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Abstract

Consider a finite irreducible Markov chain with transition matrix M = (pij). Fixing
a target distribution τ , we study a family of optimal stopping rules from the singleton
distributions to τ . We show that this family of rules is dual to a family of (not necessarily
optimal) rules on the reverse chain from the singleton distributions to a related distribution
α̂ called the τ -contrast distribution. This duality can be expressed using matrices of exit
frequencies. Furthermore, we identify a third distribution β called the τ -core such that α̂
and β are entirely dual to one another: a family of optimal rules to α̂ on the reverse chain
are dual to a family of optimal rules to β on the forward chain.

Using this duality, we provide new proofs of some exact mixing measure results of
Lovász and Winkler [11] concerning the mixing time, the reset time and the forget time.
In addition, we show that the time between independent samples of α̂ on the reverse chain
is equal to the time between independent samples of β on the forward chain.

Finally, we study the properties of matrices of exit frequencies for optimal families of
stopping rules. We show that the inverse of an exit frequency matrix can be obtained via
an alteration of the singular matrix I − M . Our observations lead to new proofs of two
spectral results for mixing measures.

1 Introduction

Consider a finite, irreducible, discrete time Markov chain on the state space S where |S| = n

with transition matrix M = (pij) and stationary distribution π. Reversing time results in

the dual Markov chain, called the reverse chain, with transition matrix M̂ = (p̂ij) where

p̂ij = πjpji/πi and with the same stationary distribution as the original chain. In what

follows, hatted symbols always refer to the reverse chain. Note that

M̂ = RM⊤R−1 (1)

where R is the diagonal matrix of return times, Rii = Ret(i) = 1/πi.
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In [11], Lovász and Winkler consider the relationship between time reversal and exact

mixing measures defined via stopping rules. Given a starting distribution σ and a target

distribution τ , a stopping rule halts the Markov chain whose initial state is drawn from σ so

that the final state is governed by τ (see the next section for details). An optimal stopping

rule from σ to τ minimizes the expected time before the rule halts. The access time is the

expected length of such an optimal stopping rule, which we denote by H(σ, τ). We may think

of the access time as a generalization of the state-to-state hitting time H(i, j).

Considering a target distribution that captures an aspect of mixing leads to a number

of parameterless mixing measures. Three of the most important measures are the mixing

time Tmix = maxi H(i, π), the reset time Treset =
∑

j πjH(j, π) and the forget time Tforget =

minτ maxi H(i, τ). We interpret Tmix as the pessimal mixing time and Treset as the average

mixing time. The forget time Tforget is the minimum expected time to achieve some distribution

regardless of our initial state (thus “forgetting” our starting point). Lovász and Winkler [11]

prove the following two results.

Theorem 1 (Lovász and Winkler) For every finite Markov chain, Tmix = T̂mix.

Theorem 2 (Lovász and Winkler) For every finite Markov chain, Tforget = T̂reset and

Treset = T̂forget. Moreover, Tforget is achieved uniquely by the target distribution µ given by

µi = πi



1 +
∑

j

p̂ijĤ(j, π) − Ĥ(i, π)



 (2)

and T̂forget is achieved uniquely by the target distribution µ̂ given by

µ̂i = πi



1 +
∑

j

pijH(j, π) − H(i, π)



 . (3)

Their proof of theorem 2 relies on a complicated linear programming duality argument. We

provide a simple probabilistic proof of theorem 2 using Markov chain duality along with a

new proof of theorem 1. The key to these proofs is the observation that a family of optimal

stopping rules from the singleton distributions to π on the forward chain are dual to a family

of (not necessarily optimal) rules from the singleton distributions to µ̂ on the reverse chain.

We interpret µ̂i as the scaled difference between two rules from i to π on the forward

chain. H(i, π) is the expected length of an optimal rule from i to π, while the quantity

1 +
∑

j pijH(j, π) is the expected length of the rule “make one transition according to M
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and then follow an optimal rule from this state to π.” Thus the quantity µ̂i/πi measures the

distance from optimality of the latter rule. We think of µi as contrasting the expected length

of an optimal rule with the expected length of a second (and possibly non-optimal) rule from

i to π.

The duality underlying theorem 2 holds for any target distribution. For ease of exposition,

we introduce the following two functions between distributions on S.

Definition. Given a distribution τ , the forward contrast map is the function c(τ) = α̂ where

α̂i = πi



1 +
∑

j

pijH(j, τ) − H(i, τ)



 . (4)

We call α̂ the forward contrast distribution of τ or the forward τ -contrast. The reverse contrast

map is the function ĉ(τ) = α where

αi = πi



1 +
∑

j

p̂ijĤ(j, τ) − Ĥ(i, τ)



 . (5)

We call α the reverse contrast distribution of τ or the reverse τ -contrast.

Singletons are the simplest examples of contrasted distributions: c(i) = ĉ(i) = i for any

singleton distribution i. In general, for a non-reversible chain α 6= α̂. We show that some

hitting time identities that do not hold for general access times can be extended for contrasted

distributions.

The family of optimal forward rules to τ are dual to a family of (not necessarily optimal)

reverse rules to α̂. Analogously, an optimal family of reverse rules to τ are dual to a family of

(not necessarily optimal) forward rules to α. Since our designation “forward” and “reverse”

is arbitrary, most discussion hereafter will focus on forward walks to τ with the analogous

statements concerning reverse walks to τ also holding. Theorem 2 is an example of this

duality for τ = π and c(τ) = µ̂. In general, the duality between τ and α̂ is most explicitly

revealed via exit frequencies.

Given a stopping rule Γ from σ to τ , its ith exit frequency xi(Γ) is the expected number

of times the rule Γ exits state i. Exit frequencies are key to virtually all stopping rule results.

In particular, we can characterize an optimal rule from σ to τ by its exit frequencies. Lovász

and Winkler [10] prove that a stopping rule is optimal if and only if there is a so-called halting

state k such that xk(Γ) = 0. Moreover, each optimal stopping rule from σ to τ has the same

exit frequencies, denoted by xk(σ, τ).
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A forward τ -family {Γ(i, τ)} is a family of rules to τ , one from each singleton. An optimal

forward τ -family is such a family where each rule is optimal. We define the forward optimal

exit frequency matrix of τ , denoted Xτ to be the square matrix whose ijth entry is xj(i, τ).

The ith row of Xτ contains the exit frequencies for an optimal rule from i to τ . Note that

each row must contain at least one zero entry, corresponding to a halting state for this optimal

rule. Our main duality result is as follows.

Theorem 3 Consider a distribution τ on the state space S and let α̂ = c(τ) and α = ĉ(τ) be

the forward contrast distribution for τ .

(a) Let Xτ be the exit frequency matrix for an optimal forward τ -family. Then the matrix

RX⊤
τ R−1 is the exit frequency matrix for a (not necessarily optimal) reverse α̂-family.

(b) The optimal exit frequency matrices for the contrast distributions of τ are given by

X̂α̂ = R(X⊤
τ − b⊤1)R−1 where bk = min

i
xk(i, τ).

Recall that equation (1) shows that we obtain the reverse transition matrix M̂ by taking

the scaled transpose of the forward transition matrix. Analogously, theorem 3 states that

RX⊤
τ R−1 is nearly equal to the optimal reverse exit frequency matrix for α̂. (The rules may

not be optimal as there may be columns of Xτ which do not contain any zeros, giving rows of

RX⊤
τ R−1 without halting states.) We find X̂α̂ by subtracting the smallest entry in each row

of X⊤
τ from all the entries in that row before scaling, guaranteeing that there is a zero in every

row and every column of X̂α̂.

Let β = ĉ(α̂) = ĉ(c(τ)). If every column of Xτ contains a zero entry then we have equality

X̂α̂ = RX⊤
τ R−1 and therefore β = τ . Otherwise, ĉ(α̂) = β 6= τ . The following corollary shows

that the distribution β is fully dual to α as well as being related to τ .

Definition. Given a distribution τ , the forward τ -core distribution is given by β = ĉ(α̂) =

ĉ(c(τ)) and the reverse τ -core distribution is is given by β̂ = c(α) = c(ĉ(τ)).

Corollary 4 If α̂ = c(τ) and β = ĉ(α̂) then Xβ = RX̂⊤
α̂ R−1 and therefore c(ĉ(α̂)) = c(β) = α̂.

If Wτ = {σ : ∀i, H(i, σ) + H(σ, τ) = H(i, τ)}, then β ∈ Wτ . Furthermore, β is the unique

reverse contrasted distribution in Wτ and H(β, τ) = maxσ∈Wτ
H(σ, τ).

The forward τ -contrast α̂ and the forward τ -core β are balanced in the sense that every

state is a halting state for some other state. Moreover, if i is a reverse α̂-halting state for
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j then j is a forward β-halting state for i. We call β the forward τ -core since it is the first

distribution “on the way” to τ in the sense that rule “walk from i to β and then from β to τ”

is optimal for every singleton i. In other words, you may choose to obtain a sample from the

τ -core β on your way to obtaining a sample from τ optimally.

The duality of the τ -contrast α̂ and the τ -core β manifests itself in many ways. For

example, generalizing the notion of state-to-state commute time κ(i, j) = H(i, j) + H(j, i)

to distributions κ(σ, τ) = H(σ, τ) + H(τ, σ), we have the following extension for the known

identity κ(i, j) = κ̂(i, j) for all i, j.

Corollary 5 For a contrasting pair α̂, β and any state i, κ̂(i, α̂) = κ(i, β).

In addition, the average access times to these distributions are equal.

Corollary 6 The contrasting pair α̂ and β satisfy

∑

k

πkĤ(k, α̂) =
∑

k

πkH(k, β) ≤
∑

k

πkH(k, τ).

Another duality result between the reverse τ -contrast α̂ and the forward τ -core β concerns the

regeneration time, which was studied in [5]. The regeneration time of a distribution ρ is the

expected time between independent samples: Tregen =
∑

i ρiH(i, ρ).

Theorem 7 For a distribution τ with forward contrasting pair α̂ = c(τ) and β = ĉ(α̂),

T̂regen(α̂) = Tregen(β) ≤ Tregen(τ).

We are particularly interested in the case τ = π. We have µ̂ = c(π) and we introduce the

notation ν = ĉ(µ̂) = ĉ(c(π)) for the π-core distribution. These three distrubtions will be used

to prove the mixing results of theorems 1 and 2.

Finally, we consider the matrix properties of optimal exit frequency matrices. Not surpris-

ingly, the exit frequency matrix Xτ is closely related to I −M. The rank of I −M is n− 1 (π

is an eigenvector for eigenvalue 0). Depending on our target distribution, a slight alteration

of I − M gives the inverse of Xτ .

Theorem 8 Consider the (forward optimal) exit frequency matrix Xτ for a distribution τ .

(a) If τ is a singleton distribution on the state k then consider the (n − 1) × (n − 1) matrix

X ′
k defined by deleting the kth row and the kth column of Xk. Let M ′ be defined similarly

from the transition matrix M . Then X ′
k is the inverse of (I − M ′).
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(b) For any nonsingleton τ with forward τ -contrast α̂,

X−1
τ = I − M +

1

Tregen(τ)
aτ⊤ (6)

where a = (a1, a2, . . . , an) is given by ai = α̂i/πi.

Note that when our target is the singleton τ = k then the kth row and the kth columns are

all zero, hence n − 1 is the largest possible rank for Xk. Part (b) shows that when τ is any

nonsingleton distribution, Xτ has full rank and is obtained by adding the appropriate rank 1

matrix to the rank n − 1 matrix I − M .

In general, the spectrum of Xτ is difficult to describe. However, we can find the spectrum

of Xπ exactly.

Theorem 9 Denote the eigenvalues of M by λ1 = 1 ≥ λ2 ≥ . . . ≥ λn. The largest eigenvalue

for Xπ is Treset with corresponding left eigenvector π. The remaining eigenvalues are 1/(1−λk)

for 2 ≤ k ≤ n.

It follows immediately that
1

1 − λ2

≤ Treset (7)

which was originally proven indirectly in [12].

The organization of this paper is the following: in Section 2 we recall some results concern-

ing hitting times, access times and optimal stopping rules. Section 3 contains several examples

to illustrate the duality of contrasted distributions. In Section 4, we prove our main duality

result concerning contrasted distributions and derive some consequences. Section 5 contains

the proofs of theorems 1 and 2. Finally, Section 6 contains some linear algebra and spectral

results for exit frequency matrices.

2 Preliminaries

Random Walks. Let (w0, w1, . . . , wt, . . .) be a finite irreducible Markov chain with state

space S and transition probabilities pij . We define M = {pij} to be the matrix of transition

probabilities. For two states i, j, the hitting time H(i, j) is the expected length of a walk from

i to j. The expected number of steps before a walk started at i returns to i is

Ret(i) =
1

πi
. (8)
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The sum κ(i, j) = H(i, j) + H(j, i) is the commute time. As a first example of the duality of

the forward and reverse chains, we have

κ(i, j) = κ̂(i, j). (9)

More generally, the cycle reversing identity of [6] can be generalized (with a virtually identical

proof) as

H(i, j) + H(j, k) + H(k, i) = Ĥ(i, k) + Ĥ(k, j) + Ĥ(j, i) (10)

for any states i, j and k. The analogous identity holds for more than three states. Another

useful formula is the random target identity (see [2]) which states that

∑

j

πjH(i, j) = Thit (11)

is independent of the starting state i. Multiplying (10) by πk, summing over k and applying

the random target identity gives

H(π, i) + H(i, j) = Ĥ(π, j) + Ĥ(j, i). (12)

Stopping Rules. We briefly summarize some stopping rule results of Lovász and Winkler

[10]. Let S∗ be the space of finite walks on S, i.e. the set of finite strings w = (w0, w1, w2, . . . , wt),

wi ∈ V and pwi,wi+1
> 0. For a given initial distribution σ, the probability of w being the walk

after t steps is

Pr(w) = σw0

t−1
∏

i=0

pwi,wi+1
.

A stopping rule Γ is a map from S∗ to [0, 1] such that Γ(w) is the probability of continuing

given that w is the walk so far observed. We assume that with probability 1 the rule stops the

walk in a finite number of steps.

Given another distribution τ on V , we define the access time H(σ, τ) to be the minimum

expected length of a stopping rule Γ that produces τ when started at σ. We say Γ is optimal

if it achieves this minimum. Optimal stopping rules exist for any pair σ, τ of distributions and

the access time H(σ, τ) has many useful algebraic properties. When σ and τ are concentrated

on states i and j respectively (we write σ = i, τ = j), the access time H(i, j) is the hitting

time from i to j; in this instance, the only optimal stopping rule is “walk until you hit j.”

Whenever our target is a singleton, the analogous rule is optimal for any starting distribution:

H(σ, j) =
∑

i σiH(i, j). However, when our target is not a singleton the inequality H(σ, τ) ≤
∑

i σiH(i, τ) is usually strict.
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Given a stopping rule Γ from σ to τ , for each i ∈ S we define its exit frequency xi(Γ) to

be the expected number of times the walk leaves state i before halting. Exit frequencies are

fundamental to virtually all access time results. A key observation, due to Pitman [13], is that

exit frequencies satisfy
∑

i

pijxi(Γ) − xj(Γ) = τj − σj . (13)

It follows from this conservation equation that the exit frequencies for two rules from σ to τ

differ by Kπi where K is the difference between the expected lengths of these rules. Hence the

distributions σ and τ uniquely determine the exit frequencies for a mean optimal stopping rule

between them. We denote these optimal exit frequencies by xi(σ, τ). Moreover, a stopping

rule Γ is mean-optimal if and only if there exists a halting state k such that xk(Γ) = 0.

Any three distributions ρ, σ and τ satisfy the “triangle inequality”

H(ρ, τ) ≤ H(ρ, σ) + H(σ, τ) (14)

with equality holding if and only if there is a k that is a halting state from ρ to σ and also a

halting state from σ to τ . In particular, H(σ, j) ≤ H(σ, τ) + H(τ, j) and equality holds if and

only if j is a halting state for an optimal rule from σ to τ . This gives

H(σ, τ) = max
j

(H(σ, j) − H(τ, j)). (15)

In the case σ = i and τ = π, the state j is halting for i if and only if Ĥ(j, i) = maxk Ĥ(k, i).

Let i′ be such an i-pessimal state. Combining equations (15) and (12) yields another formula

for the access time from i to π:

H(i, π) = Ĥ(i′, i) − Ĥ(π, i). (16)

The exit frequencies for an optimal stopping rule from σ to τ are given by

xk(σ, τ) = πk(H(σ, τ) + H(τ, k) − H(σ, k)). (17)

and sometimes it is more convenient to consider the scaled exit frequencies

yi(σ, τ) =
1

πi
xi(σ, τ).

Exit Frequency Matrix. Fix the target distribution τ and consider a family of optimal

walks from all singleton distribtions to τ . We can naturally represent the exit frequencies for

this family of rules in an n × n matrix Xτ whose ijth entry is xj(i, τ). The ith row of Xτ
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contains the exit frequencies for an optimal rule from i to τ . We can rewrite the conservation

equation (13) in matrix form:

Xτ (I − M) = I − 1 τ⊤. (18)

This matrix equation identifies connections between stopping rules on the forward and reverse

chains.

Lemma 10 For any distribution σ on the forward chain M and any distribution τ̂ on the

reverse chain M̂ ,

(I − 1σ⊤)RX̂⊤
τ̂ = XσR(I − τ̂1⊤).

Proof. Transpose the matrix conservation equation (18) for the reverse walk to τ̂ and

substitute M̂⊤ = R−1MR to yield R−1(I − M)RX̂⊤
τ̂ = I − τ̂1⊤. Multiplying on the left by

XσR and using equation (18) for σ gives the result. 2

The ijth entry gives a special case of lemma 1 of [11] which will be useful in later.

Corollary 11

ŷi(j, τ̂) −
∑

k

σkŷk(j, τ̂) = yj(i, σ) −
∑

k

τ̂kyk(i, σ).

2

3 Examples

We illustrate contrast and core distributions with some examples on time reversible and general

Markov chains. In particular, we will calculate the forget distribution µ and the π-core ν for

these examples. When our Markov chain is time reversible, we use c to denote the unique

contrast map and we denote the τ -contrast and the τ -core by α and β, respectively.

Complete Graph. Let α is a non-singleton contrasted distribution on the complete graph

Kn ordered so that α1 ≥ α2 ≥ · · · ≥ αn. Then α is given by α1 ≥ 1/n and αi = (1−α1)/(n−1)

for 2 ≤ i ≤ n. Indeed, let τ be any distribution on Kn with nodes ordered so that τ1 ≥ τ2 ≥

· · · ≥ τn. By equation (15) and the fact that H(i, j) = n − 1 for i 6= j, node 2 is τ -halting

for node 1 and node 1 is τ -halting for i > 1. By theorem 3, RF⊤
α R−1 = Fτ − 1b⊤ where

bk = mini xk(i, τ). By simply transposing Fτ it is clear that every node i > 1 is α-halting for

node 1, so α2 = α3 = · · · = αn. Moreover, x1(1, α) = x1(1, τ) = n−1
n

(1 − τ1 + τ2). Hence

α1 = 1
n

+ n−1
n

(τ1 − τ2) and αk = 1
n
(1 − τ1 + τ2) for 2 ≤ k ≤ n.
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Note that every contrasted distribution on Kn is self-contrasting: c(α) = α, and therefore

H(i, α) + H(α, τ) = H(i, τ) for all i by corollary 4. Turning our attention to the contrasting

pair for π, we know that the mixing time is the same for all nodes, and hence µ = ν = π.

Trees. On a tree, a contrasted distribution must either be a singleton or concentrated on

two adjacent notes. Like the complete graph, each of these is self-contrasting. Assume that τ

is not a singleton. The contrast map compares the length of the rule “take one step and follow

an optimal rule to τ” with the length of an optimal rule. In particular, if the node i and all of

its neighbors share a common τ halting state, then αi = 0. There can be at most two nodes

for which this does not hold, and they must be adjacent.

We consider τ = π for a path on n vertices and calculate µ = ν. In this case, the best

choice to “forget” where we started is to walk to the center of the path. For a path of even

length, µ will be concentrated on the center of the path. For a path of odd length, µ will be

evenly divided between the two central nodes of the path. A general formula for µ on a tree

is given in [4].

Winning Streak. The winning streak chain (introduced in [11]) nicely illustrates how

different mixing walks can be for the forward and reverse chain. The winning streak on n

nodes {0, 1, . . . , n − 1} has transition probabilities given by

pij =



















1/2 j = i + 1
1/2 j = 0 and 0 ≤ i ≤ n − 1
1/2 i = j = n − 1
0 otherwise.

The stationary distribution is π = (1/2, 1/4, . . . , 2−n+1, 2−n+1). Both state 0 and n − 1 are

mixing pessimal. For either one, the trivial rule “take n − 1 steps” is an optimal mixing rule.

The transition probabilities for the reverse winning streak are

p̂ij =



























1 j = i − 1 and 1 ≤ u ≤ n − 2
2−j−1 i = 0 and 0 ≤ i ≤ n − 2
2−n+1 i = 0 and j = n − 1
1/2 i = n − 1 and j = n − 1 or j = n − 2
0 otherwise.

For the reverse winning streak, state n− 1 is mixing pessimal and the rule “take n− 1 steps”

is an optimal mixing rule from this state. However, state 0 is far from pessimal: the rule “take

one step” takes us immediately from 0 to π.

We describe the forget distribution and π-core of both the forward and reverse winning

streak chains, omitting the detailed calculations. The reverse forget distribution was calculated
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in [11]:

µ =











1 − 2−n+1 i = 0
2−n+1 i = n − 1

0 otherwise.

Moreover, H(i, µ) = 2 − 2−n+2 for all i (walk until either state 0 is hit or n − 1 steps have

been made) and therefore ν̂ = c(µ) = π.

The contrasting pair µ̂ and ν are not as well behaved. A more complicated analysis of the

mixing walks on forward chain shows that each state below roughly log n has state n − 1 as a

π-halting state while each remaining state i has i−1 as a π-halting state. Let i0 be the unique

node satisfying 2i0 + i0 ≤ n < 2i0+1 + i0 + 1. Some tedious calculations of access times gives

µ̂ =



















0 0 ≤ i < i0
πi0

2
(2i0+2 − n + i0) i = i0
πi0

2
(2 + n − i) i0 < i ≤ n − 2
πn−1 i = n − 1.

Finally, we may calculate ν = ĉ(µ̂) using theorem 3:

ν =











∑i0
k=0 πk i = 0
0 1 ≤ i ≤ i0
πi i0 < i ≤ n − 1.

We note that µ, ν̂, µ̂, andν are all quite distinct from one another.

4 Contrasting Pairs

We examine the relationship between the exit frequencies for stopping rules concerning τ and

its forward contrast α̂. In this section, we assume that α̂ = c(τ) and β = ĉ(α̂) = ĉ(c(τ)). We

begin with a straightforward generalization of theorem 5 in [11].

Proposition 12 If α̂ = c(τ) then the scaled exit frequencies for the reverse walk from π to α̂

and vice versa are given by

ŷi(π, α̂) = H(i, τ) − min
k

H(k, τ)

and

ŷi(α̂, π) = max
k

H(k, τ) − H(i, τ).

Proof. Rewriting equation (4) gives

∑

j

p̂jiπjH(i, τ) − πiH(i, τ) = α̂i − πi.
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By equation (13), the numbers ŷi = H(i, τ) are the scaled exit frequences of some (non-optimal)

stopping rule for a walk from π to α̂ on the reverse chain. Therefore H(i, τ) − mink H(k, τ)

is the ith exit frequency for an optimal stopping rule. Taking the negative of both sides and

following a similar argument gives the second statement of the theorem. 2

Corollary 13 A state z is a halting state from π to α̂ on the reverse chain if and only if it

achieves mink H(k, τ). Moreover,

min
k

H(k, τ) =
∑

i

πiH(i, τ) − Ĥ(π, α̂).

2

Corollary 14 A state z is a halting state from α̂ to π on the reverse chain if and only if it

achieves maxk H(k, τ). Moreover,

max
k

H(k, τ) =
∑

i

πiH(i, τ) + Ĥ(α̂, π).

2

We now focus on the central result of this paper: the relationship between forward rules

from singletons to τ and reverse rules from singletons to α̂. In particular, we show that the

relationship between Xτ and X̂α̂ mirrors the relationship between M and M̂ . Recall that the

transition matrix for the reverse chain is the scaled transpose of the transition matrix for the

forward chain: M̂ = RM⊤R−1. Analogously, theorem 3 shows that the reverse exit frequency

matrix for α̂ is derived from the scaled transpose of the exit frequency matrix for τ .

Proof of Theorem 3. The ijth component of (I − M)Xτ is

xj(i, τ) −
∑

k

pikxj(k, τ)

= πj

(

H(i, τ) −
∑

k

pikH(k, τ) − H(i, j) +
∑

k

pikH(k, j)

)

= ij − πjα̂i/πi

since 1/πi = Ret(i) = 1+
∑

k pikH(k, i), and therefore (I −M)Xτ = I −Rα̂1⊤R−1. Rewriting

the reverse conservation equation for α̂ gives α̂1⊤ = I − (I − M̂⊤)X̂⊤
α̂ . Substituting this value

into the previous equation and using M̂⊤ = R−1MR yields

(I − M)Xτ = (I − M)RX̂α̂R−1.

12



Hence RX̂⊤
α̂ R−1 = Xτ + L where (I − M)L = 0. The rank of I − M is n − 1 and 1 is a right

eigenvector for 0, so L = 1b⊤ for some constant vector b. Since every column of X̂α̂ must

contain a zero element, we must have bk = mini xk(i, τ) for 1 ≤ k ≤ n. 2

Theorem 3 states that for each i, yi(1, τ), yi(2, τ), . . . yi(n, τ) is a set of scaled exit frequen-

cies for a (not necessarily optimal) stopping rule on the reverse chain from i to α̂. These exit

frequencies correspond to an optimal rule if and only if there exists a k such that i is a halting

state for the forward (k, τ)-walk. On the other hand, for each i there exists some k such that

yk(i, τ) = 0 which means that for every state i there always exists a k such that ŷi(k, α̂) = 0.

The forward exit frequencies to τ become (not necessarily optimal) reverse exit frequencies

to α̂, however the reverse statement need not hold. Instead, the scaled transpose of X̂α̂ gives

a set of optimal exit frequencies to the τ -core β = ĉ(α̂) = ĉ(c(τ)).

Proof of Corollary 4. By the theorem, RX⊤
β R−1 = X̂α̂ − 1b⊤ where bi = mini x̂k(i, α̂).

Each column of X̂α̂ contains at least one zero entry, and therefore b = 0. In addition, each

row of X̂α̂ contains at least one zero, and therefore c(β) = α̂.

Since xk(i, β) ≤ xk(i, τ) for all i, k, we have H(i, τ) = H(i, β) + H(β, τ) as the rule “walk

from i to β and then from β to τ” has a halting state. If σ is any distribution such that H(i, τ) =

H(i, σ) + H(σ, τ) for all i, we have xk(i, σ) + xk(σ, τ) = xk(i, τ). Since xk(σ, τ) is independent

of i and all exit frequencies must be nonnegative, xk(i, σ) ≥ xk(i, τ) − minj xk(j, τ) = xk(i, β)

for all i, k. So H(i, σ) ≥ H(i, β) for all i and H(σ, τ) ≤ H(β, τ). Clearly β is the unique

reverse contrasted distribution among all σ such that H(i, τ) = H(i, β) + H(β, τ) for all i. 2

The relationship described in corollary 4 is summarized via a formula using scaled exit

frequencies:

ŷi(j, α̂) = yj(i, β) for all i, j. (19)

The τ -contrast α̂ has a natural association with the reverse chain, and it captures the dif-

ferences between walks from neighboring states to τ . On the other hand, the τ -core β has a

natural association with the forward chain, and complementary to α̂, β captures the maximum

commonality among all walks from singletons to τ . It is also important to note that both α̂

and β are “balanced” in the sense that every state is a halting state for at least one other

state. Furthermore, j is a halting state for the reverse (i, α̂)-walk if and only if i is a halting

state for the forward (j, β)-walk.

We spend the remainder of this section developing the duality of the contrasting pair α̂ and

β. First, we prove that the the contrasting pair have the same commute times to singletons

13



and that the average access times to each of the contrasting pair are equal.

Proof of Corollary 5. Since yi(i, β) = ŷi(i, α̂), H(i, β) + H(β, i) = Ĥ(i, α̂) + Ĥ(α̂, i). 2

Proof of Corollary 6. Taking the trace of both X̂α̂ and RX⊤
β R−1,

∑

k

πk(Ĥ(k, α̂) + Ĥ(α̂, k)) =
∑

k

πk(H(k, β) + H(β, k))

therefore
∑

k πkĤ(k, α̂) =
∑

k πkH(k, β) by the random target identity (11). Since H(k, β) ≤

H(k, τ) for all k, we have
∑

k πkH(k, β) ≤
∑

k πkH(k, τ). 2

The next two results follow immediately from the theorem and corollaries 13 and 14.

Corollary 15 A state z is a halting state from π to α̂ on the reverse chain if and only if it

achieves mink H(k, β). Moreover,

min
k

H(k, β) =
∑

i

πiĤ(i, α̂) − Ĥ(π, α̂).

2

Corollary 16 A state z is a halting state from α̂ to π on the reverse chain if and only if it

achieves maxk H(k, β). Moreover,

max
k

H(k, β) =
∑

i

πiĤ(i, α̂) + Ĥ(α̂, π).

2

In addition to the equality of the average access times for the contrasting pair, we also

have T̂regen(α̂) = Tregen(β) ≤ Tregen(τ).

Proof of Theorem 7. Taking i = j in corollary 11, consider equation (19) with σ = β,

τ̂ = α̂. Choosing i, j such that yj(i, σ) = ŷi(j, τ̂) = 0,

∑

k

βkŷk(i, α̂) =
∑

k

α̂kyk(j, β)

∑

k

βkyi(k, β) =
∑

k

α̂kŷj(k, α̂)

∑

k

βk(H(k, β) + H(β, i) − H(k, i)) =
∑

k

α̂k(Ĥ(k, α̂) + Ĥ(α̂, j) − Ĥ(k, j))

∑

k

βkH(k, β) =
∑

k

α̂kĤ(k, α̂).

14



The inequality T̂regen(α̂) ≤ Tregen(τ) follows similarly, using yk(i, τ) ≥ ŷi(k, α̂) for all i, k. 2

We extend the cycle reversing identity (10) for contrasting pairs.

Proposition 17 The distributions α̂ and β are a contrasting pair if and only if

Ĥ(i, α̂) + Ĥ(α̂, j) + Ĥ(j, i) = H(j, β) + H(β, i) + H(i, j).

Proof. The distributions are a contrasting pair if and only if ŷj(i, α̂) = yi(j, β) for all i, j.

By equation (9), ŷj(i, α̂) + κ̂(i, j) = yi(j, β) + κ(i, j) and expanding completes the proof. 2

We say that a distribution γ is self-contrasting if c(γ) = ĉ(γ) = γ. Obviously, any singleton

is self contrasting. It follows from the proposition that γ is self contrasting if and only if

Ĥ(i, γ) + Ĥ(γ, j) + Ĥ(j, i) = H(j, γ) + H(γ, i) + H(i, j). (20)

5 Mixing Measures

We provide new proofs of theorems 1 and 2 using the duality of contrasting pairs. For the

equality T̂forget = Treset of theorem 2, this proof offers new insight into the relationship between

π and the reverse forget distribution µ̂. Recall that ν = ĉ(α̂) = ĉ(c(π)) and ν̂ = c(α) = c(ĉ(π))

are the forward π-core and the reverse π-core, respectively.

Proof of Theorem 2. If σ̂ achieves minτ maxi Ĥ(i, τ)) then σ̂ must be contrasted: we have

x̂k(i, c(ĉ(σ̂))) ≤ x̂k(i, σ̂) by theorem 3, so Ĥ(i, c(ĉ(σ̂))) ≤ Ĥ(i, σ̂). Thus we may assume that

our minimum is achieved by α̂ where α̂ = c(β) and β = ĉ(α̂) are a contrasting pair. Applying

corollary 16 for the reverse chain (and switching the roles of α̂ and β),

max
i

Ĥ(i, α̂) =
∑

j

πj(H(j, β) + H(β, π)) ≥
∑

j

πjH(j, π) = Treset.

Using corollary 4 with τ = π, we find that α̂ = µ̂ and β = ν shows that H(j, ν) + H(ν, π) =

H(j, π) for all j and therefore µ̂ achieves this lower bound. The uniqueness of µ̂ also follows

from corollary 4. 2

We now use theorem 2 to prove theorem 1, showing that Tmix = T̂mix.

Proof of Theorem 1. By corollary 14 with τ = π and α̂ = µ̂, Tmix = maxk H(k, π) =

Treset + Ĥ(µ̂, π) = T̂forget + Ĥ(µ̂, π) = maxk(Ĥ(k, µ̂) + Ĥ(µ, π)) ≥ maxk H(k, π) = T̂mix.

Starting with the mixing time for the reverse chain, we similarly find that T̂mix ≥ Tmix so

equality must hold everywhere. 2
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Corollary 18 If z is π-pessimal on the forward chain then Ĥ(z, µ̂) + Ĥ(µ̂, π) = Ĥ(z, π). 2

Proposition 19 A state z is forget pessimal if and only if it is a halting state for some mixing

walk on the reverse chain.

Proof. Summing across the ith row of X̂µ̂ gives

Ĥ(i, µ) =
∑

j

πj ŷj(i, µ̂) =
∑

j

πjyi(j, π) − min
k

yi(k, π) =
∑

j

πjH(j, π) − min
k

yi(k, π)

which is maximized whenever mink yi(k, π) = 0. 2

This is an improvement over corollary 6 of [11] which only identifies the π-pessimal state

as a pessimal state for the forget walk.

Finally, the following corollary is dual to theorem 4 of [11], which states that Tforget =
∑

j πj(H(j′, j) − H(π, j)) where Ĥ(j′, j) = maxk Ĥ(k, j).

Corollary 20 T̂forget =
∑

j µk(Ĥ(j′, j) − Ĥ(µ̂, j)) where Ĥ(j′, j) = maxk Ĥ(k, j).

Proof. Since j′ is a halting state for the mixing walk from j, proposition 19 implies that j is

a halting state for the reverse walk from j′ to µ̂ and that Ĥ(j′, j)−Ĥ(µ̂, j) = Ĥ(j′, µ̂) = T̂forget

for all j. 2

6 Exit Frequency Matrices

The matrix form of the conservation equation (18) shows that Xτ is almost the inverse for the

(singular) matrix I − M . We now prove Theorem 8, which explains how to alter the matrix

I − M so that Xτ is the inverse of the resulting matrix.

Proof of Theorem 8(a). Fix a target singleton distribution k and let Xk = (xj(i, k)) be

the exit frequency matrix of an optimal family of rules from the singletons to k. Note that the

kth row and kth column are both 0, and therefore the rank of Xk is at most n−1. Let X ′
k and

M ′ be the matrices defined by deleting the kth row and column from Xk and M , respectively.

Consider the ijth entry of F ′
k(I − M ′) which is

xj(i, k) −
∑

r

prjxr(i, k) = ij
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by the conservation equation (13). Hence F ′
k(I − M ′) = I. Similarly, we see that the ijth

entry of (I − M ′)F ′
k satisfies

xj(i, k) −
∑

r

pirxj(r, k) = ij

by conisdering the optimal rule “take one step from i and follow an optimal rule to k.” Thus,

X ′
k is the inverse of I − M ′ and therefore has rank n − 1. 2

In the case of a nonsingleton target distribution τ , we find that Xτ has full rank.

Proof of Theorem 8(b). If X−1
τ exists, then by equation (18) we must have

I − M = X−1
τ Xτ (I − M) = X−1

τ (I − 1 τ⊤) = X−1
τ − c τ⊤

where ci =
∑

k(X
−1
τ )ik. Therefore if X−1

τ exists then it must be of the form X−1
τ = I−M+c τ⊤

for some vector c. For a nonsingleton τ , we show that we can always find such a c by solving

I = (I − M + c τ⊤)Xτ . (21)

The ijth entry of the right hand side of (21) is

xj(i, τ) +
∑

k

pikxj(k, τ) + ci

∑

τkxi(k, τ).

= πj

(

H(i, τ) −
∑

k

pikH(k, τ) − H(i, j) +
∑

k

pikH(k, j) + ciTregen(τ)

)

by equation (17). Considering the case i 6= j, we have H(i, j) −
∑

k pikH(k, j) = 1 and the

ijth entry of equation (21) is

0 = πj

(

H(i, τ) −
∑

k

pikH(k, τ) − 1 + ci Tregen(τ)

)

= πj

(

−
α̂i

πi
+ ci Tregen(τ)

)

by equation (4). Since τ is not a singleton, Tregen(τ) > 0 and we may solve for c:

ci =
1

Tregen(τ)

α̂i

πi
for 1 ≤ i ≤ n.

These values are consistent with the diagonal entries of equation (21). For i = j, the right

hand side becomes

πi

(

H(i, τ) −
∑

k

pikH(k, τ) +
∑

k

pikH(k, i) + ciTregen(τ)

)

= 1 − α̂i + πiciTregen(τ) = 1
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since 1 +
∑

k pikH(k, i) = Ret(i) = 1/πi is the return time to i. 2

In the important case where τ = π, we rewrite this equation using our mixing measure

notation

Corollary 21 The inverse of the mixing matrix Xπ is

F−1
π = I − M +

1

Treset

cπ⊤

where c is given by ci = µ̂i/πi. 2

Turning to the spectrum of Fπ, we can determine the largest eigenvalue and its left eigen-

vector. Theorem 9 states that the largest eigenvalue of Fπ is Treset and its other eigenvalues

are derived from I − M .

Proof of Theorem 9. Using equation (17) with the ith component of π⊤Fπ yields
∑

k πkxi(k, π) = πi

∑

k πk(H(k, π) + H(π, i) − H(k, i)) = πi

∑

k πkH(k, π) = πiTreset by the

random target identity (11). Since all of the components of its left eigenvector are positive,

the Frobenius-Perron theorem [8] proves that Treset is the largest eigenvalue of Xπ.

Denote the eigenvalues of M by λ1 = 1, λ2, . . . , λn where 1 > |λk| for 2 ≤ k ≤ n. Let

v2,v3, . . . ,vn be the respective right eigenvectors of λ2, . . . λn. The vector π⊤ is a left eigen-

vector of M , hence π is orthogonal to each of these vectors, so that

X−1
π vk =

(

I − M +
1

Treset

cπ⊤

)

vk = (I − M)vk = (1 − λk)vk for 2 ≤ k ≤ n

and the theorem follows. 2

In addition to equation (7), we can confirm another spectral result by taking the trace of

Xπ. The trace is equal to the sum of the eigenvectors and hence

Treset +
n
∑

k=2

1

1 − λk

=
∑

k

xk(k, π) = Treset + Thit,

recovering the identity Thit =
∑n

k=2 1/(1 − λk).

We conclude this section by giving necessary and sufficient conditions for a matrix to be

the exit frequency matrix for some distribution τ .

Proposition 22 The matrix X contains the exit frequencies for a (possibly non-optimal) τ -

family on the Markov chain with transition matrix M if and only if the following two conditions

hold:
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(a) (I − M)X(I − M) = (I − M)

(b) I − X(I − M) ≥ 0

The matrix X is the optimal exit frequency matrix for τ if and only if in addition to the above

two conditions, we have

(c) minj Xij = 0 for 1 ≤ i ≤ n.

The matrix X is the optimal exit frequency matrix for a reverse contrasted distribution if and

only if in addition to the above three conditions, we have

(d) mini Xij = 0 for 1 ≤ j ≤ n.

Proof. If X is an exit frequency matrix for some family of (possibly non-optimal) rules,

then (a) and (b) follow from the conservation equation (13). Considering the reverse direction,

assume that X satisfies both conditions. By (a), (I − M)(X(I − M) − I) = 0 and therefore

X(I − M) − I = −τ1⊤ for some vector τ , which verifies the conservation equation (18).

Furthermore,
∑

k τk = τ1⊤1 = (I − F (I − M))1 = 1 and condition (b) ensures that τ ≥ 0, so

τ is a distribution.

X is an optimal exit frequency if and only if each row contains a halting state, proving

(c). Condition (d) follows similarly: the target distribution is reverse contrasted if and only if

each column contains a zero entry. 2
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II, (eds. D. Miklós, V. T. Sós and T. Szőnyi) J. Bolyai Math. Soc. (1996), 353–397.
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