)$ is disconnected.

The extremal case- Sketch of proof

Claim: $\Gamma(Y)$ is disconnected. (We omit the proof)

The extremal case- Sketch of proof

Claim: $\Gamma(Y)$ is disconnected. (We omit the proof) Therefore,

$$
H_{\left|\tau_{1} \cup \tau_{2}\right|-3}(Y)=H_{0}(\Gamma(Y)) \neq 0 .
$$

The extremal case- Sketch of proof

Claim: $\Gamma(Y)$ is disconnected. (We omit the proof) Therefore,

$$
H_{\left|\tau_{1} \cup \tau_{2}\right|-3}(Y)=H_{0}(\Gamma(Y)) \neq 0 .
$$

Since \mathcal{M} is a Steiner $(d, d+1, n)$-system, $\left|\tau_{1} \cap \tau_{2}\right|<d$.

The extremal case- Sketch of proof

Claim: $\Gamma(Y)$ is disconnected. (We omit the proof) Therefore,

$$
H_{\left|\tau_{1} \cup \tau_{2}\right|-3}(Y)=H_{0}(\Gamma(Y)) \neq 0 .
$$

Since \mathcal{M} is a Steiner $(d, d+1, n)$-system, $\left|\tau_{1} \cap \tau_{2}\right|<d$. So,
$\left|\tau_{1} \cup \tau_{2}\right|-3=$

The extremal case- Sketch of proof

Claim: $\Gamma(Y)$ is disconnected. (We omit the proof) Therefore,

$$
H_{\left|\tau_{1} \cup \tau_{2}\right|-3}(Y)=H_{0}(\Gamma(Y)) \neq 0
$$

Since \mathcal{M} is a Steiner $(d, d+1, n)$-system, $\left|\tau_{1} \cap \tau_{2}\right|<d$. So,
$\left|\tau_{1} \cup \tau_{2}\right|-3=\left|\tau_{1}\right|+\left|\tau_{2}\right|-\left|\tau_{1} \cap \tau_{2}\right|-3$

The extremal case- Sketch of proof

Claim: $\Gamma(Y)$ is disconnected. (We omit the proof) Therefore,

$$
H_{\left|\tau_{1} \cup \tau_{2}\right|-3}(Y)=H_{0}(\Gamma(Y)) \neq 0 .
$$

Since \mathcal{M} is a Steiner $(d, d+1, n)$-system, $\left|\tau_{1} \cap \tau_{2}\right|<d$. So,
$\left|\tau_{1} \cup \tau_{2}\right|-3=\left|\tau_{1}\right|+\left|\tau_{2}\right|-\left|\tau_{1} \cap \tau_{2}\right|-3 \geq(d+1)+(d+1)-(d-1)-3=d$.

The extremal case- Sketch of proof

Claim: $\Gamma(Y)$ is disconnected. (We omit the proof) Therefore,

$$
H_{\left|\tau_{1} \cup \tau_{2}\right|-3}(Y)=H_{0}(\Gamma(Y)) \neq 0 .
$$

Since \mathcal{M} is a Steiner $(d, d+1, n)$-system, $\left|\tau_{1} \cap \tau_{2}\right|<d$. So,
$\left|\tau_{1} \cup \tau_{2}\right|-3=\left|\tau_{1}\right|+\left|\tau_{2}\right|-\left|\tau_{1} \cap \tau_{2}\right|-3 \geq(d+1)+(d+1)-(d-1)-3=d$.

A contradiction to $H_{j}(Y)=0$ for all $j \geq d$.

Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V.

Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V. $\operatorname{rep}(X)=$ minimal d such that X is d-representable.

Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V. $\operatorname{rep}(X)=$ minimal d such that X is d-representable. Assume $|V|=n$.

Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V. rep $(X)=$ minimal d such that X is d-representable. Assume $|V|=n$. How large can $\operatorname{rep}(X)$ be?

Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V. rep $(X)=$ minimal d such that X is d-representable. Assume $|V|=n$. How large can $\operatorname{rep}(X)$ be?

- Wegner ('67): $\operatorname{rep}(X) \leq n-1$.

Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V. $\operatorname{rep}(X)=$ minimal d such that X is d-representable. Assume $|V|=n$. How large can $\operatorname{rep}(X)$ be?

- Wegner ('67): $\operatorname{rep}(X) \leq n-1$. (Equality iff X is boundary of ($n-1$)-dimensional simplex).

Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V. $\operatorname{rep}(X)=$ minimal d such that X is d-representable. Assume $|V|=n$. How large can $\operatorname{rep}(X)$ be?

- Wegner ('67): $\operatorname{rep}(X) \leq n-1$. (Equality iff X is boundary of ($n-1$)-dimensional simplex).
- Roberts, Witsenhausen: If X is a clique complex (i.e.
$h(X)=1)$, then $\operatorname{rep}(X) \leq \frac{n}{2}$.

Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V. $\operatorname{rep}(X)=$ minimal d such that X is d-representable. Assume $|V|=n$. How large can $\operatorname{rep}(X)$ be?

- Wegner ('67): $\operatorname{rep}(X) \leq n-1$. (Equality iff X is boundary of ($n-1$)-dimensional simplex).
- Roberts, Witsenhausen: If X is a clique complex (i.e. $h(X)=1$), then $\operatorname{rep}(X) \leq \frac{n}{2}$. (Equality iff missing faces form a complete matching).

Representability of complexes without large missing faces

Let X be a simplicial complex on vertex set V. $\operatorname{rep}(X)=$ minimal d such that X is d-representable. Assume $|V|=n$. How large can $\operatorname{rep}(X)$ be?

- Wegner ('67): $\operatorname{rep}(X) \leq n-1$. (Equality iff X is boundary of ($n-1$)-dimensional simplex).
- Roberts, Witsenhausen: If X is a clique complex (i.e. $h(X)=1$), then $\operatorname{rep}(X) \leq \frac{n}{2}$. (Equality iff missing faces form a complete matching).
What is the correct bound if $h(X) \leq d$ for some $d \geq 2$?

Representability of complexes without large missing faces

Conjecture:
Let X be a simplicial complex on n vertices, with $h(X) \leq d$. Then

$$
\operatorname{rep}(X) \leq\left\lfloor\frac{d n}{d+1}\right\rfloor
$$

Representability of complexes without large missing faces

Conjecture:
Let X be a simplicial complex on n vertices, with $h(X) \leq d$. Then

$$
\operatorname{rep}(X) \leq\left\lfloor\frac{d n}{d+1}\right\rfloor .
$$

Moreover, $\operatorname{rep}(X)=\frac{d n}{d+1}$ if and only if the missing faces of X consist of $\frac{n}{d+1}$ pairwise disjoint sets of size $d+1$.

Representability of complexes without large missing faces

A special case:
Let X be a complex whose missing faces form a Steiner triple system. What is $\operatorname{rep}(X)$?

Representability of complexes without large missing faces

A special case:
Let X be a complex whose missing faces form a Steiner triple system. What is $\operatorname{rep}(X)$?

Representability of complexes without large missing faces

A special case:
Let X be a complex whose missing faces form a Steiner triple system. What is $\operatorname{rep}(X)$?

Representability of complexes without large missing faces

A special case:
Let X be a complex whose missing faces form a Steiner triple system. What is $\operatorname{rep}(X)$?

$$
\Longrightarrow \operatorname{rep}(X) \leq 5
$$

Representability of complexes without large missing faces

A special case:
Let X be a complex whose missing faces form a Steiner triple system. What is $\operatorname{rep}(X)$?

$$
\Longrightarrow \operatorname{rep}(X) \leq 5>\left\lfloor\frac{2.7}{3}\right\rfloor=4 .
$$

Representability of complexes without large missing faces

A special case:
Let X be a complex whose missing faces form a Steiner triple system. What is $\operatorname{rep}(X)$?

$$
\Longrightarrow \operatorname{rep}(X) \leq 5>\left\lfloor\frac{2.7}{3}\right\rfloor=4 .
$$

Indeed, using a diferent construction, can show $\operatorname{rep}(X)=4$.

Representability of complexes without large missing faces

A special case:
Let X be a complex whose missing faces form a Steiner triple system. What is $\operatorname{rep}(X)$?

$$
\Longrightarrow \operatorname{rep}(X) \leq 5>\left\lfloor\frac{2 \cdot 7}{3}\right\rfloor=4 .
$$

Indeed, using a diferent construction, can show rep $(X)=4$.

Representability of complexes without large missing faces

A special case:
Let X be a complex whose missing faces form a Steiner triple system. What is $\operatorname{rep}(X)$?

Indeed, using a diferent construction, can show $\operatorname{rep}(X)=4$.

Representability of complexes without large missing faces

A special case:
Let X be a complex whose missing faces form a Steiner triple system. What is $\operatorname{rep}(X)$?

$$
\Longrightarrow \operatorname{rep}(X) \leq 5>\left\lfloor\frac{2.7}{3}\right\rfloor=4 .
$$

Indeed, using a diferent construction, can show $\operatorname{rep}(X)=4$.

$\Longrightarrow \operatorname{rep}(X) \leq 7$

Representability of complexes without large missing faces

A special case:
Let X be a complex whose missing faces form a Steiner triple system. What is $\operatorname{rep}(X)$?

$$
\Longrightarrow \operatorname{rep}(X) \leq 5>\left\lfloor\frac{2.7}{3}\right\rfloor=4 .
$$

Indeed, using a diferent construction, can show $\operatorname{rep}(X)=4$.

$$
\Longrightarrow \operatorname{rep}(X) \leq 7>\frac{2 \cdot 9}{3}-1=5
$$

Representability of complexes without large missing faces

A special case:
Let X be a complex whose missing faces form a Steiner triple system. What is $\operatorname{rep}(X)$?

$$
\Longrightarrow \operatorname{rep}(X) \leq 5>\left\lfloor\frac{2 \cdot 7}{3}\right\rfloor=4
$$

Indeed, using a diferent construction, can show $\operatorname{rep}(X)=4$.

$$
\Longrightarrow \operatorname{rep}(X) \leq 7>\frac{2 \cdot 9}{3}-1=5
$$

Does $\operatorname{rep}(X) \leq 5$ hold?

Thank you!

