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Abstract

Given a discrete random walk on a finite graph G, the vacant set and vacant net are,
respectively, the sets of vertices and edges which remain unvisited by the walk at a given
step t. Let Γ(t) be the subgraph of G induced by the vacant set of the walk at step t.
Similarly, let Γ̂(t) be the subgraph of G induced by the edges of the vacant net.

For random r-regular graphs Gr, it was previously established that for a simple
random walk, the graph Γ(t) of the vacant set undergoes a phase transition in the sense
of the phase transition on Erdős-Renyi graphs Gn,p. Thus, for r ≥ 3 there is an explicit
value t∗ = t∗(r) of the walk, such that for t ≤ (1−ε)t∗, Γ(t) has a unique giant component,
plus components of size O(log n), whereas for t ≥ (1 + ε)t∗ all the components of Γ(t)
are of size O(log n).

In this paper we establish the threshold value t̂ for a phase transition in the graph
Γ̂(t) of the vacant net of a simple random walk on a random r-regular graph,.

We obtain the corresponding threshold results for the vacant set and vacant net of
two modified random walks. These are a non-backtracking random walk, and, for r even,
a random walk which chooses unvisited edges whenever available.

This allows a direct comparison of thresholds between simple and modified walks
on random r-regular graphs. The main findings are the following: As r increases the
threshold for the vacant set converges to n log r in all three walks. For the vacant net, the
threshold converges to rn/2 log n for both the simple random walk and non-backtracking
random walk. When r ≥ 4 is even, the threshold for the vacant net of the unvisited edge
process converges to rn/2, which is also the vertex cover time of the process.
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1 Introduction

Let G = (V,E) be a finite connected graph, with vertex set size |V | = n, and edge set size
|E| = m. Let W be a simple random walk on G, with initial position X(0) at t = 0. At discrete
steps t = 1, 2, · · · , the walk chooses X(t) uniformly at random (u.a.r.) from the neighbours
of X(t − 1) and makes the edge transition (X(t − 1), X(t)). Let W (t) = (X(0), ..., X(t)) be
the trajectory of the walk up to and including step t, and let B(t) = {X(s) : s ≤ t} be the
set of vertices visited in W (t). By analogy with site percolation, the set of unvisited vertices
R(t) = V \ B(t) is referred to as the vacant set of the walk. The graph induced by the
uncrossed edges is referred to as the vacant net.

In the case of random r-regular graphs, it was established independently by [6] and [12] that
the graph induced by the set of unvisited vertices exhibits sharp threshold behavior. Typically,
as the walk proceeds, the induced graph of the vacant set has a unique giant component, which
collapses within a relatively small number of steps to leave components of at most logarithmic
size. For random r-regular graphs, we establish the threshold behavior of the vacant net,
i.e. the subgraph induced by the set of unvisited edges of the random walk. For comparison
purposes, and ignoring terms of order 1/r, the thresholds for the vacant set and vacant net
occur around steps n log r and (r/2)n log r of the walk, respectively.

For v ∈ V let Cv be the expected time taken for a random walk Wv starting at vertex X(0) = v,
to visit every vertex of the graph G. The vertex cover time T Vcov(G) of a graph G is defined as
T Vcov(G) = maxv∈V Cv. Let N(t) = |R(t)| be the size of the vacant set at step t of the walk.
As the walk Wv(t) proceeds, the size of the vacant set decreases from N(0) = n to N(t) = 0 at
expected time Cv. The change in structure of the graph Γ(t) = G[R(t)] induced by the vacant
set R(t) is also of interest, insomuch as it is reasonable to ask if Γ(t) evolves in a typical way
for most walks W (t). Perhaps surprisingly the component structure of the vacant set can be
described in detail for certain types of random graphs, and also to some extent for toroidal
grids of dimension at least 5.

To motivate this description of the component structure, we recall the typical evolution of the
random graph Gn,p as p increases from 0 to 1. Initially, at p = 0, Gn,0 consists of isolated
vertices. As we increase p, we find that for p = c/n, when c < 1 the maximum component size
is logarithmic. This is followed by a phase transition around the critical value c = 1. When
c > 1 the maximum component size is linear in n, and all other components have logarithmic
size.

In describing the evolution of the structure of the vacant set as t increases, the aim is to show
that typically Γ(t) undergoes a reversal of the phase transition mentioned above. Thus Γ(0)
is connected and Γ(t) starts to break up as t increases. There is a critical value t∗ such that if
t < t∗ by a sufficient amount then Γ(t) consists of a unique giant component plus components
of size O(log n). Once we pass through the critical value by a sufficient amount, so that t > t∗,
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then all components are of size O(log n). As t increases further, the maximum component size
shrinks to zero. We make the following definitions. A graph with vertex set V1 is sub-critical
if its maximum component size is O(log n), and super-critical if is has a unique component
C1(t) of size Ω(|V1(t)|), where |V1(t)| � log n, and all other components are of size O(log n).

For the case of random r-regular graphs Gr, the vacant set was studied independently by
Černy, Teixeira and Windisch [6] and by Cooper and Frieze [12]. Both [6] and [12] proved
that w.h.p. Γ(t) is sub-critical for t ≥ (1+ε)t∗ and that there is a unique linear size component
for t ≤ (1 − ε)t∗. The paper [6] conjectured that Γ(t) is super-critical for t ≤ (1 − ε)t∗, and
this was confirmed by [12] who also gave the detailed structure of the small (O(log n)) tree
components as a function of t. Subsequent to this Černy and Teixeira [7] used the methods of
[12] to give a sharper analysis of Γ(t) in the critical window around t∗. The paper [12], also
established the critical value t∗ for connected random graphs Gn,p and for strongly connected
random digraphs Dn,p.

For the case of toroidal grids, the situation is less clear. Benjamini and Sznitman [2] and
Windisch [23] investigated the structure of the vacant set of a random walk on a d-dimensional
torus. The main focus of this work is to apply the method of random interlacements. For
toroidal grids of dimension d ≥ 5, it is shown that there is a value t+(d), linear in n, above
which the vacant set is sub-critical, and a value of t−(d) below which the graph is super-
critical. It is believed that there is a phase transition for d ≥ 3. A recent monograph by
Černy and Teixeira [8] summarizes the random interlacement methodology. The monograph
also gives details for the vacant set of random r-regular graphs.

Let S(t) = {(X(s), X(s+ 1)) : 0 ≤ s < t} be the set of visited edges based on transitions of
the walk W up to and including step t, and let U(t) = E(G) \ S(t) be corresponding the set
of unvisited edges. The edge cover time TEcov(G) of a graph G is defined in a similar way to

the vertex cover time. The edge set U(t) defines an edge induced subgraph Γ̂(t) of G whose
vertices may be either visited or unvisited. By analogy with the case for vertices we will call
Γ̂(t) the vacant network or vacant net for short. We can ask the same questions about the
phase transition t̂ for the vacant net, as were asked for the phase transition t∗ of the vacant
set.

Random walk based crawling is a simple method to search large networks, and a giant com-
ponent in the vacant set can indicate the existence of a large corpus of information which has
somehow been missed. Similarly, a giant component in the vacant net indicates the contin-
uing existence of a large communications network or set of unexplored relationships. From
this point of view, any way to speed up the collapse of the giant component can be seen as
worthwhile. One method, which seems attractive at first sight, is to prevent the walk from
backtracking over the edge it has just used. Another simple method is to walk randomly but
choose unvisited edges when available.

We determine the thresholds for simple random walks and non-backtracking random walks;
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and also for walks which prefer unvisited edges for the case that the vertex degree r is even.
This allows a direct comparison of performance between these three types of random walk.
Detailed definitions and results for simple random walks, non-backtracking walks, and walks
which prefer unvisited edges are given in Sections 1.1, 1.2 and 1.3 respectively.

As an example, for random 3-regular graphs, using a non-backtracking walk reduces the
threshold value by a factor of 2 for vacant sets, and by 5/2 for vacant nets respectively. Thus
for very sparse graphs, improvements can be obtained by making the walk non-backtracking.
However, the improvement gained by a non-backtracking walk is of order 1+O(1/r), and soon
becomes insignificant as r increases. In fact, for all three walks, the threshold value for the
vacant set tends to n log r. For simple and non-backtracking walks, the threshold value for
the vacant net tends to nr/2 log r. For walks which prefer unvisited edges the threshold for
the vacant net tends to nr/2. This is an improvement of order log r over the other processes,
but the results only hold for r even.

As a by-product of the proofs in this paper we give an asymptotic value of (r/2)n for the
vertex cover time of the unvisited edge process for r even. This confirms the order of magnitude
estimate Θ(n) and the constant r/2 in the experimental results of [3]. The plot of experiments
is reproduced in Section 8.1 of the Appendix. Note that the plot uses the notation d for vertex
degree (rather than r). It can be seen from the figure that the vertex cover time of the unvisited
edge process exhibit a dichotomy whereby for odd vertex degree, the vertex cover time appears
to be Θ(n log n).

Notation.
Apart from O(·), o(·),Ω(·) as a function of n → ∞, where n = |V |, we use the following
notation. We say An � Bn or Bn � An if An/Bn → 0 as n → ∞, and An ∼ Bn if
limn→∞An/Bn = 1. The notation ω(n) describes a function tending to infinity as n → ∞.
We measure both walk and graph probabilities in terms of n, the size of the vertex set of the
graph.

We use the expression with high probability (w.h.p.), to mean with probability 1− o(1), where
the o(1) is a function of n, which tends to zero as n→∞. For the proofs in this paper, we can
take o(1) = O(log−K n) for some large positive constant K. The statement of theorems in this
section are w.h.p. relative to both graph sampling and walks on the sampled graph. It will
be clear when we are discussing properties of the the graph, these are given in Section 2. In
the case where we use deferred decisions, if |R(t)| = N , the w.h.p. statements are asymptotic
in N , and we assume N(n)→∞ with n.

Let W be a random walk W on a graph G. If we need to stress the start position u of the walk
W , we write Wu. The vertex occupied by W at step t is given by X(t) or Xu(t). Generally
we use Pr(A) or PrW (A) to denote the probability of event A = A(t) at some step t of the
random walk W . We use P for the transition matrix of the walk, and use P t

u(v) or P t
u(v;G)

for the (u, v)-th entry of P t, i.e P t
u(v) = Pr(Xu(t) = v). When using generating functions we
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use simple unencumbered notation such as ht, ft, rt for the probability that certain specific
events occur at step t. In particular for a designated start vertex v, rt = P t

v(v). We use πv,
or πG(v) for the stationary probability of a random walk W at vertex v of a graph G. The
notation pv has a specific meaning in the context of Lemma 5, and is reserved for that.

1.1 Simple random walk: Structure of vacant set and vacant net

Let Gr(n) be the space of r-regular graphs on n vertices, and let G be chosen u.a.r. from
Gr(n). The following theorem details established results for the vacant set of a simple random
walk on G, as given in [6], [12].

Theorem 1. Let W (t) be a simple random walk on a random r-regular graph. For r ≥ 3, the
following results hold w.h.p..

(i) Let Γ(t) be the graph induced by the vacant set R(t), at step t of W , then
G(t) has |R(t)| vertices and |E(Γ(t))| edges, where

|R(t)| ∼ n exp

(
−r − 2

r − 1

t

n

)
, |E(Γ(t))| ∼ rn

2
exp

(
−2(r − 2)

r

t

n

)
. (1)

(ii) The size of the vacant net |U(t)| at step t of W is

|U(t)| ∼ rn

2
exp

(
−2(r − 2)

r(r − 1)

t

n

)
. (2)

(iii) [9] The vertex and edge cover times of a non-backtracking walk are T Vcov(G) ∼ r−1
r−2

n log n

and TEcov(G) ∼ r(r−1)
2(r−2)

n log n respectively.

(iv) The threshold for the sub-critical phase of the vacant set in G occurs at t∗ = u∗n where

u∗ =
r(r − 1)

(r − 2)2
log(r − 1). (3)

We now come to the new results of this paper. We first consider the structure of the graph
Γ̂(t) induced by the edges in the vacant net U(t) of Gr. By using the random walk to reveal
the structure of the graph, we argued in [12] that Γ(t) was a random graph with degree
sequence Ds(t), s = 1, ..., r. We applied the result of Molloy and Reed [20] for the existence
of a giant component in fixed degree sequence graphs, to the degree sequence Ds(t) to obtain
the threshold t∗ = u∗n given in (3). By using a simplification of the Molloy-Reed condition in

terms of moments of the degree sequence we can obtain the threshold for the vacant net Γ̂(t).
The proof of the next theorem is given in Section 4.
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Theorem 2. Let t̂ = θ∗n. Then w.h.p. for any ε > 0, the graph Γ̂(t) = (V,U(t)) induced by
the unvisited edges U(t) of G has the following properties:

(i) The threshold for the sub-critical phase of the vacant net in G occurs at t̂ = θ∗n where

θ∗ =
r(r2 − 2r + 2)

2(r − 2)2
log(r − 1). (4)

(ii) For t ≤ (1− ε)t̂, Γ̂(t) is super-critical, and |C1(t)| = Ω(n).

(iii) For t ≥ (1 + ε)t̂, Γ̂(t) is sub-critical, and thus |C1(t)| = O(log n).

(iv) For some constant c > 0 and t ∈ (t̂−cn2/3, t̂+cn2/3), then Pr(|C1(t)| = Θ(n2/3)) ≥ 1−ε.

1.2 Non-backtracking random walk: Structure of vacant set and
vacant net

Speeding up random walks is a matter of both theoretical curiosity and practical interest. One
plausible approach to this is to use a non-backtracking walk. A non-backtracking walk does
not move back down the edge used for the previous transition unless there is no choice. Thus
arguably it should be faster to cover the graph. Let v = X(t) be the vertex occupied by the
walk at step t, and suppose this vertex was reached by the edge transition e = (X(t−1), X(t)).
The vertex u = X(t+ 1) is chosen u.a.r. from N(v) \X(t− 1), so that e 6= (X(t), X(t+ 1)).
If there is no choice, i.e. X(t) is a vertex of degree 1, we can assume the walk returns along
e, but as r ≥ 3 this case does not arise.

In the case of random r-regular graphs, a direct comparison can be made between the per-
formance of simple and non-backtracking random walks. The details for non-backtracking
walks are summarized in the following theorem, the proof of which is given in Section5. The
comparable results for simple walks are given in Section 1.1.

Theorem 3. Let W (t) be a non-backtracking random walk on a random r-regular graph. For
r ≥ 3, the following results hold w.h.p..

(i) Let Γ(t) be the graph induced by the vacant set R(t), at step t of W , then
G(t) has |R(t)| vertices and |E(Γ(t))| edges, where

|R(t)| ∼ n exp (−t/n) , |E(Γ(t))| ∼ rn

2
exp

(
−2(r − 1)t

rn

)
.
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(ii) The size of the vacant net |U(t)| at step t of W is

|U(t)| ∼ rn

2
exp (−2t/rn) .

(iii) The vertex and edge cover times of a non-backtracking walk are T Vcov(G) ∼ n log n and
TEcov(G) ∼ (r/2)n log n respectively.

(iv) The threshold for the sub-critical phase of the vacant set occurs at t∗ = u∗n where

u∗ ∼ r

r − 2
log(r − 1).

(v) The threshold for the sub-critical phase of the vacant net occurs at t̂ = θ∗n where

θ∗ ∼ r(r − 1)

2(r − 2)
log(r − 1).

(vi) Let t̃ = t∗, t̃, for the vacant set and vacant net respectively. For any ε > 0, some constant
c > 0 and t ∈ (t̃− cn2/3, t̃+ cn2/3), then Pr(|C1(t)| = Θ(n2/3)) ≥ 1− ε.

Comparing u∗, θ∗ for simple and non-backtracking walks, from (3), (4) and Theorem 3 respec-
tively, we see that for r = 3 the subcritical phases occur 2, 5/2 times earlier for vacant sets
and vacant nets (resp.). This improvement decreases rapidly as r increases. A direct contrast
between the densities of the vacant set for the two walks follows from the edge-vertex ratios
|E(Γ(t))|/|R(t)|. At any step t the vacant set of the simple random walk is denser w.h.p..

1.3 Random walks which prefer unvisited edges: Structure of va-
cant set and vacant net

The papers [3], [21] describe a modified random walk X = (X(t), t ≥ 0) on a graph G, which
uses unvisited edges when available at the currently occupied vertex. If there are unvisited
edges incident with the current vertex, the walk picks one u.a.r. and make a transition along
this edge. If there are no unvisited edges incident with the current vertex, the walk moves to
a random neighbour.

In [3] this walk was called an unvisited edge process (or edge-process), and in [21], a greedy
random walk. For random r-regular graphs where r = 2d, it was shown in [3] that the edge-
process has vertex cover time Θ(n), which is best possible up to a constant. The paper also
gives an upper bound of O(nω) for the edge cover time. The ω term comes from the w.h.p.
presence of small cycles (of length at most ω).

In the case of random r-regular graphs, the vacant set and vacant net of the edge-process have
the following theorem which is proved in Section 6.

7



Theorem 4. Let X be an edge-process on a random r-regular graph. For r ≥ 4, r = 2d, the
following results hold w.h.p..

(i) Let Γ(t) be the graph induced by the vacant set R(t) of the edge-process at step t. Then
for δ > 0 and any t = dt(1 − δ) the vacant set has |R(t)| vertices and |E(Γ(t))| edges,
where

|R(t)| ∼ n

(
dn− t
dn

)d
, |E(Γ(t))| ∼ dn

(
dn− t
dn

)2d−1

(ii) The vertex cover time of the edge-process is T Vcov(G) ∼ dn.

(iii) The threshold for the sub-critical phase of the vacant set occurs at t∗ ∼ u∗n where

u∗ ∼ d

(
1−

(
1

2d− 1

) 1
d−1

)
.

For any ε > 0 and t = t∗(1− ε), the largest component C1(t) is of size Θ(n), whereas for
t = t∗(1 + ε), the largest component is of size O(log n).

(iv) For t = dn(1− δ), and δ ≥
√
ω log n/n, the the vacant net U(t) of the edge-process is of

size dnδ(1 + o(1)).

(v) The threshold for a phase transition of the vacant net occurs at t̂ ∼ dn. For any ε > 0
and t = t̂(1 − ε), the largest component C1(t) is of size Θ(n), whereas for t = t̂(1 + ε),
the largest component is of size O(log n).

As for the edge cover time TEcov(G) of the edge-process, trivially TEcov(G) ≥ dn. It was proved
in [3] that TEcov(G) = O(ωn). The ω term comes from the presence of cycles size O(ω). We
do not see any obvious reason from the proof of Theorem 4 to suppose TEcov(G) = Θ(n).

1.4 Outline of proof methodology

The proof of the vacant net threshold, Theorem 2, is given in Section 4. The proof of Theorem
3 on the properties of the vacant set and vacant net for non-backtracking random walks is
given in Section 5. The technique used to analyze the structure of random walks is one the
authors have developed over a sequence of papers. The results we need in the proof of this
paper are given in Section 3.

The method of proof of the main theorems is similar. The main steps in the proof of (e.g.)
Theorem 2 are as follows. (i) In Section 2 we state the structural graph properties we assume in
order to analyse a random walk on an r–regular graph. (ii) Given these properties, in Section
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4.1 we obtain the degree sequence d̂(t) of the vacant net Γ̂(t) at step t of the walk. The degree

sequence is given in an implicit form. (iii) In Section 4.2, we prove that Γ̂(t) is a random

graph with degree sequence d̂(t). (iii) In Section 4.3 we obtain the component structure of

Γ̂(t). This follows from a result of Molloy and Reed [20] on the component structure of fixed
degree sequence random graphs.

We next give more detail of the general method used to prove structural properties of the
vacant set or vacant net. For ease of description we use the example of the vacant set of a
simple random walk, and highlight any differences for the other cases as appropriate. There
are two main features.

Firstly we use the random walk to generate the graph in the configuration model. If we
stop the walk at any step, the un-revealed part of the graph is still random conditional on
the structure of the revealed part, and the constraint that all vertices have degree r. The
approach is equally valid for other Markov processes such as non-backtracking random walks.
Secondly using the techniques given in Section 3.2 we can estimate the size N(t), and degree
sequence d(t), of the vacant set R(t) very precisely at a given step t.

Combining these results, the graph Γ(t) of the vacant set is thus a random graph with N(t)
vertices and degree sequence d(t). Molloy and Reed [20] derived conditions for the existence
of, and size of the giant component in a random graph with a given degree sequence. We
apply these conditions to Γ(t) to obtain the threshold etc. This is what we did in [12], and
we do not reproduce in detail those aspects of (e.g.) Theorem 3 which directly repeat these
methods.

2 Graph properties of Gr

Let
`1 = ε1 logr n, (5)

for some sufficiently small ε1. A cycle C is small if |C| ≤ `1. A vertex of a graph G is nice if
it is at distance at least `1 + 1 from any small cycle.

Let Dk(v) be the subgraph of G induced by the vertices at distance at most k from v. A
vertex v is tree-like to depth k if Dk(v) induces a tree, rooted at v. Thus a nice vertex is
tree-like to depth `1. Let N denote the nice vertices of G and N denote the vertices that are
not nice.

Let Gr be the space of r-regular graphs, endowed with the uniform probability measure. Let
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G be chosen u.a.r. from Gr. We assume the following w.h.p. properties.

There are at most n2ε1 vertices that are not nice. (6)

There are no two small cycles within distance 2`1 of each other. (7)

Let λ = max(λ2, λn) be the second largest eigenvalue of the transition matrix P.

Then λ2 ≤ (2
√
r − 1 + ε)/r ≤ 29/30, say. (8)

Properties (i), (ii) are straightforward to prove by first moment calculations. Property (iii) is
a result of Friedman [15].

The results we prove concerning random walks on a graph G are all conditional on G having
properties (6)-(8). This conditioning can only inflate the probabilities of unlikely events by
1+o(1). This observation includes those events defined in terms of the configuration model as
claimed in Lemma 10. For r constant, the underlying configuration multi-graph is simple with
constant probability, and all simple r-regular graphs are equally probable. If a calculation
shows that an event E has probability at most ε in the configuration model, then it has
probability O(ε) with respect to the corresponding simple graph G. We only need to multiply
this bound by a further 1 + o(1) in order to estimate the probability conditional on (6)-(8).
We will continue using this convention without further comment.

3 Background material on unvisit probabilities

3.1 Summary of methodology

To find the size of the vacant set or net, we estimate the probability that a given vertex
or edge of the graph were not visited by the random walk during steps T, .., t, where T is
suitably defined mixing time (see (12)). For simplicity, we refer to this quantity as an unvisit
probability. We briefly outline of how the unvisit probability is obtained. This is given in more
detail in Section 3.2.

The quantities needed to estimate the unvisit probability of a vertex v are the mixing time
T , the stationary probability πv of vertex v and Rv, defined below. For a simple random
walk πv = d(v)/2m. The mixing time T we use satisfies a convergence condition given in
(12). The theorems in this paper are for random regular graphs G = Gr, r ≥ 3 constant,
and w.h.p. G has constant eigenvalue gap so the mixing time T = O(log n) satisfies (12).
The non-backtracking walk uses a Markov chain M on directed edges. In Section 8.3 of the
Appendix we prove directly that w.h.p. T = O(log n)

The unvisit probability PrW (Av(t)) is given in (23)-(24) of Corollary 6 of Lemma 5 in terms
of pv = (1+o(1))πv/Rv. For regular graphs πv = 1/n. The quantity Rv is defined as follows. For
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a walk starting from v let r0 = 1 and let ri be the probability the walk returns to v at step i.
Then

Rv =
T−1∑
i=0

ri.

Thus Rv is the expected number of returns to v before step T .

Because the Molloy-Reed condition is robust to small changes in degree sequence, for our
proofs, we only need to find the value of Rv for nice vertices. This is obtained as follows. Let
D`(v) be the subgraph induced by the vertices at distance at most ` from v. The value of `
we use is given in (5). If D`(v) is a tree, we say v is a nice vertex, and use N to denote the set
of nice vertices of graph G. With high probability, all but o(n) vertices of a random r-regular
graph are nice. If v is nice, the subgraph D(v) is a tree with internal vertices of degree r,
and we extend D`(v) to an infinite r-regular tree T rooted at v. The principal quantity used
to calculate Rv, is f , the probability of a first return to v in T . Basically, once the walk is
distance Θ(log log n) from v the probability of a return to v during T = O(log n) steps is o(1).
Thus calculations for f can be made in T followed by a correction of smaller order, giving
Rv = (1 + o(1))/(1− f). This is formalized in Lemma 22 of the Appendix.

The proofs in this paper use the notion of a set S of vertices or edges not being visited by the
walk during T, ..., t. Because RS is not well defined for general sets S, to use Corollary 6 we
contract the set S to a single vertex γ(S), and calculate Rγ(S) in the multi-graph H obtained
from G by this contraction. Using Corollary 6 we obtain the probability that γ(S) is unvisited
in H. Lemma 7 ensures that the probability γ(S) is unvisited in H is asymptotically equal to
the probability the set S in unvisited in G. In the case of visits to sets of edges rather than
vertices, these are subdivided by inserting a set of dummy vertices S, one in the middle of
each edge in question. The set S is then contracted to a vertex γ(S) as before. In the case of
the non-backtracking walk things get more complicated as the Markov chain M of the walk
is on directed edges, but the principle is the same.

The contraction operation changes the graph from G to H, which can alter the mixing time T ,
but does not significantly increase it for the following reasons. The effect of contracting a set of
vertices increases the eigenvalue gap, (see e.g. [17] page 168) so that 1−λ2(H) ≥ 1−λ2(G), and
thus T can only decrease. In the case of edge subdivision, the gap could decrease. However,
we only perform this operation on (at most) 2r edges of an r-regular graph with constant
eigenvalue gap, and with r constant. It follows that the conductance of H is still constant
and thus the mixing time T (H) differs from T (G) by at most a constant multiple.

3.2 Unvisit probabilities

Our proofs make heavy use of Lemma 5 below. Let P be the transition matrix of the walk
and let P t

u(v) be the (u, v)–th entry of P t. Let Wu(t) be the position of the random walk Wu
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at step t, and let P t
u(v) = Pr(Wu(t) = v) be the t–step transition probability. We assume

G is connected and aperiodic, so that random walk Wu on G has stationary distribution π,
where πv = d(v)/(2m).

For periodic graphs, we can replace the simple random walk by a lazy walk, in which at
each step there is a 1/2 probability of staying put. By ignoring the steps when the particle
does not move in the lazy walk we obtain the underlying simple random walk. For large
t, asymptotically half of the steps in the lazy walk will not result in a change of vertex.
Therefore w.h.p. properties of the simple walk after approximately t steps can be obtained
from properties of the lazy walk after 2t steps. Making the walk lazy doubles the expected
number of returns to a vertex and thus changes Rv (see (16)) to approximately 2Rv. As we
only consider the ratio t/Rv = 2t/2Rv in our proofs, our results will not alter significantly.

Suppose that the eigenvalues of the transition matrix P are 1 = λ1 > λ2 ≥ · · · ≥ λn.
Let λ = max {|λi| : i ≥ 2}. By making the chain lazy if necessary, we can always make
λ2 = max(|λ2|, |λn|).

Let ΦG be the conductance of G i.e.

ΦG = min
S⊆V,πS≤1/2

∑
x∈S πxP (x, S̄)

πS
, (9)

where P (x, S̄) is the probability of a transition from x ∈ S to S̄. Then,

1− ΦG ≤ λ2 ≤ 1− Φ2
G

2
(10)

|P t
u(x)− πx| ≤ (πx/πu)

1/2λt. (11)

A proof of these can be found for example in Sinclair [22] and Lovasz [18], Theorem 5.1
respectively.

Mixing time of Gr. Let T be such that, for t ≥ T

max
u,x∈V

|P t
u(x)− πx| =

minx∈V πx
n3

=
1

n4
. (12)

By assumption (8) (a result of Friedman [15]) we have λ ≤ (2
√
r − 1+ε)/r ≤ 29/30. In which

case we can take
T (Gr) ≤ 120 log n. (13)

If inequality (12) holds, we say the distribution of the walk is in near stationarity.
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Generating function formulation. Fix two vertices u, v of G. Let ht = P t
u(v) be the

probability that the walk Wu visits v at step t. Let

H(z) =
∞∑
t=T

htz
t (14)

generate ht for t ≥ T .

We next consider the special case of returns to vertex v made by a walk Wv, starting at v.
Let rt = P t

v(v) be the probability that the walk returns to v at step t = 0, 1, .... In particular
note that r0 = 1, as the walk starts at v. Let

R(z) =
∞∑
t=0

rtz
t

generate rt, and let

RT (z) =
T−1∑
j=0

rjz
j. (15)

Thus, evaluating RT (z) at z = 1, we have RT (1) ≥ r0 = 1. Let

Rv = RT (1) =
T−1∑
i=0

ri. (16)

The quantity Rv, the expected number of returns to v during the mixing time, has a particular
importance in our proofs.

For t ≥ T let ft = ft(u→v) be the probability that the first visit made to v by the walk Wu

to v in the period [T, T + 1, . . .] occurs at step t. Let

F (z) =
∞∑
t=T

ftz
t

generate ft. The relationship between hj and fj, rj is given by

ht =
t∑

k=1

fkrt−k. (17)

In terms of generating functions, this becomes

H(z) = F (z)R(z). (18)

The following lemma gives the probability that a walk, starting from near stationarity makes a
first visit to vertex v at a given step. The content of the lemma is to extend F (z) = H(z)/R(z)
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analytically beyond |z| = 1 and extract the asymptotic coefficients. For the proof of Lemma 5
and Corollary 6, see Lemma 6 and Corollary 7 of [10]. We use the lemma to estimate E|RT (t)|,
the expected number of vertices unvisited after T . The value of E|RT (t)| differs from E|R(t)|
by at most T vertices, so as T = O(log n) and E|RT (t)| = Θ(n) this simplification will not
affect our results.

Lemma 5. For some sufficiently large constant K, let

λ =
1

KT
, (19)

where T satisfies (12). Suppose that

(i) For some constant θ > 0, we have

min
|z|≤1+λ

|RT (z)| ≥ θ.

(ii) Tπv = o(1) and Tπv = Ω(n−2).

There exists
pv =

πv
Rv(1 +O(Tπv))

, (20)

such that for all t ≥ T ,

ft(u→v) = (1 +O(Tπv))
pv

(1 + pv)t+1
+O(Tπve

−λt/2). (21)

= (1 +O(Tπv))
pv

(1 + pv)t
for t ≥ log3 n. (22)

Lemma 5 depends on two conditions (i), (ii). For nice Gr, as as Tπv = O(log n/n) = o(1),
condition (ii) holds. For the case where Rv ≥ 1 constant, it was shown in [11] Lemma 18 that
condition (i) always holds. The following corollary follows directly by adding up fs(u→v) for
s ≥ t.

Corollary 6. For t ≥ T let Av(t) be the event that Wu does not visit v at steps T, T +1, . . . , t.
Then, under the assumptions of Lemma 5,

PrW (Av(t)) =
(1 +O(Tπv))

(1 + pv)t
+O(T 2πve

−λt/2) (23)

=
(1 +O(Tπv))

(1 + pv)t
for t ≥ log3 n. (24)

We use the notation PrW here to emphasize that we are dealing with the probability space of
walks on a fixed G.
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Corollary 6 gives the probability of not visiting a single vertex in time [T, t]. We need to
extend this result to certain small sets of vertices. In particular we need to consider sets
consisting of v and a subset of its neighbours N(v). Let S be such a subset.

Suppose now that S is a subset of V with |S| = o(n). By contracting S to single vertex
γ = γ(S), we form a graph H = H(S) in which the set S is replaced by γ and the edges that
were contained in S are contracted to loops. The probability of no visit to S in G can be
found (up to a multiplicative error of 1 +O(1/n3)) from the probability of a first visit to γ in
H. This is the content of Lemma 7 below.

We can estimate the mixing time of a random walk on H as from the conductance of G as
follows. Note that the conductance of H is at least that of G. As some subsets of vertices
of V have been removed by the contraction of S, the set of values that we minimise over, to
calculate the conductance of H, (see (9)), is a subset of the set of values that we minimise
over for G. It follows that the conductance of H is bounded below by the conductance of G.
Assuming that the conductance of G is constant, which is the case in this paper, then using
(10), (11), we see that the mixing time for W in H is O(log n).

Say that the stationary distribution πG of the walk in G and πH of the walk in H are com-
patible if πH(γ(S)) =

∑
v∈S πG(v) and for w 6∈ S, πG(w) = πH(w). For example, if G is an

undirected graph then the stationary distributions are always compatible, because the sta-
tionary distribution of γ(S) is given by πH(γ(S)) = d(S)/2m =

∑
v∈S πG(v). If G is directed,

compatibility does not follow automatically, and needs to be checked.

Lemma 7. [10] Let Wu be a random walk in G starting at u 6∈ S, and let Xu be a random
walk in H starting at u 6= γ. Let T be a mixing time satisfying (12) in both G and H. Then
provided πG and πH are compatible,

Pr(Aγ(t);H) = Pr(∧v∈SAv(t);G)

(
1 +O

(
1

n3

))
,

where the probabilities are those derived from the walk in the given graph.

Proof Let Wx(j) (resp. Xx(j)) be the position of walk Wx (resp. Xx(j)) at step j. Let
Γ = G,H and let P s

u(x; Γ) be the transition probability in Γ, for the walk to go from u to x
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in s steps.

Pr(Aγ(t);H) =
∑
x 6=γ

P T
u (x;H) Pr(Xx(s− T ) 6= γ, T ≤ s ≤ t;H)

=
∑
x6=γ

(
πH(x)(1 +O(n−3))

)
Pr(Xx(s− T ) 6= γ, T ≤ s ≤ t;H) (25)

=
∑
x 6=γ

(
πG(x)(1 +O(n−3))

)
Pr(Xx(s− T ) 6= γ, T ≤ s ≤ t;H) (26)

=
∑
x 6∈S

(
P T
u (x;G)(1 +O(n−3))

)
Pr(Wx(s− T ) 6∈ S, T ≤ s ≤ t;G) (27)

= Pr(∧v∈SAv(t);G)(1 +O(1/n3)).

Equation (25) follows from (12). Equation (26) from compatibility of πH and πG. Equation
(27) follows because there is a natural measure preserving map φ between walks in G that
start at x 6∈ S and avoid S and walks in H that start at x 6= γ and avoid γ. 2

4 Simple random walk. Proof of Theorem 2.

4.1 Degree sequence of the vacant net

We need some definitions. For any edge e of G, we say e is red at t if the walk made no
transition along e during [T, t]. If e is a red edge, we say e is unvisited at t, (i.e. unvisited
between T and t). For any vertex v, we assume there is a labeling e1(v), ..., er(v) of the edges
incident with vertex v. Sometimes we write e(v) for a particular edge incident with v. If v
has exactly s red edges at t, we say the red degree of v is s, and write dR(v, t) = s. Recall
that if a vertex v is nice (v ∈ N ), then it is tree-like to depth least `1 = ε1 logr n.

Lemma 8. For ` = 1, ..., r, let

α` =
`

r

(
2−

(
1

r − 1
+

`(r − 1)

r(r − 2) + `

))
. (28)

For u ∈ N , let e1, ..., e` be a set of edges incident with u. Let

P (u, `, t) = Pr(edges e1, · · · , e` are red at t), (29)

then

P (u, `, t) = exp

(
−α`

t

n
(1 + o(1))

)
. (30)
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Proof. Let S = {e1, ..., e`} be a set of edges incident with a nice vertex u of the graph G. To
prove (29) we need to apply the results of Lemma 5 and Corollary 6 to the set S. As S is not
a vertex the results of Corollary 6 do not apply directly, but we can get round this. We define
a graph H with distinguished vertex γ(`), obtained by modifying the structure of S in G in
way detailed below, which we call subdivide-contract. The graph H is obtained as follows:
(i) Subdivide the edges ei = (u, vi), i = 1, ..., ` incident with vertex u into (u,wi), (wi, vi) by
inserting a vertex wi.
(ii) Contract {w1, ..., w`} to a vertex γ(`), keeping the parallel edges that are created, and let
H be the resulting multigraph obtained from G by this process.

We apply Corollary 6 to H with v = γ(`). Let Wx be a walk in H starting from vertex x. Let
pγ(`) ∼ πγ(`)/Rγ(`) as given in (20). Here πγ(`) is the stationary probability of γ(`) and Rγ(`)

is given by (16). For t ≥ log3 n let Aγ(`)(t) be the event that Wx does not visit γ(`) at steps
T, T + 1, . . . , t. Then from (24)

PrW (Aγ(`)(t)) =
(1 +O(Tπγ))

(1 + pγ(`))t
. (31)

We next prove that

pγ(`) = (1 + o(1))
α`
n
, (32)

where α` is given by (28). The first step is to obtain πγ(`) and Rγ(`). By direct calculation

πγ(`) =
2`

rn+ 2`
. (33)

We next prove that Rγ(`) = (1 + o(1))1/(1− fγ), where γ = γ(`), and

fγ =
1

2

(
1

r − 1
+

`(r − 1)

r(r − 2) + `

)
. (34)

Before we inserted w1, ..., w` into S and contracted them to γ, the vertex u was tree-like to
depth `1. Let D(u) = D`1(u) be the subgraph of G induced by the vertices at distance at
most `1 from u. Let Tu be an infinite r-regular tree rooted at u. Thus D(u) can be regarded
as the subgraph of Tu induced by the vertices at distance at most `1 from u. In this way we
extend D(u) to an infinite r-regular tree. Let D′ be the corresponding subgraph in H, and let
T ′u be the corresponding infinite graph. Apart from γ(`) which has degree 2` and ` parallel
edges between γ(`) and u, the graph T ′u has the same r-regular structure as Tu.

Let T be an infinite r-regular tree rooted at a fixed vertex v of arbitrary positive degree d(v).
Lemma 22 proves that the probability φ of a first return to v in T is given by φ = 1/(r − 1).
Let fγ be the probability of a first return to γ in T ′u. With probability 1/2 a walk starting
at γ passes to one of v1, ..., v` in which case the probability of a return to γ is φ = 1/(r − 1).
With probability 1/2 the walk passes from γ to u from whence it returns to γ with probability
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`/r at each visit to u. If the walk exits to a neighbour of u other than γ the probability of a
return to u is φ = 1/(r − 1). Thus in T ′u, a first return to γ has probability

fγ =
1

2

(
φ+

`

r

∑
k≥0

((
r − `
r

)
φ

)k)

=
1

2

(
φ+

`

r − (r − `)φ

)
.

This establishes (34). It follows from Lemma 22 that the value of Rγ(`) = (1+o(1))1/(1−fγ).
Combining (33) and (34) gives the value of pγ(`) in (32) where α` is (28).

The last step is to get back from the walk in H to the walk in G. By Lemma 7, the event that
γ(`) is unvisited at steps T, ..., t of a random walk in H, has the same asymptotic probability
as the event (29) in G that there is no transition along the edge set {ei = (u, vi), i = 1, ..., `}
during steps T, ..., t of a random walk in G. This, and (31) gives

P (u, `, t) = (1 + o(1))PrW (Aγ(`)(t)) =
(1 + o(1))

(1 + pγ(`))t
= (1 + o(1))e−tpγ(`)(1+O(pγ(`))).

This, along with (32) completes the proof of the lemma.

Let dR(v, t) be the red degree of vertex v at step t and let S(v, s, t) =
(
dR(v,t)

s

)
be the number

of s-subsets of red edges incident with vertex v at step t. Let M(s, t) be given by

M(s, t) =
∑
v∈N

S(v, s, t).

Thus M(s, t) enumerates sets of incident red edges of size s over nice vertices.

Recall that we have defined an edge to be red if it is unvisited in T, ..., t. By definition, all
edges start red at step T . For t ≥ T , the random variable M(s, t) is monotone non-increasing
in t. For any s ≥ 1 there will be some step t(s) at which M(s, t(s)) = 0.

Lemma 9. Let αs be given by (28). The following results hold w.h.p.,

(i)

EM(s, t) = (1 + o(1))n

(
r

s

)
exp

(
−pγ(`)

)
= (1 + o(1))n

(
r

s

)
exp

(
−(1 + o(1))αs

t

n

)
.

(35)

(ii) For s ≥ 1 let ts = (n log n)/αs. The values ts satisfy tr < tr−1 < · · · < t1.
Let ω = ε log n. For t < ts−ωn, EM(s, t)→∞ whereas for t > ts+ωn, EM(s, t) = o(1).
For t = O(n), |N | = o(EM(s, t)).
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(iii) For all 0 ≤ t ≤ ts − ωn, the value of M(s, t) is concentrated within (1 + o(1))EM(s, t).

Proof. (i), (ii). The value of EM(s, t) follows from (30) by linearity of expectation, and the
fact that |N | = (1− o(1))n. Thus

EM(s, t) =
∑
u∈N

(
r

s

)
P (u, s, t) = (1 + o(1))n

(
r

s

)
e−αs

t
n

(1+o(1)). (36)

For t ≤ ts − ωn, EM(s, t) = Ω(nε).

The function αs is strictly monotone increasing in s. For r ≥ 3, the derivative dα(x)/dx is
positive for x ∈ [0, r), and zero at x = r. Thus the values ts satisfy ti < tj if i > j.

Proof of (iii). Fix s, t where s = 1, ..., r, and t ≤ ts − ωn. We use the Chebyshev inequality
to prove concentration of Z = M(s, t). Suppose that δ � ε, and ω′(n) = δ log n, then

log log n� ω′ = ω′(n) = δ log n� ω = ε log n. (37)

We first show that
Var(Z) = EZ +O(rω

′
EZ) + e−aω

′
(EZ)2, (38)

for some constant a > 0.

Let v, w ∈ N . Let Qs(v) = {e1(v), ..., es(v)} be a set of edges incident with v, and let
Qs(w) = {f1(w), ..., fs(w)} be a set of edges incident with w. Let Ev = E(Qs(v)) be the event
that the edges in Qs(v) are red at t. Similarly, let Ew = E(Qs(w)) be the event that the Qs(w)
edges are red at t.

Let v, w be at distance at least ω′ apart then we claim that

Pr(Ev ∩ Ew) = (1 + e−Ω(ω′)) Pr(Ev)Pr(Ew). (39)

To prove this we use the same method as Lemma 8. That is to say, we use Corollary 6
to find the unvisit probability of a vertex γ that we construct from Qs(v) ∪ Qs(w) using
subdivide-contract. We carry out the subdivide-contract process on the edges of Qs(v), Qs(w)
by inserting an extra vertex xi into ei and an extra vertex yi into fi, and contracting S =
{x1, ..., xs, y1, ..., ys} to γ(S).

For the random walk on the associated graph H = H(γ(S)) we have that pγ(S) in (20) is given
by pγ(S) ∼ πγ(S)/Rγ(S), where

πγ(S) =
4s

rn+ 4s
.

By Lemma 16 we can write 1/Rγ(S) = (1 + o(1))(1− fγ(S)). We next prove that the value of
fγ(S) is given by

fγ(S) =
1

2

(
fγ(Sx) + fγ(Sy) +O(f ∗)

)
.
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In this expression, f ∗ is an error term defined below, and γ(Sx), γ(Sy) are the contractions of
Sx = {x1, ..., xs}, and Sy = {y1, ..., ys} respectively, as obtained in Lemma 8 and (e.g.) fγ(Sx)

is evaluated in H(γ(Sx). Indeed, with probability 1/2, the first move from γ(S) will be to a
vertex u which is a neighbour of one of Sx = {x1, ..., xs} on the the subdivided edges e1, .., es.
Assume it is to a neighbour of Sx. The probability of a first return directly to γ(Sx) will be
fγ(Sx) = (1 + o(1))f as given by Lemma 8.

The O(f ∗) term is a correction for the probability that a walk staring from γ(Sx) makes a
transition across any of the edges in Qs(w) during the mixing time. This event is not counted
as a return in walks on H(γ(Sx)) but would be in H(γ(S)). However, because v and w are
at distance at least ω′, using (80), the probability f ∗ of a visit to Qs(w) during T can be
bounded by T (n−1 + λω

′
max). Thus

pγ(S) = (1 +O(1/n) +O(Te−Ω(ω′)) (pγ(Sx) + pγ(Sy)). (40)

Equation (39) follows on using equation (40), Corollary 6 with pγ(S), pγ(Sx) and pγ(Sy) followed
by Lemma 7. This confirms (39) and gives

Pr(Ev∩Ew) = (1 + e−Ω(ω′))Pr(Ev)Pr(Ew) = (1 + o(1))P (v, s, t)P (w, s, t),

where P (v, s, t) is given by (30) in Lemma 8.

Summing over v, w ∈ N and edge sets Qs(v), Qs(w) incident with v, w respectively,

E(Z2(t)) = EZ +
∑
v,w

Qs(v), Qs(w)
dist(v,w)≥ω′

Pr(Ev ∩ Ew) +
∑
v,w

Qs(v), Qs(w)
dist(v,w)<ω′

Pr(Ev ∩ Ew)

≤ EZ + (1 + e−aω
′
)(EZ)2 + rω

′
E(Z)

and (38) follows. Applying the Chebyshev inequality we see that

Pr
(
|Z − EZ| ≥ EZ e−aω

′/3
)
≤ 2rω

′
eaω

′

EZ
+ e−aω

′/3. (41)

When t ≤ ts − ωn, EZ ≥ eωαs/2 = Ω(nε) � nδ and our choice of ω′ in (37) implies that we
can find a δ1 such that the RHS of (41) is O(n−δ1) = o(1) for such t.

The result (41) from the Chebychev inequality is too weak to prove concentration of M(s, t)
directly for all of ts steps. We copy the approach used in [12], Theorem 4(a). Interpolate the
interval [0, ts] at A = nδ1/2 integer points s1, ..., sA at distance σ = ts n

−δ1/2 apart (ignoring
rounding), for some small constant δ1 > 0 determined by (41). The concentration at the in-
terpolation points follows from (41). We use the monotone non-increasing property of M(s, t)
to bound the value of M(s, t) between si and si+1. The proof of this is identical to the one in
[12] and is not given in further detail here.
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4.2 Uniformity: Using random walks in the configuration model

We use the random walk to generate the graph G in question. The main idea is to realize
that as G is a random graph, the graph Γ(t) of the vacant set or vacant net has a simple
description. Intuitively, if we condition on R(t) and the history of the process, (the walk
trajectory up to step t), and if G1, G2 are graphs with vertex set R(t) and the same degree
sequence, then substituting G2 for G1 will not conflict with the history. Every extension of
G1 is an extension of G2 and vice-versa.

We briefly and informally explain what we do. By working in the configuration model, we can
use the random walk to generate a random r–regular multigraph. Because the configuration
points (half edges) at any vertex have labels, we can sample u.a.r. from these points to
determine the next edge transition of the walk without exposing all the edges at the vertex
in the underlying multigraph. In this way the walk discovers the edges of the multigraph as
it proceeds. If we stop the walk at some step t, the undiscovered part of the multigraph is
random, conditional on the subgraph exposed by the walk so far, and the constraint that all
vertices have degree r.

We use the configuration or pairing model of Bollobás [4], derived from a counting formula
of Canfield [5]. We start with n disjoint sets of S1, S2, . . . , Sn each of size r. The elements
of Sv = {v(1), ..., v(r)} correspond to the labeled endpoints of the half edges incident with
vertex v. We refer to these elements as (configuration) points.

Let S =
⋃n
i=1 Si. A configuration or pairing F is a partition of S into rn/2 pairs. Let Ω be

the set of configurations. Any F ∈ Ω defines an r-regular multi-graph GF = ([n], EF ) where
EF = {(i, j) : ∃ {x, y} ∈ F : x ∈ Si, y ∈ Sj}, i.e. we contract Si to a vertex i for i ∈ [n].

Let U0 = S, F0 = ∅. Given Ui−1, Fi−1 we construct Fi as follows. Choose xi arbitrarily from
Ui−1. Choose yi u.a.r. from Ui−1 \ {xi}. Set Fi = Fi−1 ∪ {{xi, yi}}, Ui = Ui−1 \ {xi, yi}. If
we stop at step i, the points in Ui are unpaired, and can be paired u.a.r. The underlying
multigraph of this pairing of Ui is a random multigraph in which the degree of vertex v is
d(v) = |Sv ∩ Ui|.

It is known that: (i) Each simple graph arises the same number of times as GF . i.e. if G, G′

are simple, then |{F : GF = G}| = |{F ′ : G′F = G′}|. (ii) Provided r is constant, the
probability GF is simple is bounded below by a constant. Thus if F is chosen uniformly at
random from Ω then any event that occurs w.h.p. for F , occurs w.h.p. for GF , and hence
w.h.p. for Gr.

We next explain how to use a random walk on [n] to generate a random F , and hence a
random multigraph G. To do this, we begin with a starting vertex u = i0. Suppose that at
the t–th step we are at some vertex it, and have a partition of S into red and blue points,
Rt, Bt respectively. Initially, R0 = S and B0 = ∅. In addition we have a collection Ft of

21



disjoint pairs from S where F0 = ∅.

At step t + 1 we choose a random edge incident with it. Obviously it ∈ B(t), as it is visited
by the walk, but we treat the configuration points in Sit as blue or red, depending on whether
the corresponding edge is previously traversed (blue) or not (red). Let x be chosen randomly
from Sit . There are two cases of how it+1 is chosen.

If x ∈ Bt then it was previously paired with a y ∈ Sj ∩ Bt, and thus j ∈ B(t). The walk
moves from it to it+1 = j along an existing edge corresponding to some {x, y} ∈ F . We let
Rt+1 = Rt, Bt+1 = Bt and we let Ft+1 = Ft.

If x ∈ Rt, then the edge is unvisited, so we choose y randomly from Rt \ {x}. Suppose that
y ∈ Sj. This is equivalent to moving from it ∈ B(t) to it+1 = j. We now check vertex j to see
if it was previously visited. If j ∈ B(t) this is equivalent to moving between blue vertices on a
previously unvisited edge. If j ∈ R(t), this is equivalent to moving to a previously unvisited
vertex. In either case we update as follows. Rt+1 = Rt \ {x, y} and Bt+1 = Bt ∪ {x, y}, and
Ft+1 = Ft ∪ {{x, y}}.

After t steps we have a random pairing Ft of at most t disjoint pairs from S. The entries in Ft
consist of a known pairing of Bt, and constitute the revealed edges of the random graph. The
points in Rt are still unpaired. In principle we can extend Ft to a random configuration F by
adding a random pairing of Rt to it. The vacant net, Γ̂(t) is the subgraph of V induced by
the edges unvisited during steps 1, ..., t, and is the underlying multigraph of a u.a.r. pairing
of Rt. To generate Γ(t), the subgraph induced by the vacant set R(t), we extend the pairing
Ft to a pairing Ft′ by method Extend–B(t) defined as follows.

Extend-B(t). Let SB = ∪v∈B(t)Sv. Let K = SB ∩Rτ . For τ ≥ t, and while K 6= ∅ choose an
arbitrary point x of K. Pair x with a u.a.r. point y of Rτ − {x}. Let Rτ = Rτ \ {x, y}. If
y ∈ K let K = K \ {x, y} else let K = K \ {x}. Set τ = τ + 1. Let t′ = τ be the first step at
which K = ∅. Pair Rt′ u.a.r. to generate the multigraph Γ(t).

The next lemma summarizes this discussion.

Lemma 10.

i) The pairing Ft can be generated in the configuration model by a random walk Wu(t)
without exposing any pairings not in Ft. The underlying multigraph of Ft gives the edges
covered by the walk Wu(t).

ii) The pairing Ft plus a u.a.r. pairing of Rt is a uniform random member of Ω.

iii) The vertex v ∈ V is in R(t) if and only if Sv ⊆ Rt.

iv) Vacant net. The u.a.r. pairing of Rt gives the vacant net, Γ̂(t) as a random multigraph

with degree sequence determined by d̂(v) = |Sv ∩ Rt| for v ∈ V . Let d̂(t) be the degree
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sequence of Γ̂(t). Conditional on Γ̂(t) being simple, Γ̂(t) is a u.a.r. graph with degree

sequence d̂(t).

v) Vacant set. Extend Ft to Ft′ using method Extend–B(t) described above. The u.a.r.
pairing of Rt′ gives Γ(t), the induced subgraph of the vacant set, as a random multigraph
with degree sequence determined by d(v) = |Sv ∩Rt′| for v ∈ R(t). Let d(t) be the degree
sequence of Γ(t). Conditional on Γ(t) being simple, Γ(t) is a u.a.r. graph with degree
sequence d(t).

4.3 Applying the Molloy-Reed Condition

The Molloy-Reed condition for bounded degree graphs can be stated as follows.

Theorem 11. Let GN,d be the graphs with vertex set [N ] and degree sequence d = (d1, d2, . . . , dN),
and endowed with the uniform measure. Let D(s) = | {j : dj = s} |, be the number of vertices of
degree s = 0, 1, . . . , r, where D(s) = (1+o(1))λsN for s = 0, 1, . . . , r, and λ0, λ1, . . . , λr ∈ [0, 1]
are such that λ0 + λ1 + · · ·+ λr = 1. Let

L(d) =
r∑
s=0

s(s− 2)λs. (42)

(a) If L(d) < 0 then w.h.p. Gn,d is sub-critical.

(b) If L(d) > 0 then w.h.p. Gn,d is super-critical.

The following theorem on the scaling window is adapted from Theorem 1.1 of Hatami and
Molloy [16], with the observation (after Theorem 3.2) from Černy and Teixeira [7] that in-
cluding a constant proportion of vertices of degree zero does not modify the validity of the
result.

Theorem 12. [16] Let GN,d be the graphs with vertex set [N ] and degree sequence d =
(d1, d2, . . . , dN), and endowed with the uniform measure. Let R =

∑
u∈V du(du− 2)2/2|E(G)|.

Assume that R > 0 constant, and D(2) < N(1− δ) for some δ > 0. For any c > 0, ε > 0, and
−cN2/3 ≤ NL(d) ≤ cN2/3,

Pr(|C1| = Θ(N2/3)) ≥ 1− ε.

To complete the proof of Theorem 2 we need to evaluate L(d) for Γ̂(t) to obtain t̂. It is
convenient for us to express L(d) =

∑r
s=0 s(s − 2)λs in a form which uses the results of

Lemma 8 and Lemma 9 of Section 4.1.
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Lemma 13. Let G = (V,E,d) be a graph with degree sequence d of maximum degree r. Let
D(s), s = 0, ..., r, be the number of vertices of degree s. Let U ⊆ V be a set of vertices, and
U = V \ U . Let MU(s) =

∑
u∈U

(
d(u)
s

)
, and let R =

∑
u∈V d(u)(d(u) − 2)2/2|E(G)|. Then

L(d) can be written as

L(d) ·N = (1 + o(1))
(
2MU(2)−MU(1) +O(r2|U |)

)
, (43)

and R can be written as

R ·
(
MU(1) +O(r|U |)

)
= (1 + o(1))

(
6MU(3)− 2MU(2) +MU(1) +O(r3|U |)

)
. (44)

Proof. Let

Q =
r∑
s=0

s(s− 2)D(s), (45)

then Q can be written as

Q =
r∑
s=0

s(s− 1)D(s)−
r∑
s=0

sD(s)

=
∑
v∈V

d(v)(d(v)− 1)−
∑
v∈V

d(v)

=
∑
v∈U

d(v)(d(v)− 1)−
∑
v∈U

d(v) +

(∑
v 6∈U

d(v)(d(v)− 1)−
∑
v 6∈U

d(v)

)
= 2MU(2)−MU(1) +O(r2|U |). (46)

The case for R is similar.

In our proofs, we choose U = N , the set of nice vertices. It follows from Lemma 9 that
r2U = o(MU(1) + MU(2)). The next lemma proves the Molloy-Reed threshold condition is
equivalent to MN (1) ∼ 2MN (2).

Lemma 14. (i) The asymptotic solution to L(d) = 0 in (42) obtained at t̂ = (1 + o(1))θ∗n
where

θ∗ =
r(r2 − 2r + 2)

2(r − 2)2
log(r − 1). (47)

(ii) The assumptions of Theorem 12 are valid and the scaling window is of order Θ(n2/3).

Proof. Let d be the degree sequence of Γ̂(t), let D be the degree sequence of nice vertices N ,
and D the degree sequence of N . For nice vertices and any 0 ≤ s ≤ r we use the notation
M(s, t) = MN (s, t). Thus using (43) with U = N ,

nL(d) ∼ Q(d) = 2M(2, t)−M(1, t) +O(r2|N |)−O(T ). (48)
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Thus the condition L(d) ∼ 0 is equivalent to Q(D)/n → 0. The term O(T ) removes
any vertices/edges visited during the mixing time T , but unvisited during T, ..., t and hence
marked red. From (6), |N | = O(nε). For nice vertices, and t = cn for any c ≥ 0 constant
gives M(2, t) = Θ(n),M(1, t) = Θ(n). Thus when M(1, t) ∼ 2M(2, t) then L(d) ∼ 0. By
Lemma 9, M(s, t) is asymptotic to (35), which is

M(1, t) =(1 + o(1))r exp

(
− t
n

2(r − 2)

r(r − 1)

)
M(2, t) =(1 + o(1))r(r − 1)/2 exp

(
− t
n

2

r

(
2−

(
1

r − 1
+

2(r − 1)

r(r − 2) + 2

)))
.

Thus L(d)→ 0 when t ∼ t̃ = θ∗n where θ∗ is given by (47).

Regarding the expression for R = R(t) in (44), with U = N .

(M(1, t) +O(rN ))R(t) = (1 + o(1))(6M(3, t)− 2M(2, t) +M(1, t)) +O(r3N ).

By Lemma 9, for t = cn, any c ≥ 0 constant, and s = 1, 2, 3 we have that w.h.p. M(s, t) =
Θ(n). On the other hand from (48), and the assumption of the scaling window

2M(2, t)−M(1, t)) +O(r3N )

M(1, t)
= O(L(d)) = o(1).

Thus R(t) > 0 constant.

5 Non-backtracking random walk. Proof of Theorem 3

Note that, as in the case of a simple random walk, we can use a non-backtracking random
walk to generate the underlying graph in the configuration model. The only change to the
sampling procedure given in Section 4.2, is as follows. Suppose the walk arrives at vertex v
by a transition (u, v). In the configuration model, this is equivalent to a pairing {x(u), y(v)}
where x(u) ∈ Su, y(v) ∈ Sv. To make the walk non-backtracking, we sample the configuration
point of v used for the next transition u.a.r from Sv \ {y(v)}.

For a connected graph G = (V,E) of minimum degree 2, the state space of a non-backtracking
walk W on G can be described by a digraph M = (U,D) with vertex set U and directed edges
D. To avoid any confusion with the vertex set V of G, we refer to the elements σ of U as
states, rather than vertices. The states σ ∈ U are orientations (u, v) of edges {u, v} ∈ E(G).
The state σ = (u, v) is read as ‘the walk W arrived at v by a transition along (u, v)’. Let
N(u) = NG(u) denote the neighbours of u in G. The in-neighbours of (u, v) in M are states
{(x, u), x ∈ N(u), x 6= v}. Hence the state (u, v) has in-degree (r − 1) in M . Similarly (u, v)
has out-degree (r − 1) and out-neighbours {(v, w), w ∈ N(v), w 6= u}.

25



Let M be a simple random walk on M . The walk M on M is a Markov process which
corresponds directly to the non-backtracking walk on G. For states σ = (u, v), σ′ = (v, w),
the transition matrix P = P (M) has entries P (σ, σ′) = 1/(d(v)−1) if w 6= u and P (σ, σ′) = 0
otherwise. The total number of states |U | = 2|E(G)| = 2m. Using π = πP ,

π(u, v) =
∑

x∈N(u),x 6=v

π(x, u)

d(u)− 1
,

which has solution π(σ) = 1/2m.

For random r-regular graphs, Alon et al. [1] established that a non-backtracking walk on G
has mixing time TG = O(log n) w.h.p. The analysis in [1] was made on the graph G whereas,
to apply Corollary 6, we need the mixing time TM of the Markov chain M. The proof of
Lemma 15 below is given in Section 8.3 of the Appendix.

Lemma 15. For G ∈ Gr, r ≥ 3 constant, w.h.p. TM = O(log n).

In Section 4 we described a technique called subdivide-contract which we used to obtain first
returns to a suitably constructed set S which was contracted to a vertex γ(S). It remains to
establish the value of Rγ(S) obtained by applying the subdivide-contract method to the various
sets S of vertices and edges used in our proof. In each case we outline the construction of the
set S and state the relevant value of pγ(S) as given by (20) which we use in Corollary 6. Because
the walk cannot backtrack, the calculation of Rγ for sets S of tree-like (i.e. nice) vertices is
greatly simplified. Let Tγ be an infinite r-regular tree rooted at a vertex γ of arbitrary degree.
For a non-backtracking walk starting from γ, a first return to γ after moving to an adjacent
vertex, is impossible.

5.1 Properties of the vacant set

Size of vacant set. Let v be a nice vertex of G, and let S = [v] be a set of states of M ,
where [v] = {(u, v), u ∈ N(v)}. A visit to [v] in M is equivalent to a visit to v in G. If v is
nice then, (i) states (u, v), (x, v) ∈ [v] are directed distance at least 2` = ε logr n apart in M ;
(ii) the state (u, v) induces an (r − 1)-regular in-arborescence and out-arborescence in M .

Contract the set [v] of states of M to a single state γ([v]) retaining all edges incident with

[v]. This gives a multi-digraph H with states Ũ = (U \ [v]) ∪ {γ([v])}. We only apply this
construction to nice vertices v, in which case the digraph rooted at γ([v]) is an arborescence
to depth `. To simplify notation, if we contract a set S of states of M to γ(S), and f is any
state of M not in S, we use the indexing f 6∈ S, both for M and H, i.e. as shorthand for
f 6= γ([v]).
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The set [v] consists of r states of U each of in-degree and out-degree (r−1). As we contracted
without removing edges, the vertex γ([v]) has in-degree and out-degree r(r−1). For any state
(v, w) of H there are r − 1 parallel edges directed from γ([v]) to (v, w) and no others. For a
state σ of H, let N−(σ) be the in-neighbours of σ, and let d+(σ) be the out-degree of σ.

LetH be a simple random walk on H. Apart from transitions to and from [v] (resp. γ([v])), the
transition matrices of the walks M and H are identical. Let π be the stationary distribution
of P (M) in M and π̃ the stationary distribution of P̃ (H) in H.

For irreducible aperiodic Markov chain with transition matrix P , the stationary distribution
is the unique vector of probabilities π which satisfies the equations π = πP . Given π we only
have to check this condition.

We claim that π̃(γ([v])) = 1/n. For any state f of H other than γ([v]), we claim π̃(f) =
1/rn, and thus π̃(f) = π(f) for such states. This includes out-neighbours (v, w) of γ([v]).

Considering π̃ = π̃P̃ , we have

π̃(γ([v])) =
∑

f∈N−(γ([v]))

π̃(f)

d+(f)
(49)

π̃(v, w) = π̃(γ)
(r − 1)

d+(γ)
=
π̃(γ([v]))

r
. (50)

For (49), as d−(γ([v])) = r(r − 1) and d+(f) = (r − 1), this confirms π̃(γ) = 1/n. For (50),
the (r − 1) comes from the parallel edges from γ([v]) to (v, w), and confirms π̃(v, w) = 1/rn.

For any other state f , the relevant rows of P̃ are identical with those of P confirming π̃(f) =
π(f) = 1/rn.

We use Lemma 7 to apply results obtained for H to the walk M. The lemma needs the
stationary distributions π = πM and π̃ = πH to be compatible i.e. π(f) = π̃(f) for f 6∈ [v]
(resp. f 6= γ([v])). This follows immediately from the values of π, π̃ obtained above.

Finally we calculate Rγ([v]). We first give a general explanation of the method. Let Tγ be
an infinite arborescence with root vertex γ of out-degree r(r − 1) and all other vertices of
out-degree (r− 1). Similar to Lemma 22, we relate first returns to γ([v]) in H to first returns
to γ in Tγ, to obtain a value of Rγ([v]) given by

Rγ = (1 + o(1))/(1− f), (51)

where f is a first return probability to γ = γ([v]) in the arborescence Tγ. Let v be a nice
vertex of G, i.e. v is tree-like to distance ` = ε logr n. Thus any cycle containing v has girth
at least 2`. Because the walk is non-backtracking, once it leaves v it cannot begin to return to
v, until it has traveled far enough to change its direction, i.e. after at least ` steps. A direct
return to v from a vertex u at distance `, can be modeled as a biassed random walk, in which
the walk succeeds only if it moves closer to v at every step, with probability 1/(r− 1). If this
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fails, the walk moves away from v once more to distance `. Thus the probability of any return
to v, and hence γ([v]) from distance ` during T steps is given by O(T/(r − 1)`) = o(1).

In the case of γ([v]), γ has no loops, so the first return probability in Tγ is f = 0. This gives

pγ = (1+o(1))(1− f)π̃γ = (1+o(1))
1

n
.

Applying Corollary 6 to γ([v]) in H we have

PrH(Aγ([v])(t)) = (1 + o(1)) exp(−(1+o(1))t/n). (52)

To estimate the probability PrW (Av(t)), that v is unvisited during T, ..., t, we use the equiv-
alent walk M in the digraph M , and contract [v] to a vertex γ = γ([v]) to give a walk H in
H. Using Lemma 7 with (52) establishes the result that

PrW (Av(t)) = PrM(A[v](t)) = (1 + o(1))PrH(Aγ([v])(t)) = (1 + o(1)) exp(−(1+o(1))t/n).

It follows that at step t of W , the vacant set R(t) is of expected size

E|R(t)| =
∑
v∈V

PrW (Av(t)) = |N |e−(1+o(1))t/n + |N | ∼ ne−(1+o(1))t/n.

The concentration of |R(t)| follows from the methods of Lemma 9. Theorem 3(i) for |R(t)|
follows from E|R(t)|, the concentration of |R(t)| and the fact that o(n) vertices are not nice.
Theorem 3(iii), for vertex cover time follows from equating E|R(t)| = o(1) and applying the
techniques used in [9] to obtain a lower bound.

Number of edges in the vacant set. The vertices u, v are unvisited in G if and only if the
corresponding set of states S = [u] ∪ [v] is unvisited in M . Let u, v ∈ R(t) and let {u, v} be
an edge of G and hence of Γ(t). In this case, for nice u, v, the corresponding set of states S
of M induces into two disjoint components given by

Su = {(u, v)} ∪ {(x, u), x ∈ N(u), x 6= v}
Sv = {(v, u)} ∪ {(x, v), x ∈ N(v), x 6= u}.

The total in-degree and out-degree of Su is r(r−1). The details of the edges incident with e.g.
Su are as follows. The set Su induces (r − 1) internal edges in M of the form ((x, u), (u, v)).
For a state e = (x, u) ∈ Su there are (r− 1) states f of M , f = (a, x), x 6= u which point to e,
a total in-degree from U \ S to Su of (r − 1)2. Similarly, Su points to (r − 1) + (r − 1)(r − 2)
distinct states of U not in S. In total, the in-degree and out-degree of γ(S) is 2r(r − 1) of
which 2(r − 1) edges are loops at γ(S). This means 2(r − 1)2 states (other than γ(S)) point
to γ(S).
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We claim π̃(γ(S)) = 2/n, and that for f 6∈ S, we have π̃(f) = 1/rn = π(f). We use π̃ = π̃P̃
to confirm this. For γ(S) we have

π̃(γ(S)) =
∑

f∈N−(γ(S))

π̃(f)

r − 1
+ π̃(γ(S))

2(r − 1)

2r(r − 1)

= 2(r − 1)2 1

rn

1

r − 1
+

2

n

1

r
=

2

n
.

If f 6= γ(S), but f ∈ N+(γ(S)) then

π̃(f) =
π̃(γ(S))

2r(r − 1)
+

∑
e∈N−(f)
e 6=γ(S)

π̃(e)

r − 1

=
2

n

1

2r(r − 1)
+

1

rn

r − 2

r − 1
=

1

rn
.

For any other state f , the relevant rows of P̃ are identical with P confirming π̃(f) = π(f) =
1/rn. Hence for f 6= γ(S), π̃(f) = π(f) so π̃H is compatible with πM in Lemma 7.

Consider next Rγ(S). In the infinite arborescence Tγ there are (r − 1) loops at γ so f =
(r − 1)/r(r − 1) = 1/r. From (51) we obtain

pγ(S) ∼ π̃(γ(S))(1− f) = 2(r − 1)/rn. (53)

Using the observation that at most o(rn) edges of Γ(t) are incident with vertices which are
not nice (v ∈ N ), the expected size of the edge set E(Γ(t)) of the graph Γ(t) induced by the
vacant set is

E(|E(Γ(t))|) ∼ rn

2
e−

2(r−1)t
rn

(1+o(1)).

This plus a concentration argument similar to Lemma 9, completes the proof of Theorem 3(i).

Number of paths length two in the vacant set. Let u, v, w ∈ R(t) be such that
u,w ∈ N(v). Thus uvw is a path of length two in G and hence Γ(t). The assumption that
u, v, w are unvisited in G is equivalent to [u]∪ [v]∪ [w] unvisited in M . Let S = [u]∪ [v]∪ [w].
The set S can be written as

S = {(u, v), (v, w), (w, v), (v, u)} ∪ {(x, u), x ∈ N(u), x 6= v}
∪ {(y, v), y ∈ N(v), y 6= w, u} ∪ {(z, w), z ∈ N(w), z 6= v}.

Thus S induces a single component in the underlying graph ofM . Counting the elements of the
sets S in the order above we see that S has size 4+(r−1)+(r−2)+(r−1) = 3r, and hence a total
in-degree (resp. out-degree) of 3r(r−1). Of these edges, 2+(r−1)+2(r−2)+(r−1) = 4(r−1)
are internal.
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We claim that π̃(γ(S)) = 3/n, and for f 6= γ(S), π̃(f) = 1/rn. We use π̃ = π̃P̃ to confirm
this. For γ(S),

π̃(γ(S)) =
∑

f∈N−(γ(S))

π̃(f)

r − 1
+ π̃(γ(S))

4(r − 1)

3r(r − 1)

=
1

rn

3r(r − 1)− 4(r − 1)

r − 1
+

3

n

4(r − 1)

3r(r − 1)
=

3

n
.

For any state f which is an out-neighbour of γ(S), there are (r − 1) parallel edges from γ(S)
to f . For example let f = (w, x), x 6= v, then states (z, w), z 6= x of S point to (x,w). Thus

π̃(f) = π̃(γ(S))
r − 1

3r(r − 1)
=

1

rn
.

We obtain that π̃H is compatible with πM in Lemma 7.

To estimate Rγ(S) consider Tγ(S). The vertex γ(S) has 4(r − 1) loops and total out-degree
3r(r − 1) giving a value for f in (51) of f = 4/3r. Thus

pγ(S) ∼ (3r − 4)/rn. (54)

Threshold for the vacant set. Theorem 3(iv) follows from using Q = 2M(2)−M(1) (see
(46)), and equating Q = 0 in Lemma 14 with the appropriate values of EM(1, t), EM(2, t) as
in (36). From (53), (54) we have α1 = 2(r−1)/r, α2 = (3r−4)/r. EquatingM(1, t) = 2M(2, t)
and setting t = u∗n gives

u∗ =
r − 2

r
log(r − 1).

5.2 Properties of the vacant net

Size of the vacant net. The calculations for the vacant net are much simpler than for
the vacant set. For the case of an unvisited edge {u, v} of E(G), where u, v are nice, the
corresponding unvisited states of U in M are S = {(u, v), (v, u)}. Contract S to a vertex

γ(S). The equations π̃ = π̃P̃ for the walk H in H are solved by π̃(γ(S)) = 2/rn for γ(S),
and π̃(σ) = 1/rn for any other state σ of H. Thus π̃H is compatible with πM in Lemma 7.
No first return to γ(S) is possible in the arborescence Tγ(S), and so f = 0 in (51). Thus

pγ ∼ 2/rn, (55)

and the vacant net is of expected size E|U(t)| ∼ (rn/2)e−2t/rn. The concentration of the
random variable |U(t)| follows from the methods of Lemma 9. Theorem 3(ii) follows from
this. The edge cover time in Theorem 3(iii) is obtained by equating E|U(t)| = o(1) and
applying the techniques used in [9] to obtain a lower bound.
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The number of paths length two in the vacant net. Let {v, u}, {u,w} be adjacent unvis-
ited edges of E(G). The corresponding states of U in M are S = {(u, v), (v, w), (w, v), (v, u)}
which contacts to a vertex γ(S) with total in-degree and out-degree 4(r − 1). At γ(S) there
are two loops and 4r − 6 in-neighbours other than γ(S). We obtain a stationary probability
π̃(γ(S)) = 4/rn and π̃(f) = π(f) for f 6∈ S which confirms π̃ and π are compatible.

The total out-degree of γ(S) is 4(r− 1), but there are two loops at γ(S) which can be chosen
for a first return in Tγ(S), with probability 2/4(r − 1). If the walk moves away from γ(S), no
first return is possible in Tγ(S). This gives f = 1/2(r − 1) in (51). Thus

pγ ∼ 2(2r − 3)/r(r − 1)n. (56)

Threshold for the vacant net. Theorem 3(v) follows from using Q = 2M(2)−M(1) (see
(46)), and equating Q = 0 in Lemma 14 with the appropriate values of EM(1, t), EM(2, t)
from (36). From (55), (56) we have α1 = 2/r, α2 = 2(2r − 3)/r(r − 1). Equating M(1, t) =
2M(2, t) and setting t = θ∗n gives

θ∗ =
r(r − 1)

2(r − 2)
log(r − 1).

6 Random walks which prefer unvisited edges

The unvisited edge process is a modified random walk X = (X(t), t ≥ 0) on a graph G =
(V,E), which uses unvisited edges when available at the currently occupied vertex. If there
are unvisited edges incident with the current vertex, the walk picks one u.a.r. and makes a
transition along this edge. If there are no unvisited edges incident with the current vertex,
the walk moves to a random neighbour.

Partitioning the edge-process into red and blue walks. At any step t of the walk, we
partition the edges of G into red (unvisited) edges and blue (visited) edges. Thus t = tR + tB
where tR is the number of transitions along red edges up to step t, hence recoloring those
edges blue, and tB the number of transitions along blue edges. Note that in [3] the unvisited
edges were designated blue and the visited edges red, the opposite of the terminology in this
paper.

At each step t the next transition is either along a red or blue edge. We speak of the sequence
of these edge transitions as the red (sub)-walk and the blue (sub)-walk. The walk thus consists
of red and blue phases which are maximal sequences of edge transitions of the given edge type
(unvisited or visited). For any vertex v, and step t, let dB(v, t) the blue degree of v, be the
number of blue edges incident with v at the start of step t. Similarly define dR(v, t).
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For graphs of even degree, each red phase starts at some step s at a vertex u of positive even
red degree dR(u, s) ≥ 2, and ends at some step t when the walk returns to u along the last
red edge incident with u. Thus dR(u, t) = 0 and a blue phase begins at step t + 1. Thus for
r-regular graphs r = 2d, if we ignore the red phases of the edge-process X, then the resulting
blue phases describe a simple random walk W on the graph G. To illustrate this, suppose the
edge-process X starts at X(0) = u, then W also starts at vertex u after the completion of
the first red phase at tR. After some number of steps tB, the blue walk W arrives at a vertex
u′ with unvisited edges, and a red phase starts from u′, at step tR + 1, as counted in the red
walk. This is followed by a blue phase starting from u′ at step tB + 1 of the blue walk. Thus
the walks interlace seamlessly, and at step t of the edge-process, we have t = tR + tB, where
tR, tB are the number of red and blue edge transitions.

In summary the red walk is a walk with jumps which consists of a sequence of closed tours
each with a distinct start vertex. The blue walk is a simple random walk. Given a step
s = tR + tB of the edge-process, we extend the notation dR(u, s) for the red degree of vertex u
at step s of the edge-process to dR(u, tR) the red degree of vertex u at step tR of the red walk.

6.1 Thresholds measured in the red walk

To make our analysis, we first consider only the red walk steps t = tR. Let r = 2d and let
Rj(t) be the number of vertices of red degree j for j = 0, 1, ..., 2d at step t of the red walk.
Unless the walk is at the vertex u which starts the red phase, (in which case all vertices have
even red degree), then with the exception of u and the current position v of the walk, all other
vertices have even red degree at any step of a red phase.

We generate the red walk in the configuration model, and derive its approximate degree
sequence. The intuition is as follows. Suppose the red walk arrives at vertex v at the end of
step t, and leaves v at the start of step t + 1. To simplify things we could agree to say the
degree of v changes by 2 at the start of step t + 1. Thus we consider the following process
which samples u.a.r. without replacement from the sets Sv, v ∈ V of configuration points of a
graph with m = dn edges.

Pairs-process.
At each step t = 1, ...,m:
Pick an unused configuration point α u.a.r., remove α from the set of available
points. Pick another unused point u.a.r. β from the same vertex as α, remove β
from the set of available points.
Add Yt = (α, β) to the ordered list of samples Y1, ..., Yt−1.

Let the random variables N k(t), k = 0, 1, ..., d, be the number of vertices of degree 2k
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generated by the Pairs-process, and let Nk(t) = EN k(t). Here the degree of a vertex is the
number of unpaired points associated with that vertex.

We condition on the pairings in our process and the ordering α, β within pairs. After this,
we have a permutation of dn objects, where each object is a pair. The probability p(k) that
a vertex contributes to N k(t) is the probability that exactly d − k out of a fixed set of d
objects appear before the t-th element in our permutation. Thus p(k) has a hypergeometric
distribution, and

Nk(t) = np(k) = n

(
t

d−k

)(
dn−t
k

)(
dn
d

) .

Thus Nk(t) can be written as,

Nk(t) =

(
1 +O

(
1

t
+

1

dn− t

))
n

(
d

k

)(
dn− t
dn

)k (
t

dn

)d−k
, i = 0, 1, ..., d. (57)

By a martingale argument on the configuration sequence of pairs of points of length dn, the
random variables N k(t) are concentrated within O(

√
dn log n) of Nk(t) for any 0 ≤ t ≤ dn.

Suppose the first difference between a pair of sequences Y, Y ′ occurs at vertices v, v′ with
Yi = (αi, βi) and Y ′i = (α′i, β

′
i). Let Yj be the first occurrence of v′ after step i in Y . Map this

to the first occurrence Y ′j of v in Y ′. For u 6= v, v′ let all other entries of the sequence be the
same. Map subsequent pairings Y`, Y

′
` between (possibly) different configuration points of v

as appropriate; and similarly for v′. The maximum difference between N k(t) in the mapped
sequences is 2. Thus

Pr(|N k(t)−Nk(t)| ≥
√
An log n) = O(n−A/8). (58)

We next explain how Nk(t) can be used to approximate R2k(t), the number of vertices of red
degree j = 2k. Let Y be a Pairs-process and W a red walk generated in the configuration
model. Let the vertices which start the red phases of W be u = (u1, u2, ..., uJ). There is an
isomorphism between (W,u) and (Y,u). Let Yi = (αi, βi) be the pair generated at step i of
Pairs. Let Y` be the last occurrence in Y , of configuration points from vertex u = u1 (i.e.from
Su). The subsequence P = (Y1, · · · , Y`) of Pairs is isomorphic to the first red phase Q of W
by the following mapping which moves β` to the front of P to form Q.

P = (α1, β1), (α2, β2), · · · , (αi−1, βi−1), (αi, βi), · · · , (α`, β`),
Q = (β`, α1, (β1, α2), · · · , (βi−1, αi), (βi, αi+1), · · · , (β`−1, α`).

Given W and sequence u = (u1, ..., uJ), the last occurrence of ui is before the last occurrence
of ui+1. Thus there is always a unique Y to match this W .

We next relate the probability of a given (W,u) to that of the corresponding (Y,u). Let v
be the vertex chosen to pair at step i of Y . In the Pairs-process, let d(v, i) be the number of
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remaining unmatched configuration points of v at the start of step i. The total degree of the
underlying graph is 2m. Thus

Pr(Y1) =
1

2m

1

d(v, 1)− 1

Pr(Yi | Y1, · · · , Yi−1) =
1

2m− (2i− 2)

1

d(v, i)− 1
.

When v 6= u, and the transition is Wi+1 = (βi, αi+1), the vertex v which corresponds to αi in
Yi = (αi, βi) had degree d(v, i) when αi was chosen u.a.r., and so βi was chosen from a set of
size d(v, i)− 1 and so

Pr(Wi+1 | W1, · · · ,Wi) =
1

d(v, i)− 1

1

2m− (2i+ 1)
.

However if v = u, because we moved β` to the front of W the red degree of u at step i is less
by one than it was in Pairs. Thus

Pr(W1) =
1

d(u)

1

2m− 1

Pr(Wi+1 | W1, · · · ,Wi) =
1

d(u, i)− 2

1

2m− (2i+ 1)
.

This means that, at step ` when the red degree of u = u1 becomes zero,

PrW (Q) = PrY (P )
(d(u)− 1)(d(u)− 3) · · · 1
d(u)(d(u)− 2) · · · 2

`−1∏
i=0

2m− 2i

2m− 2i− 1
.

We repeat this analysis starting with u = u2 etc. Thus with Pr(Z) being the probability of
process Z,

Pr(W ) ≤ Pr(Y )
m−1∏
i=0

(
2m− 2i

2m− 2i− 1

)
= Pr(Y )

(2mm!)2

(2m)!
= O(

√
m) Pr(Y ).

Recall that R2k(t) is the number of vertices at step t of the red walk. Suppose we gen-
erate a red walk starting from u in the configuration model, stopping at step j to give
Q = (a1, b1, a2, b2, · · · , aj, bj). Then P = (b1, a2), · · · , (bj−1, aj) is a Pairs sequence, and for
any j

R2k(j) = N k(j − 1) + C, |C| ≤ 2.

Using (58) with A = 24, we have,

Pr(∃t, R2k(t) ≥ |Nk(t) +O(
√
n log n)|) ≤ O(n

√
dn n−A/8) = O(n−1). (59)

Using tR to denote red steps we can obtain the size of the vacant set Rd(tR). We do this next.
Theorem 4 is expressed in terms of step t of the Edge-process, where t = tR + tB and tB are
blue steps. Thus, to prove Theorem 4 we need to add back the number of blue steps tB. We
do this in Section 6.3.
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Vacant set properties at any step of the red walk. Let t = dn(1 − δ) where δ > 0
constant. Then Nd(t) = Θ(n), and w.h.p. the size of the vacant set at red step t is

|R(t)| = R2d(t) = (1 + o(1))Nd(t) = (1 + o(1))n

(
dn− t
dn

)d
. (60)

Let M(1, t) denote the expected number of edges (resp. M(2, t) denote twice the expected
number of pairs of edges) induced by the vacant set at each vertex of the vacant set. Working
in the configuration model, with r = 2d,

M(1, t) ∼ Nd(t)r
2d

2dn− 2t
Nd(t) ∼ rn

(
dn− t
dn

)2d−1

(61)

M(2, t) ∼ Nd(t)

(
r

2

)(
2d

2dn− 2t
Nd(t)

)2

∼
(
r

2

)
n

(
dn− t
dn

)3d−2

. (62)

The expected number of edges induced by the vacant set is

E|E(Γ(t))| ∼M(1, t)/2 ∼ dn

(
dn− t
dn

)2d−1

. (63)

The concentration of M(1, t), M(2, t) follow from the methods of Lemma 9 (the Chebychev
inequality and the interpolation).

The threshold t = t∗ for the subcritical phase comes from applying the Molloy -Reed condition
given by L(d) = 0. In (43) we examine 2M(2, t) −M(1, t) − O(|N |), where M(1, t),M(2, t)
are given by (61)-(62), and |N | = O(nε) is the number of non-nice vertices (see (6)). Let
t∗ = u∗n, where

u∗ = d

(
1−

(
1

2d− 1

) 1
d−1

)
. (64)

Note that M(1, t∗) = Θ(n),M(2, t∗) = Θ(n). At t∗, 2M(2, t∗) ∼ M(1, t∗). If we choose
t = u∗n(1 + ε), where |ε| > 0 constant, then using (61)-(62) gives

2M(2, t)−M(1, t) = |Θ(n)|
(
(1− ε((r − 1)1/(d−1) − 1)d−1 − 1

)
. (65)

Thus for t = t∗(1 − ε) this difference is positive. As |R(t)| = Θ(n), w.h.p. this confirms the
w.h.p. existence of a giant component linear in the graph size. At t = t∗(1 + ε) the difference
in (65) is negative, and the maximum component size is O(log n). It remains to find out how
many blue steps have elapsed by red step t∗(1 + ε). We defer this until Section 6.3.

Vacant net properties at any step of the red walk. The vacant net has exactly U(t) =
dn− t edges. Thus, similarly to the vacant set,

M(1, t) ∼ 2dn− 2t (66)

M(2, t) ∼
d∑

k=1

(
2k

2

)
Nk(t) ∼

dn− t
dn

(dn+ 2(d− 1)(dn− t)). (67)
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In (43) for the Molloy-Reed condition we require 2M(2, t) − M(1, t) − O(|N |) > 0, where
M(1, t),M(2, t) are given by (66)-(67), and |N | = O(nε) is the number of non-nice vertices
(see (6)).

The solution to M(1, t) = 2M(2, t) obtained by using the right hand side values of (66)-(67)
is at the end of the red walk, i.e. red step t̂ = θ∗n where

θ∗ = d.

For any red step t(δ) = (1− δ)dn where δ > 0, M(1, t) = Θ(n),M(2, t) = Θ(n), and

2M(2, t)−M(1, t) ∼ 4(d− 1)
(dn− t)2

dn
.

Thus at red step t(δ) = (1− δ)n̂, for any δ > 0, w.h.p. the vacant net has a giant component
linear in the graph size. It remains to find out how many blue steps tB have elapsed before
this value of t = tR, and also to analyse the sub-critical case dn − t = o(n). We defer this
until Section 6.3.

6.2 Number of blue steps before a given red step

Suppose a red phase starts at red step s from vertex v of red degree 2k. At step s the walk
leaves v along a red edge, and returns to v at some step t′ ≥ s. We have dR(v, τ) = 2k− 1 for
s ≤ τ < t′ and dR(v, t′) = 2k − 2. Thus a red phase at v consists of k excursion rounds with
starts s1, ..., sk and ends t1, ..., tk, where s1 = s, tk = t and si = ti−1 + 1. At the final return,
dR(v, t) = 0 and a blue phase begins.

Lemma 16. Let L(s, k) be the finish time of a red phase starting at red step s from a vertex
v of red degree 2k. Let r = 2d. Then for t ≤ dn(1− δ), and δ ≥ ω/

√
n

Pr(L(s, k) = t) ≤ (1 +O(k/ω))
k

22k

(
2k

k

)
(t− s)k−1

(dn− s)k−1/2(dn− t)1/2
. (68)

Proof. Let ρ = 2k − 1. For a walk starting from v at s, let T+
v be the first return time to v.

Then working in the configuration model,

Pr(T+
v = t | s, 2k) =

t−1∏
σ=s

(
1− ρ

2dn− 2σ − 1

)
ρ

2dn− 2t− 1

=
ρ

2dn− 2t− 1
exp

(
−ρ

2

(
1

dn− s
+ · · ·+ 1

dn− t

)
+O

(
t− s

(dn− t)2

))
=

ρ

2dn− 2t− 1
exp

(
ρ

2

(
log

dn− t
dn− s

+O

(
1

nδ2

)))
= (1 +O(1/ω))

ρ

2(dn− t)

(
dn− t
dn− s

)ρ/2
.
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Thus

Pr(L(s, k) = t) =
∑

s<t1<···<tk−1<t

k∏
i=1

Pr(T+
v = ti | si, ρi = 2k − 2(i− 1)− 1)

= (1 +O(1/ω))k((2k − 1)(2k − 3) · · · 1)
1

2k

∑
s<t1<···<tk−1<t

k∏
i=1

1

dn− ti

(
dn− ti
dn− si

)ρi/2
= (1 +O(k/ω))

(2k)!

k!22k

1

(dn− s)k−1/2

1

(dn− t)1/2

∑
s<t1<···<tk−1<t

1

= (1 +O(k/ω))

(
t− s
k − 1

)
(2k)!

k!22k

1

(dn− s)k−1/2

1

(dn− t)1/2
.

We use Lemma 16 to upper bound the number of red phases before a given red step t.

Lemma 17. Let J(t) be the number of red phases completed at or before step t = tR of the
red walk. For δ > 0 and any t ≤ dn(1− δ), and δ ≥ ω/

√
n

Pr

(
J(t) ≥ de3

δ

)
= O

(
1

n

)
.

Proof. The J red phases start at s1, · · · , sJ and end at t1, · · · , tJ , where s1 = 0, tJ = t,
and si = ti−1 + 1. The total number of excursion rounds is K = k1 + · · · + kJ , where
J < K ≤ dJ . Let τ = (t1, ..., tJ) and κ = (k1, ..., kJ). Let E(τ ,κ) be the event that
L(si, ki) = ti, i = 1, ..., J . Then

Pr(E(τ ,κ)) =
J∏
i=1

Pr(L(si, ki) = ti).

To simplify (68), as
(

2k
k

)
≤ 22k and k ≤ d, then

k

22k

(
2k

k

)
≤ k ≤ d.

Let s = adn, t = bdn where 0 ≤ a ≤ b ≤ (1− δ). Then, as (t− s) ≤ (dn− s),

(t− s)k−1

(dn− s)k−1/2(dn− t)1/2
=

(
t− s
dn− s

)k−1
1

(dn− s)1/2(dn− t)1/2
≤ 1

dnδ
.

Thus

Pr(E(τ ,κ)) ≤ (1 +O(K/ω))
dJ

(dn)JδJ
. (69)
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For a given realization of the edge-process, the sequence κ is a fixed input determined by the
blue walk, and the right hand side of (69) is independent of the value of this input. For any
given red step tJ = t, let J(t) = J(t,κ) be the number of red phases completed at or before
step t. Then,

Pr(J(t),κ) =
∑
τ

Pr(E(τ ,κ)) ≤ (1 +O(K/ω))

(
t

J − 1

)
1

nJδJ

= O(1 +O(K/ω))
tJ−1eJ

nJδJJJ
= O

(
1

n

)(
de1+O(d/ω)

Jδ

)J
.

The last line follows from K ≤ dJ and t ≤ dn. Finally, we put J = de3/δ.

6.3 Proof of Theorem 4

Let TG be a mixing time for a random walk on G, such that, for t ≥ TG,

max
u,x∈V

|P (t)
u (x)− πx| ≤

1

n3
. (70)

We use the following results from [3].

Lemma 18. Let TG be a mixing time of a random walk Wu on G satisfying (70). For any
start vertex u let At,u(v) be the event that Wu has not visited vertex v at or before step t.
Then

Pr(At,u(v)) ≤ e−bt/(TG+3EπHv)c,

where EπHv is the hitting time of v starting from stationarity.

Lemma 19. Let G = (V,E), let |E| = m. Let S ⊆ V , and let d(S) be the degree of S. Then
EπHS, the expected hitting time of S from stationarity satisfies

EπHS ≤
2m

d(S)(1− λ(G))
.

In (8) we used the crude bound λ2 ≤ 29/30, in which case Lemma 19 gives an upper bound
EπHS ≤ 30n/|S|. From (13) we can take TG = 120 log n. Lemma 18 then implies that

PrAt,u(v)) ≤ exp

(
− t

120(n/|S|+ log n)

)
. (71)
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Various useful properties.

Lemma 20. (i) Let S(t) be the vertex set of the vacant net at red step t. Then for any
t = dn(1− δ), |S(t)| ≥ δn/2.

(ii) Let tR = dn(1 − δ) where
√

(ω log n)/n ≤ δ = o(1).Then w.h.p. by red step tR at most
t(δ) = dn(1− δ +O(1/ω)) steps of the edge-process have elapsed.

(iii) There exists red step t1 = dn(1 − δ) with δ = Ω(
√

(ω log n)/n), such that w.h.p. by red
step t1, for k ≥ 3, R2k(t1) = 0, and R4(t1) = O(ω log n). The corresponding step of the
edge-process is t = dn(1 +O(1/ω)).

Proof. Part (i). At red step t = dn(1 − δ) there are, by definition, δdn red edges. Let
S(t) = {v ∈ V : dR(v, t) > 0} denote the vertex set of the vacant net at red step t. Then
deterministically

|S(t)| ≥ δdn/r = δn/2.

Part (ii). At t = dn(1 − δ) the vertex set of the vacant net is of size |S(t)| ≥ δn/2. Let
S = S(t) in Lemma 19. Contract S(t) to a vertex v(S). Let τ denote a step of the blue walk,
and apply Lemma 18 at τ = A log n/δ for some large A. Using (71), and choosing A = 500,
the probability PB(τ) that a blue phase lasts more than TG + τ ≤ 2τ steps is upper bounded
by

PB(τ) ≤ exp

{
− A log n/δ

120(log n+ 2/δ)

}
= O(1/n2).

Let tR be the end of the first red phase at which |S(t)| ≤ nδ. Let tB be the number of blue
steps before tR, then

tB =
∑
i≤J

tB,i ≤ 2τJ(tR) = O

(
log n

δ2

)
.

Thus provided δ ≥
√
ω log n/n, tB = O(n/ω) and

t(δ) = tR + tB = dn(1− δ) +O(n/ω) = dn(1− δ +O(1/ω)).

Part (iii). Let t = dn(1− δ0(k)) where δ0(k) = (log n/n)1/2k. At tR = t, (57) and (58) imply
that w.h.p.

R2k(t) = O(nδk0) +O(
√
n log n) = O(

√
n log n).

Next choose δ1 =
√
ω log n/n. Let B2k(t) be the set of vertices of red degree 2k at red step

t. Let t′ = t+ dnδ1 and let PB(v) be the probability the red walk did not visit v during dnδ1

steps. Thus

PB(v) =
t′∏
s=t

(
1− k

dn− s

)
= O(1) exp

(
−k log

dn− t
dn− t′

)
= O(1) exp (−k log δ0/δ1) = O

(
ω1/2(log n/n)(k−1)/2

)
.
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Thus for k = d, d− 1, ..., 3,

Pr(R2k(t
′) 6= 0) = O

(√
ωn log n (log n/n)(k−1)/2

)
= o(1).

For k = 2
ER4(t′) = O(

√
ω log n),

and thus
Pr(R4(t′) ≥ ω log n) = O(1/

√
ω).

By the previous part of this lemma, the number of blue steps tB elapsed at t′ is O(n/ω). This
corresponds to a step t of the edge-process where

t = t′ + tB ≤ dn(1 +O(1/ω)).

Vacant set size and threshold. We recall the discussion in Section 6.1 where the size, and
number of edges of the vacant set at any red step tR are given by (60) and (63) respectively.
Theorem 4 (i) then follows from Lemma 20(ii).

Considering the threshold, let t∗ = u∗n be the red step given by u∗ in (64). We prove that at
steps t∗(1 − ε) and t∗(1 + ε) respectively of the edge-process, the vacant set is super-critical
and sub-critical respectively. At red step t∗,

|R(t∗)| = R2d(t
∗) = (1 + o(1))n

(
1

2d− 1

) d
d−1

= Θ(n),

and |R(t)| is concentrated. In Section 6.1, using the Molloy-Reed condition and (65), we
proved that at red step t ≤ t∗(1 − ε) the giant component C1(t) = Θ(|R(t)|) = Θ(n) w.h.p.
Similarly at red step t∗(1 + ε) for some small ε > 0, the maximum component size of the
vacant set at t∗(1 + ε) is O(log n) w.h.p. Let d(1− δ) = u∗(1 + ε), then the corresponding δ is
constant. By Lemma 20(ii), red step tR = t∗(1 + ε) corresponds to step t = t∗(1 + ε+O(1/ω))
of the edge-process. Thus at step t = t∗(1 + O(ε)) the maximum component size is O(log n)
w.h.p. and the graph of the vacant set is subcritical. This completes the proof of Theorem 4
(iii).

Vertex cover time. For the proof of Theorem 4 (iii), that T Vcov(G) ∼ dn, we consider the
cases r = 4 and r ≥ 6 separately.

Case r = 2d, d ≥ 3. At red step tR = dn(1−δ) where δ = 1/n1/2d, then R2d(tR) = Ω(n1−1/2d).
By Lemma 20(ii) the corresponding step of the edge-process is t′ = dn(1 +O(1/ω)). However
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by Lemma 20(iii), at step t1 = dn(1 +O(1/ω)) of the edge-process R2d(t1) = 0 and the vacant
set is empty. Thus the vertex cover time T Vcov(G) ∼ dn.

Case r = 4. The cover time can be deduced from the proof of Lemma 21 (see below) that
t̂ ∼ dn is the threshold for the vacant net. The relevant facts from Lemma 21 are the following.
At t = t̂(1− o(1)) there are vertices of red degree 4 w.h.p. For some t ≤ t̂(1 + o(1)) the last
vertex of red degree 4 disappears. Thus, for r = 4 the vacant set becomes empty at some
t ∼ t̂ ∼ dn. We remark that the vacant net could still be nonempty, but if so it will consist
of isolated cycles.

Vacant net. Supercritical regime. From Section 6.1 the threshold for the vacant net is
at red step t̂ ∼ dn. Choose a red step tR, where tR = dn(1− δ), δ ≥ 0 constant. By Lemma
20(i), the vertex set S(tR) of the vacant net is of size |S(tR)| ≥ δn/2. By Lemma 20(ii), the
corresponding step t = tR + tB of the edge-process is tR(1 + o(1)) w.h.p.

Vacant net. Subcritical regime. Because the vacant net becomes sub-linear in size near
dn ∼ t̂, the time taken by the blue walk to reach unvisited edges increases rapidly. Thus more
work is needed to prove the vacant net has maximum component size O(log n) at some step
t = dn(1 + o(1)) of the edge-process.

Lemma 21. There is a step t of the edge-process, where t = dn(1 + o(1)) such that w.h.p. at
step t all components of the vacant net have size O(log n).

Proof. The proof is in three parts. In the first part we count up the number of blue steps
occurring before red time t1 = dn(1−δ1) where δ1 =

√
ω log n/n. At t1 the vacant net consists

mainly of vertices of red degree 2, with a few vertices of red degree 4. In the second part, we
prove that after a further tB = o(n) steps of the blue walk we have removed all vertices of
red degree 4, thus destroying any complex components of the vacant net. The vacant net now
consists entirely of red cycles. In the third part we use a further tB = o(n) steps of the blue
walk to remove any red cycles of length at least log n.

Part 1. Let t1 be red step dn(1 − δ1) where δ1 =
√
ω log n/n. By Lemma 20(ii) the

corresponding step of the edge-process is t = dn(1 +O(1/ω)). At any red step tR = dn(1− δ),
the maximum component size is at most the number of red edges dnδ. Thus at step t of the
edge-process corresponding to t1 the giant component is of size

C1(t) = O(nδ1) = O(
√
ωn log n).

By Lemma 20(iii) the vacant net Γ̂(t1) consists of R2i(t1) = n2i vertices of red degree 2i. For
some c2 constant, w.h.p.

n2 = c2

√
nω log n, n4 ≤ ω log n, n2i = 0, i ≥ 3. (72)
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Part 2. It follows from (72) that at red step t1 the vacant net consists of 2-cycles (cycles
with vertices of red degree 2) and complex components with vertices of degree 2 and 4. Such
components are Eulerian, and can be decomposed (non-uniquely) into (2, 4)-cycles (cycles
where all vertices have red degree 2 or 4 in the vacant net). We prove that after tB = o(n)

further blue steps, the blue walk has visited every (2, 4)-cycle in the vacant net Γ̂(t1). If so,
the vacant net is either empty or consists entirely of red 2-cycles. To assume otherwise leads
to a contradiction.

We count (2, 4)-cycles in the configuration model. Let Φ(m) = (2m)!/m!2m. Using
(

2k
k

)
/22k =

Θ(1/
√
k + 1), it follows that

m!

(m− s)!
2s

Φ(m− s)
Φ(m)

= Θ

(√
m

m− s+ 1

)
. (73)

Let C(i, a, b) be the number of (2, 4)-cycles of length i = a + b and containing a vertices of
red degree 2, and b vertices of red degree 4. Thus

EC(i, a, b) =

(
n2

a

)(
n4

b

)
(i− 1)!

2

(
4

2

)b
2i

Φ(n2 + 2n4 − i)
Φ(n2 + 2n4)

.

Let m = n2 + 2n4, s = i in (73). Then,

EC(i, a, b) = Θ

(√
n2 + 2n4

n2 + 2n4 − i

)
1

i

(
i

b

)
6bnb4

(n2)a
(n2 + 2n4)i

= Θ

(√
n2 + 2n4

n2 + 2n4 − i

)
1

i

(
i

b

)
6b
(

n4

n2 + 2n4

)b
e
O
(

(a+b)b
n2+2n4

)

= Θ

(√
n2 + 2n4

n2 + 2n4 − i

)
O(1)

i

(
ie1+O(a/n2)

b

6n4

n2

)b
.

Thus for 2-cycles (case b = 0) we have EC(i, i, 0) = O(1/i). If b > 0 then for some β < 1/7e,∑
i<βn2/n4

C(i, a, b) = o(1),

and thus w.h.p. all (2, 4)-cycles are size at least Θ(n2/n4). The expected number of all
(2, 4)-cycles is ∑

a≤n2

∑
b≤n4

∑
i≤n2+n4

EC(i, a, b) = O
(
n

3/2
2 n

1/2
4 (cn4)n4

)
.

Thus w.h.p. the total number L(t1) of such cycles of all sizes is at most L(t1) = O(n
3/2
2 (n4)n4+1 log n).

Let E(tb) be the event that

E(tB) = {After tB + TG further blue steps, there exists an unvisited (2, 4)-cycle.}
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Let tB be given by

tB =
n4

n2

Kn log n log log n ≤ n2/3.

Using (71), conditional on n4 ≤ ω log n and ω ≤ log log n, for some α > 0 constant we have

Pr(E(tB)) ≤ Θ
(
n2

2n
n4+1
4

)
e−α logn log logn = o(1). (74)

Part 3. Let t2 = dn(1 − δ2) be the red time reached by the edge-process after the further
tB blue steps made in Part 2 of the proof. The precise value of δ2 is unknown, but the vacant
net Γ̂(t2) consists only of 2-cycles. The existence of a vertex of red degree 4 contradicts

Pr(E(tB)) = o(1) in (74). Thus Γ̂(t2) is a random 2-regular graph. As Γ̂(t1) has n2 + n4 =

n2(1 + o(1)) vertices of positive red degree, and Γ̂(t2) is a subgraph of Γ̂(t1), it also has at
most this many vertices of red degree 2. By the result for EC(i, i, 0) = O(1/i) in Part 2, in

expectation, Γ̂(t2) has EC(i) = O(1/i) cycles of length i. Thus

Pr( There are more than s2EC(s) cycles size s for any s ≥ log n) ≤
∑
s≥logn

1

s2
= O

(
1

log n

)
.

Condition on the number of cycles size s being at most s2EC(s) = O(s). Using (71), for some
constant α > 0, the probability Ps(t) that some cycle size s remains unvisited after t steps of
the blue walk is

Ps(t) = O
(
se−tα

s
n

)
.

Let F be the event that some red cycle of size at least log n is unvisited after

tB =
K

α

n

log n
log log n

further blue steps. Thus for K ≥ 3,

Pr(F) ≤
∑
s≥logn

Ps(tB)

≤ O(1/ log n) +
∑
s≥logn

s exp

(
−Ks log log n

log n

)
= O(1/ log n).
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8 Appendix

8.1 Experimental results for the unvisited edge process
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Figure 1: Vertex cover time of the unvisited edge process on d-regular graphs as function of
n = |V |. All cover times are normalized by dividing by the vertex set size n. The plot shows
d = 3, 4, 5, 6, 7. See [3] for details.

8.2 Estimates of Rv for nice vertices

Recall the definition of N , the set of nice vertices of G as given in Section 2. For a nice vertex
v, the following lemma relates the value of Rv as given in (16) to the probability of a first
return to v in the graph obtained by extending the subgraph H of depth `1 around v to an
infinite r–regular tree T rooted at v. Note that, we do not require the root v of T to have
degree r.

Lemma 22. Let v be a vertex of degree d(v) ≥ 1 whose subgraph H to distance `1 in a graph
G induces of a tree in which all vertices except v have degree r. Then

Rv = (1 + o(1))
1

1− f
where f =

1

r − 1
, (75)

where f is the probability of a first return to v in T , the extension of H to an infinite r-regular
tree. The o(1) term in (75) is o(log−K n) for any positive constant K.
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Proof Let H denote the subgraph of G induced by the set of vertices at distance at most
`1 from v. This is a tree and we can embed it into an infinite r-regular tree T rooted at v.
Let Wv be the walk on G starting from v, and let X be the walk on T , starting from v.

Let X0 = 0, a let Xt be the distance of X from the root vertex v at step t. Let D0 = 0, and
let Dt be the distance from v of W in G at step t. Note that we can couple Wv,X so that
Dt = Xt up until the first time that Dt > `1.

The values of Xt are as follows: X0 = 0, X1 = 1, and if Xt = 0 then Xt+1 = 1. If Xt > 0 then

Xt =

{
Xt−1 − 1 with probability q = 1

r

Xt−1 + 1 with probability p = r−1
r
.

(76)

The following result (see e.g. [14]) is for a random walk on the line = {0, ..., a} with absorbing
states {0, a}, and transition probabilities q, p for moves left and right respectively. Starting
at vertex z, the probability of absorption at the origin 0 is

ρ(z, a) =
(q/p)z − (q/p)a

1− (q/p)a
≤
(
q

p

)z
, (77)

provided q ≤ p.

Let U∞ = {∃t ≥ 1 : Xt = 0}, i.e. the event that the particle ever returns to the root vertex in
T . It follows from (77) with z = 1 and a =∞ that

f = Pr(U∞) =
1

r − 1
. (78)

It follows that the expected number of visits by X to v is

1

1− f
.

We write

Rv =
T∑
t=0

rt and ρ =
∞∑
t=0

ρt

where ρt = Pr(Xt = v). Now rt = ρt for t ≤ `1 and part (a) follows once we prove that

T∑
t=`1+1

rt = o(1) and
∞∑

t=`1+1

ρt = o(1). (79)

The first equation of (79) follows from∣∣∣∣rt − 1

n

∣∣∣∣ ≤ λtmax (80)
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where λmax is the second largest eigenvalue of the walk. This follows from (11).

The second equation of (79) is proved in Lemma 7 of [9] where it is shown that

∞∑
t=`1+1

ρt ≤
∞∑

2j=`1+1

(
2j

j

)
(r − 1)j

r2j
≤

∞∑
2j=`1+1

(
4(r − 1)

r2

)j
. (81)

Thus
Rv = ρ+O(Tλ`1max + T/n+ (8/9)`1)

. 2

Remark. We can use the method of Lemma 22 to calculate Ru for a vertex u = γ(S) in a
graph H obtained from G by contracting a finite set of vertices S to a single vertex u = γ(S),
either directly, or after subdividing sets of edges incident with these vertices. We assume that
all vertices in S have a unique neighbour w in N(S), and that w is tree-like to depth ` = `1

in G− S. It follows that, in H,

Ru = (1 + o(1))
1

1− fu
,

where fu is the probability of first return to u in the graph T (S) obtained by extending the
r-regular trees rooted at vertices of N(S) to infinity, and then contracting S to u = γ(S).

8.3 Mixing time of chain M

Lemma 23. For G ∈ Gr, r ≥ 3 constant, w.h.p. TM = O(log n).

Proof. Mihail [19] gives the following conductance based measure of convergence for a strongly
aperiodic walk with transition matrix P on a d-regular digraph D = (V,A). For vertices
e, f ∈ V ,

|P t
e(f)− πf | ≤ (1− α2)t/2. (82)

Here,

α =
1

2d
min

|B|≤|V |/2

|C(B)|
|B|

,

and B ⊆ V and C(B) = {a ∈ A : a = (e, f), e ∈ B, f ∈ B}. The proof in [19] assumes the
walk is lazy (i.e. for our model the non-backtracking walk on the underlying graph is lazy).

In Lemma 24 (below) we prove there is an ε > 0 constant such that w.h.p. α ≥ ε/4r. The
result that TM = O(log n) follows from using this in (82).

Lemma 24. For G ∈ Gr, there is an ε > 0 constant such that w.h.p. α ≥ ε/4r.
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Proof. For our chainM, d = r− 1, and |VM | = rn where VM is the set of oriented arcs of the
underlying graph G. Suppose that B ⊆ VM is a set of vertices ofM (directed arcs of G). Let
R = B = VM − B denote the rest of the arcs. Thus |B| + |R| = rn. Assume that |R| ≥ |B|.
We need to estimate C(B). For a vertex v ∈ V (G), let d+

R(v) etc. be the R-out-degree of v
(i.e. d+

R(v) = |{{v, w} ∈ E(G) : (v, w) ∈ R}|). Next let

W0 =
{
w : d+

B(w) = r − 1 and d−B(w) = 1
}
,

W1,s =
{
w : d+

B(w) = r, d−B(w) = s
}

and W1 =
r⋃
s=0

W1,s.

If (v, w) ∈ B and w 6∈ W0 ∪W1 there is always an edge (w, x), x 6= v such that (w, x) ∈ R. If
e = (v, w) ∈ B and f = (w, x) ∈ R, x 6= v then the transition from e to f is non-backtracking,
and arc (e, f) contributes to C(B). We can bound |C(B)| from below by

|C(B)| ≥
∑

(v,w)∈B

(1− 1w∈W0∪W1) .

Enumerating W0 ∪W1 by in-degree gives∑
(v,w)∈B

(1− 1w∈W0∪W1) = |B| − |W0| −
r∑
s=0

∑
w∈W1,s

d−B(w)

= |B| − |W0| −
r∑
s=0

s|W1,s|. (83)

Enumerating B by initial and terminal vertices gives

r∑
s=0

(r + s)|W1,s|+ r|W0| ≤ 2|B|.

So, ∑
(v,w)∈B

(1− 1w∈W0∪W1) ≥
1

2

r∑
s=0

(r + s)|W1,s|+
r

2
|W0| − |W0| −

r∑
s=0

s|W1,s|

=
r∑
s=0

(r
2
− s

2

)
|W1,s|+

(r
2
− 1
)
|W0|.

Case 1: ∃ 0 ≤ s < r such that |W1,s| ≥ ε|B| or |W0| ≥ ε|B|.

In this case, ∑
(v,w)∈B

(1− 1w∈W0∪W1) ≥
ε

2
|B|.

Case 2: |W1,s| < ε|B|, ∀0 ≤ s < r and |W0| < ε|B| and |W1,r| ≤ r−1
(

1− r2

2
ε
)
|B|.
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Going back to (83) we get∑
(v,w)∈B

(1− 1w∈W0∪W1) ≥ |B|
(

1− ε− r(r − 1)

2
ε−

(
1− r2

2
ε

))
=
ε

2
|B|.

Case 3: |W0| < ε|B|, |W1| > r−1
(

1− r2

2
ε
)
|B| and |W1| ≤ 3

4
n.

Let e(W1,W 1) be the number of edges between W1 and W 1 in the underlying graph G, and
let Φ = Φ(G) be the conductance of G. Thus

e(W1,W 1) ≥ min(|W1|, |W 1|) rΦ.

If u ∈ W1, and {u, v} is an edge of G, then by definition of W1, the arc (u, v) ∈ B. Thus if
v ∈ W 1, and v 6∈ W0, there is some z ∈ V , z 6= u such that (v, z) ∈ R. Let A be the set of
such good arcs (v, z), then

|C(B)| ≥ |A| ≥ e(W1,W 1)− |W0|.

If |W1| ≤ n/2,
|A| ≥ |W1|rΦ− |W0| ≥ ((1− r2ε/2)Φ− ε)|B|.

If n/2 ≤ |W1| ≤ 3n/4, and |B| ≤ rn/2,

|A| ≥ |W 1|rΦ− |W0| ≥
n

4
rΦ− ε|B| ≥ (Φ/2− ε)|B|.

In either case, for r2ε < 1, |C(B)| ≥ |B|(Φ/2− ε).

Case 4: |W1| > 3
4
n.

If |B| ≤ rn/2, this is impossible since we have |B| ≥ r|W1| > 3
4
rn.
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