
When is the Assignment Bound Tight for the Asymmetric

Traveling-Salesman Problem ?

Alan Frieze∗

Carnegie-Mellon University

Richard M. Karp†

University of California, Berkeley and

International Computer Science Institute, Berkeley, Calif.

Bruce Reed

University of Bonn

Abstract

We consider the probabilistic relationship between the value of a random asymmetric trav-
eling salesman problem ATSP (M) and the value of its assignment relaxation AP (M). We
assume here that the costs are given by an n × n matrix M whose entries are independently
and identically distributed. We focus on the relationship between Pr(ATSP (M) = AP (M))
and the probability pn that any particular entry is zero. If npn → ∞ with n then we prove
that ATSP (M) = AP (M) with probability 1-o(1). This is shown to be best possible in the
sense that if np(n) → c, c > 0 and constant, then Pr(ATSP (M) = AP (M)) < 1 − φ(c) for
some positive function φ. Finally, if npn → 0 then Pr(ATSP (M) = AP (M)) → 0.

1 Introduction

The Assignment Problem (AP) is the problem of finding a minimum-weight perfect matching in
an edge-weighted bipartite graph. An instance of the AP can be specified by an n×n matrix M =
(mij); here mij represents the weight of the edge between xi and yj , where X = {x1, x2, . . . , xn}
is the set of “left vertices” in the bipartite graph, and Y = {y1, y2, . . . , yn} is the set of “right
vertices.”The AP can be stated in terms of the matrix M as follows: find a permutation σ of
{1, 2, . . . , n} that minimizes

∑n
i=1 mi,σ(i).Let AP (M) be the optimal value of the instance of the

AP specified by M .

The Asymmetric Traveling-Salesman Problem (ATSP) is the problem of finding a Hamiltonian
circuit of minimum weight in an edge-weighted directed graph. An instance of the ATSP can be
specified by an n × n matrix M = (mij) in which mij denotes the weight of edge < i, j >. The
ATSP can be stated in terms of the matrix M as follows: find a cyclic permutation π of {1, 2, . . . , n}

∗Research supported by NSF grant CCR-9024935
†Research supported by NSF Grant CCR-9017380

1

that minimizes
∑n

i=1 mi,π(i); here a cyclic permutation is one whose cycle structure consists of a
single cycle. Let ATSP (M) be the optimal value of the instance of the ATSP specified by M .

It is evident from the parallelism between the above two definitions that AP (M) ≤ ATSP (M).
The ATSP is NP-hard, whereas the AP is solvable in time O(n3). Several authors (for a recent
survey see [BaTo]) have investigated whether the AP can be used effectively in a branch-and-bound
method to solve the ATSP.

The most striking evidence of the power of this approach is given by the recent work of Miller
and Pekny. Among many other computational results, they obtained optimal solutions to random
instances with up to 500,000 cities, in which the mij were drawn independently from the integers
in the range [0, n]. Miller and Pekny noticed that AP (M) was often equal to ATSP (M), and
they exploited this observation by developing a special method to search for a cyclic permutation
among the optimal solutions to the AP.

Motivated by the computational experience of Miller and Pekny, we have investigated the
following question: when the mij are drawn independently from a common distribution (over, say,
the nonnegative reals), what is the probability that AP (M) = ATSP (M)? The answer depends
on the probability that an entry is zero. We show that, if the expected number of zeros in a row of
M tends to infinity as n → ∞ then the probability that AP (M) = ATSP (M) tends to 1, and we
give an O(n3)-time algorithm for finding an optimal solution to the ATSP with high probability;
on the other hand, if the underlying distribution is uniform over the range of integers [0..bcnnc],
where cn tends to infinity with n, then the probability that AP (M) = ATSP (M) tends to 0.
Finally, we show that if the underlying distribution is uniform over the range of integers [0..bcnc]
where c is a positive constant, then the probability that AP (M) = ATSP (M) does not tend to 1.
We conjecture that for distributions of this type, the probability that AP (M) = ATSP (M) tends
to some positive constant less than 1 which depends on c.

The results of this paper are closely related to some earlier results of Karp [K], Karp and
Steele [KS] and Dyer and Frieze [DF]. Here the mi,j are drawn independently from the uniform
distribution over [0,1]. Karp showed that ATSP (M)/AP (M) = 1−o(1) (whp) (we use the notation
(whp) as shorthand for “with probability tending to1 as n tends to infinity.”) Later, Karp and
Steele and then Dyer and Frieze strengthened this result in several ways. For example the latter
paper shows that the error term is o((log n)4/n).

2 The Theorems

Theorem 1 Let {Xn} be a sequence of random variables over the nonnegative reals. Let pn =
Pr[Xn = 0] and let w(n) = npn. Let M = M(n) be an n × n matrix whose entries are drawn
independently from the same distribution as Xn. If w(n) → ∞ as n → ∞ then AP (M) =
ATSP (M) (whp).

(Examination of the proof of Theorem 1 reveals that the distribution of non-zero’s can be more
complicated than actually stated. Indeed one can allow the costs to be generated as follows: start
with an arbitrary real non-negative n × n matrix M . Randomly permute its rows and columns.
Then for each i, j ∈ [n] replace Mi,j with zero, with probability pn. There is also the proviso that
the probability of two identical columns should tend to zero with n.)

Frieze [Fr] has shown that, if w(n) = ln n+t(n), where t(n) tends to infinity, then ATSP (M) = 0

2

(whp), and so AP (M) = ATSP (M) (whp). Thus, we restrict attention to the case where w(n) =
O(ln n). The case where Xn has the uniform distribution over the range of integers [0..N(n)]
is particularly relevant to the Miller-Pekny computations. In this case, Theorem 1 tells us that
AP (M) = ATSP (M) (whp) provided that N(n) = o(n).

Theorem 2 Let M = M(n) be an n × n matrix whose entries are drawn independently from the
uniform distribution over {0, 1, ..., bcnc} where c is a positive constant. Then, the probabilty that
AP (M) 6= ATSP (M) does not tend to zero as n tends to infinity.

Theorem 3 Let M = M(n) be an n × n matrix whose entries are drawn independently from the
uniform distribution over {0, 1, ..., bcnnc} where cn tends to infinity with n. Then, the probability
that AP (M) 6= ATSP (M) tends to 1 as n tends to infinity.

3 Proof of Theorem 1

We begin with some conventions and definitions. When n is understood from context we abbreviate
pn by p, w(n) by w and M(n) by M ; also, “permutation” will mean “permutation of {1, 2, . . . , n}”.

Let H be the weighted bipartite graph with vertex set X ∪ Y , where X = {x1, x2, . . . , xn} and
Y = {y1, y2, . . . , yn}, and with an edge of weight mij between xi and yj . Let G be the complete
digraph on vertex set {1, 2, . . . , n},in which each edge < i, j > has weight mij . A cycle cover is a
subgraph of G in which each of the n vertices has in-degree 1 and out-degree 1. The AP can be
stated in any of the following equivalent forms:

• Find a perfect matching of minimum weight in H;

• find a cycle cover of minimum weight in G;

• find a permutation σ to minimize
∑n

i=1 mi,σ(i).

Let the indicator variable zij be 1 if mij = 0 and 0 otherwise. Then the zij are independent, and
each zij is equal to 1 with probability p. Emulating a useful trick due to Walkup [Wal1] we view the
zij as being generated in the following way. Let h be defined by the equation 1− p = (1− h)5 and
let zk

ij , for i = 1, 2, . . . , n, j = 1, 2, . . . , n and k = 1, 2, 3, 4, 5, be independent indicator variables,

each of which is equal to 1 with probability h. Let zij = max5
k=1 zk

ij . Then the zij are independent,
and each is equal to 1 with probability p. For k = 1, 2, let Hk be the bipartite graph with vertex
set X ∪ Y , and with an edge between xi and yj if and only if zk

ij = 1. For k = 3, 4, 5, let Gk be

the digraph with vertex set {1, 2, . . . , n} and an edge from i to j if and only if zk
ij = 1. The edges

of G3, G4 and G5, respectively, will be called out-edges, in-edges and patch edges. Each type of
edge will play a special role in the construction of a Hamiltonian circuit of weight AP (M). It will
be important that the random graphs H1 and H2, and the random digraphs G3, G4 and G5, are
completely independent. Also, let s(n) = nh(n); s(n) is the expected degree of a vertex in H1 or

H2, and the expected out-degree of a vertex in G3, G4 or G5. Clearly, s(n) ≥ w(n)
5 , and thus s(n)

tends to infinity if w(n) does.

The construction of the desired Hamiltonian circuit proceeds in the following stages:

3

• (Identification of “troublesome vertices.”) By considering the edges of H1 ∪H2 identify a set
A ⊂ X and a set B ⊂ Y . The cardinality of A ∪ B is small (whp). The set A ∪ B contains
the vertices of exceptionally small degree plus certain other vertices that are likely to be
incident with edges of nonzero weight in an optimal assignment. At the same time construct
a matching in H which is of minimum weight, subject to the condition that it covers the
vertices in A ∪ B and no other vertices.

• Consider the subgraph of H1 ∪H2 induced by (X \A)∪ (Y \B). This bipartite graph has a
perfect matching (whp). Combining that perfect matching with the matching constructed in
the previous step, obtain an optimal assignment for H in which every non-zero-weight edge
is incident with a vertex in A ∪ B.

• The optimal assignment just constructed has the properties of a random permutation.

• Using the out-edges and in-edges, attempt to convert the original optimal assignment into a
permutation with no short cycles. This process succeeds (whp).

• Using the patch edges, patch the long cycles together into a single cycle, thus solving the
ATSP . The patching process succeeds (whp).

The overall strategy of the proof is to construct an optimal assignment while keeping the in-
edges, out-edges and patch edges (except those incident with A∪B) in reserve for use in converting
the optimal assignment to a tour. In the following sections we describe the algorithm in greater
detail and give the proofs of the main assertions.

4 Identification of the Sets A and B

Consider the directed bipartite graph D with vertex set X ∪ Y . The edges of D are those of H1

directed from X to Y plus those of H2 directed from Y to X. The expected out-degree of a vertex
in D is s(n), which we abbreviate by s. Let d(v) be the out-degree of vertex v, let N(v) be the set
of out-neighbors of v and, for any set of vertices S, let N(S) be the set of vertices adjacent from
vertices in S.

We give an iterative construction for identifying a small set A∪B of vertices that are likely to
be incident with edges of nonzero weight in an optimal assignment.

Let W−1 = {x ∈ X ∪Y |d(x) ≤ s/2}. Let F0 be a minimum weight matching in H which covers
the vertices of W−1. Let W0 denote the set of vertices covered by F0. Define a maximal sequence
(W0, F0), (W1, F1), . . . , (Wr, Fr) = (W,F) where (Wi, Fi) is obtained from (Wi−1, Fi−1) as follows:
suppose there exists x 6∈ Wi−1 such that |N(x) ∩ Wi−1| ≥ s/4. Fi is then a minimum weight
matching in H which covers Wi−1 and x and, necessarily, one other vertex y. We then take
Wi = Wi−1 ∪ {x, y}. (Fi is obtained by constructing a least cost augmenting path from x w.r.t.
Fi−1.)

Lemma 1 |W | < 3ne−
s
5 (whp).

Proof The proof follows from two simple claims. They can easily be justified by the first
moment method and the calculations are omitted.

4

CLAIM 1: |W−1| ≤ ne−s/5 (whp).

CLAIM 2: S ⊆ X ∪ Y, |S| ≤ 3ne−s/5 implies that (whp), in H1 ∪ H2, S contains fewer than
2|S| edges.

Assume the conditions of the above two claims. Then |W0| ≤ 2|W−1| ≤ 2ne−s/5. Now |Wi| =
|W0| + 2i and Wi contains at least is/4 edges. If |W | ≥ 3ne−s/5 then r, the number of pairs of
verttices adjoined to W0 in constructing the set W , is greater than or equal to r0 = bne−s/5/2c.
But then Wr0

has at most 3ne−s/5 vertices and contains at least r0s/4 edges, contradicting CLAIM
2.

We then take A = W ∩X and B = W ∩Y . The sub-process of constructing A involves counting
the edges directed into Y \ B from each vertex x ∈ X \ A, but does not depend at all on which
particular vertices in Y \ B are adjacent to x. Thus, N(x) ∩ (Y \ B) is of cardinality at least
s/4, and it is a random set, in the sense that the probability that it is equal to a given subset of
Y \B depends only on the cardinality of that subset; moreover, there is no dependency among the
distinct sets N(x) ∩ (Y \ B) as x ranges over X \ A. Similar statements can be made about the
sets N(y) ∩ (X \ A), for y ∈ Y \ B. There are also no dependencies between these two collections
of sets. Furthermore, in constructing W using the augmenting path approach, we did not need to
consider the cost of any edge with both its endpoints in H − W . Thus, each such edge is still an
in, out, or patch edge with probability h.

5 Construction of an Optimal Assignment

Lemma 2 The subgraph of H1 ∪ H2 induced by (X \ A) ∪ (Y \ B) has a perfect matching (whp).

Proof Recall that a random k-out bipartite graph on the vertex set X ∪ Y , where X and Y are
disjoint n-element sets, is constructed by having each vertex in X choose k random neighbors in
Y , and each vertex in Y choose k random neighbors in X. The proof follows immediately from
Walkup’s result [Wal2] that a random k-out bipartite graph has a perfect matching (whp) for any
k ≥ 2.

Thus, we can obtain an optimal assignment (whp) by combining an optimal matching covering
A ∪ B with a perfect matching in the subgraph of H1 ∪ H2 induced by (X \ A) ∪ (Y \ B).

6 Structure of the Optimal Assignment

In this section we show that, if M is a random instance of the AP, then, with suitable implementa-
tion, the construction of an optimal assignment based on Lemma 2 yields a random permutation.
Define the equivalence class of a matrix M as the set of all matrices obtained by permuting the
columns of M . A typical member of this equivalence class, corresponding to the permutation π,
is the matrix Mπ defined by mπ

i,π(j) = mij . Except for a negligible fraction of the matrices in

UN
n (namely, those with two equal columns), the equivalence class of M consists of n! distinct and

equiprobable matrices. Let σ be the optimal assignment for M obtained by the algorithm described
above. Then πσ is an optimal assignment for Mπ. Moreover, the algorithm for constructing the
optimal assignment can be implemented so that

5

• if σ is the optimal assignment constructed for M , then πσ is the optimal assignment con-
structed for Mπ;

• A, the set of troublesome rows for M , is also the set of troublesome rows for M π.

One way to ensure this is to permute the columns of M into lexicographic order, find the set
of troublesome rows and an optimal assignment in the resulting matrix, and then permute the
columns back. For any fixed σ, as π ranges over all permutations of {1, 2, . . . , n}, πσ also ranges
over all permutations of {1, 2, . . . , n}. Since all the matrices in [M] are equally likely, we have
established that the permutation produced by the optimal assignment algorithm described above
is equally likely to be any permutation.

We note some facts about random permutations. Let σ be drawn at random from the set of
permutations of {1, 2, . . . , n}. Then

• σ has at most 2 ln n cycles (whp);

• For all k,there are fewer than w(n)k cycles of length k (whp);

• There are at most n
w1/3

vertices on cycles of length at most n√
w

(whp).

Now let σ be the optimal assignment selected by our algorithm. Then

Lemma 3 No cycle of σ has more than one-tenth of its vertices in W (whp).

Proof Conditioning on the event that M lies in a particular equivalence class, σ is equally likely
to be any permutation, while A is a fixed set of very small cardinality (whp). A straightforward
calculation shows that no cycle has more than one-twentieth of its vertices in A (whp). Indeed,
given |A| = a ≤ 3ne−s/5, the expected number of cycles containing so many members of A is at
most

n
∑

k=1

(

n − a

k − dk/20e

)(

a

dk/20e

)

(k − 1)!n−k ≤
n
∑

k=1

2k
(a

n

)k/20

= o(1).

A similar argument applies to B.

7 Elimination of Small Cycles

Call a cycle in a permutation small if it contains fewer than n√
w

vertices. We now show how

the out-edges and in-edges are used to convert the original optimal assignment into an optimal
assignment in which no cycle is small. Our procedure is to take each small cycle of the original
optimal assignment σ in turn and try to remove it without creating any new small cycles. During
its execution our algorithm will designate a vertex as dirty when its out-edges or in-edges have
been observed, so that they may no longer be considered random. The initial set of dirty vertices

6

is the set W defined above. A vertex that is not dirty will be called clean. If i is clean then,
independently for each j, < i, j > is an out-edge with probability s

n and < j, i > is an in-edge
with probability s

n . Throughout the computation, we will maintain the property that at least
nine-tenths of the vertices in any remaining short cycle are clean.

We now describe the rotation-closure algorithm that is used to eliminate one small cycle. Let
C be a small cycle of length k in the current optimal assignment. Let k̂ = min(d 9k

10 e, bln ln nc).
Choose k̂ clean vertices on C. We make up to k̂ separate attempts to remove C. The ith attempt
consists of an Out Phase and an In Phase. Let vi be the ith of the k̂ clean vertices selected from
C, and let ui be the predecessor of vi on C.

7.1 The Out Phase

Define a near-cycle-cover as a digraph θ consisting of a directed path Pθ ending at a clean vertex
plus a set of vertex-disjoint directed cycles covering the vertices not in Pθ. We obtain an initial
near-cycle-cover by deleting edge < ui, vi > from the current optimal assignment, thus converting
the small cycle C into a path from vi to ui. We then attempt to obtain many near-cycle-covers by a
rotation process. The state of this process is described by a rooted tree whose nodes are near-cycle-
covers, with the original near-cycle-cover at the root. Consider a typical node θ consisting of a
path Pθ directed from aθ to bθ plus a cycle cover of the remaining vertices. We obtain descendants
of θ by looking at out-edges directed from bθ. Consider an edge that is directed from bθ to a vertex
y whose predecessor x is clean. Such an edge is successful if either y lies on a large cycle or y lies
on Pθ and the subpaths of Pθ from aθ to x and from y to bθ are both of length at least n√

w
. In

such cases a descendant of θ is created by deleting < x, y > and inserting < bθ, y >. Once node
θ has been examined, bθ is permanently marked dirty. The tree of near-cycle-covers is grown in a
breadth-first manner until the number of leaves reaches m =

√
n ln n.

We shall show later that the number of vertices marked dirty throughout the entire algorithm
is o(n) (whp). Assuming this, noting that each path Pθ ends in a clean vertex bθ, and assuming
that the number of vertices on short cycles is less than n

w
1

3

(this is true (whp)) the number of

descendants of node θ is a random variable whose distribution is BINOMIAL(n − o(n), s/n),
and the random variables associated with distinct nodes are independent. Suppose that level t of
the rooted tree describing the Out Phase has a vertices. Then, applying a Chernoff bound on the
tails of the binomial distribution, the number of nodes at level t + 1 lies between as

2 and 2as, with
probability greater than or equal to 1 − e−

as
10 . Hence the probability that the Out Phase fails to

produce m leaves is (quite conservatively) at most

∞
∑

k=1

e−ks/10 ≤ e−s/20

.

7.2 The In Phase

The tree produced by an Out Phase has m terminal nodes. Each of these is a near-cycle-cover
in which the directed path begins at vi. Let the jth terminal node be denoted Gj , and let the
directed path in Gj run from vi to xj . During the In Phase we grow rooted trees independently

7

from all the Gj , j = 1, 2, . . . ,m. The process is like the Out Phase, except that, in computing the
descendants of a node θ, we fan backwards along in-edges, rather than forwards along out-edges.
For example, if a node θ with a path Pθ from aθ to xj is encountered, then we look for in-edges
of the form < x, aθ > such that x does not lie on a short cycle and y, the successor of x in Gθ, is
clean. We then create a descendant by deleting < x, y > and inserting < x, aθ >, provided that
this substitution does not create a path or cycle of length less than n√

w
. Once the descendants of

θ have been computed, the node aθ is permanently marked dirty.

Suppose that S1, S2, . . . , Sm are the near-cycle-covers produced by the Out Phase. We describe
a two-stage process for producing the near-cycle-covers of the In Phase which is equivalent to that
described in the previous paragraph. In the first stage, imagine that we grow the trees ensuring
only that edges from clean vertices are used and that y is not on a small cycle. Thus we allow new
small cycles to be produced. Each tree is grown to a depth ` where (w/2)` ≈ m. The following is
true (whp): for each tree, and each depth t < `, the ratio between the number of nodes of depth
t + 1 and the number of nodes of depth t lies between w/2 and 2w. The parameter ` is chosen so
that even if each non-leaf has only w/2 descendants, the tree will still have at least m leaves. Let
Σj denote the set of initial vertices of the paths of the near-cycle-covers created from Sj in this

way. We show that Σ1 = Σ2 = . . . = Σm. In fact let Σ
(t)
j denote the set of start vertices of the

paths at level t in the j’th tree. Clearly Σ
(0)
j = {vi} for all j and so assume inductively that we

have Σ
(t)
j = Σ

(t)
1 for some t ≥ 0. But then the clean vertices Σ

(t+1)
j whose in-edges are directed into

Σ
(t)
j are the same as the clean vertices Σ

(t+1)
1 whose in-edges are directed into Σ

(t)
1 . This completes

the inductive step. We see also that from this construction the number of vertices marked dirty
by this stage is at most (2w)` and then it is easy to see that the total number of dirty vertices
produced is O(n.5+o(1)). It follows from our analysis of the Out Phase that if E denotes the event
”we fail to produce m trees in the first stage”, then

Pr(E) ≤ e−w/20. (1)

We do not have to multiply the right-hand-side of (1) by m because the construction above
succeeds for all Sj if and only if it succeeds for S1. In the second stage we prune the m trees
we have produced by deleting any edge which involved the construction of a small cycle. For
j = 1, 2, . . . ,m, let Tj be the pruned tree grown from root Gj during the two stages. Thus Tj is
what we would get from Gj if we had followed the procedure described in the second paragraph of
this section.

Let us call Tj good if it has m leaves, and bad otherwise. Since the number of vertices marked
dirty during the entire computation is o(n), by the same analysis that was applied to the Out Phase,
the probability that an individual Tj is bad is less than or equal to e−

w
20 . Thus the expected number

of bad trees is at most me−
w
20 and, by Markov’s inequality, the probability that the number of bad

trees is at least m/2 is bounded above by 2e−
w
20 . Thus,

Pr
(

∃ ≥ m

2
good trees

)

≥ Pr (E) − Pr
(

∃ ≥ m

2
bad trees

)

≥ 1 − 3e−w/20.

Assuming that The Out Phase succeeds in creating a rooted tree with m leaves, and that at
least half of the m trees Tj created during the In Phase are good, we now have at least m/2 sets,

8

each consisting of m near-cycle-covers. In the set associated with Tj , each near-cycle-cover consists
of a path ending at xj , together with a cycle cover of the remaining vertices. The m paths have
distinct starting points. Since the out-edges from xj are unconditioned, the probability that none

of the m2

2 paths is closed by an out-edge is bounded above by (1 − s
n)

m2

2 ≤ n− s
2 . Thus, with

probability at least 1 − n− s
2 , one of these paths can be closed with an out-edge, and doing so

creates an optimal assignment with one short cycle less than the optimal assignment that existed
at the beginning of the Out Phase.

Thus the probability that the tth attempt at removing C fails given that the first t−1 attempts
have also failed can be bounded by, say, e−Aw for some absolute constant A > 0. Since we make
k̂ attempts, the probability that we fail to remove all short cycles is at most

bln ln nc
∑

k=1

wke−k̂Aw + 2 ln ne−Aw ln ln n = o(1).

8 The Patching Process

At the start of the patching process we have an optimal assignment without small cycles, and
the patch edges are unobserved, and thus unconditioned, except for those incident with the set
of vertices W = {i|xi ∈ A} ∪ {j|yj ∈ B}. Suppose we start with cycles C1, C2, . . . , Cr, each of
which contains at least n√

w
vertices. We describe a procedure that attempts to patch these cycles

together to form a tour. The basic operation of patching together two cycles C and C ′ is as follows.
Suppose cycle C contains an edge < a1, a2 > and cycle C ′ contains an edge < b1, b2 >. If < a1, b2 >
and < b1, a2 > are both patch edges then we can combine C and C ′ into a single cycle by deleting
< a1, a2 > and b1, b2 > and inserting < a1, b2 > and < b1, a2 >.

We attempt to create a tour by repeatedly patching cycles together in this way. We describe
a generic step in which, having patched C1, C2, . . . , Cs−1 together to form a cycle C, we try to
patch Cs and C together. There are at most 3ne−

s
5 vertices in W on Cs ∪ C. Independently, for

each pair consisting of an unconditioned vertex on Cs and an unconditioned vertex on C, a patch
edge is present with probability s/n. Thus, the probability that there is no pair of edges that will

patch Cs and C together is bounded above by (1 − (s(n)
n)2)(|C|−3ne−

s
5)(|Cs|−3ne−

s
5) . This is less

than or equal to e−w+o(1).Hence the probability that the patching process fails is bounded above
by

√
we−w+o(1) = o(1).

We have now completed the entire proof of Theorem 1.

9 The Proofs of Theorems 2 and 3

In proving Theorems 2 and 3, we shall describe the generation of our matrix M , the corresponding
bipartite graph H, and the directed graph G in a slightly different manner.

We first generate a random n × n matrix N where each entry is drawn uniformly from
{0, 1, ..., bcnnc} and these choices are independent (note that in order to combine Theorems 2
and 3 we insist only that cn is either constant or goes to infinity with n). We then randomly
choose a permutation Π of {1, ..., n} with each permutation equally likely. We obtain M by setting

9

miπ(j) = nij (where nij is the entry in the ith row and jth column of N). Proceeding in this fashion
rather than choosing the elements of M directly makes certain assertions about the independence
of events obvious. We let H ′ be the bipartite graph which corresponds to N in the same way
that H corresponds to M . We note that if we choose some optimal matching in H ′ then the
corresponding matching in M will have the cycle cover of a random permutation.

We now need some definitions. So, consider an arbitrary matrix N and corresponding bipartite
subgraph H ′. By a forced edge of H ′ we mean an edge which is in every optimal matching in H ′.
By an active edge we mean an edge which is in some optimal matching of H ′ and has weight at
least one. The first step in proving Theorems 2 and 3 is to note that if a particular weighting has
a lot of forced edges then probably it will not satisfy AP (M) = ATSP (M). In particular if all the
edges are forced then the probability that ATSP (M) = AP (M) is 1

n .

The precise result we will need is that if for some weighting the corresponding H ′ has s forced
edges then the probability that the corresponding cycle cover has a non-hamiltonian cycle made
up only of forced edges - a forced cycle - is the same as it would be if we took a random cycle cover
and then chose s edges at random and called them forced. This follows from the manner in which
we generate M . It is convenient now to give a lower bound for the probability πt,n that a random
cycle cover has a cycle of length at most t, (more precise esitmates are available, see for example
Bollobás [B]). We will use πt,n ≥ 1 − 1

t+1 . To see this use induction on

πt,n =

(

2t − 1 +
n−t−1
∑

i=t+1

πt,i

)

/n,

which is a consequence of the fact that the size of the cycle containing 1 is uniformly distributed.
The following lemma then follows easily.

Lemma 4 For any weighting of N such that H ′ has s forced edges, the probability that the corre-
sponding weighting of M has a forced cycle of size at most n− 1 and hence AP (M) 6= ATSP (M)
is at least

max

{(

1 − 1

t + 1

)(

s(s − 1) . . . (s − t + 1)

n(n − 1) . . . (n − t + 1)

)

| t = 1, 2, . . . , n − 1

}

.

The second step in the proof is to note that most weightings will have many active edges because
many vertices of G will not be the tail of any arc of cost zero. In fact since the probability that x
is such a vertex is (1 − 1

bcnnc)
n, we obtain:

Lemma 5 The expected number of active edges for a random weighting is at least

(1 + o(1))ne−1/cn

.

The key to the proof, is the following lemma which links these two results.

Lemma 6 The expected number of forced edges in a random weighting is at least the expected
number of active edges.

10

Combining Lemmas 5 and 6, we obtain that the expected number of forced edges is at least
(1 + o(1))ne−1/cn . Theorem 2 then follows immediately from Lemma 4, on taking t = 2, i.e.

Pr(AP (M) 6= ATSP (M)) ≥ Pr(forced cycle of length at most 2)

≥ E

(

2s(s − 1)

3n(n − 1)

)

≥ 2E(s)(E(s) − 1)

3n(n − 1)
by Jensen’s Inequality

= (1 − o(1))
2e−2/c

3

Again combining Lemmas 4, 5 and 6 we see that if cn tends to infinity with n then Theorem 3
follows from

Pr(AP (M) 6= ATSP (M)) ≥ Pr(forced cycle of length at most t)

≥
(

1 − 1

t + 1

)(

1 − 2

cn

)t(

1 − O

(

t2

n

))

= 1 − o(1)

if t → ∞, t = o(cn +
√

n).

One can tighten Theorem 2 slightly by insisting that the solution to AP (M) contains no 1-
cycles. Thus let D(M) denote problem AP (M) with the added constraint that the permutation
should contain no 1-cycles i.e.be a derangement. If the solution to AP (M) is a derangement then it
also solves D(M) and the probability of this tends to e−1. Since forced edges occur independently
of the cycle structure we can see that

Pr(D(M) 6= ATSP (M)) ≥ (1 − o(1))

(

2

3
− (1 − e−1)

)

e−2/c.

The question of whether or not Theorem 3 can be similarly strengthened remains open. The answer
is almost certainly yes, but how to prove it?

It remains only to prove Lemma 6.

To prove Lemma 6, we give an injective mapping from the (weighting, active edge) pairs to the
(weighting, forced edge) pairs. This implies the result. Indeed, let m = bcnnc+ 1, N = n2 and Ωe

(resp. Ω′
e) denote the set of weightings in which e is an active (resp. forced) edge. Then

E(s) = m−N
∑

e

|Ωe|

≥ m−N
∑

e

|Ω′
e| as will be shown

= E(number of active edges).

It only remains to show that |Ωe| ≥ |Ω′
e| for all edges e. Now, given an active edge e in a weighting

W , we obtain a new weighting W ′ by reducing the weight on e by 1 and leaving all other weights

11

the same. We note that the cost of an optimal matching with respect to W ′ is one less than the
cost of an optimal matching with respect to W and any optimal matching with respect to W ′ must
use e. In our mapping, we map (W, e) to (W ′, e). Clearly, this gives the desired injection. This
completes the proof of Lemma 6 and the two theorems. We note that our injection is almost a
bijection because adding one to a forced edge yields an active edge in a new matching unless the
forced edge has weight bcnnc, surely a rare occurrence.

References

[BaTo] E.Balas and P.Toth, Branch and bound methods, in The traveling salesman problem: a
guided tour of combinatorial optimization, E.L.Lawler, J.K.Lenstra, A.H.G.Rinnooy Kan
and D.B.Shmoys Eds. (1985).

[B] B.Bollobás, Random Graphs, Academic press, London 1985.

[DF] M.E.Dyer and A.M.Frieze, On patching algorithms for random asymmetric travelling
salesman problems, Mathematical Programming 46 (1990) 361-378.

[Fr] A.M.Frieze, An algorithm for finding hamilton cycles in random digraphs , Journal of
Algorithms 9 (1988) 181-204.

[K] R.M.Karp, A patching algorithm for the non-symmetric traveling salesman problem,
SIAM Journal on Computing 8 (1979) 561-573.

[KS] R.M.karp and J.M.Steele, Probabilistic analysis of heuristics in The traveling sales-
man problem: a guided tour of combinatorial optimization, E.L.Lawler, J.K.Lenstra,
A.H.G.Rinnooy Kan and D.B.Shmoys Eds. (1985).

[MiPe] D.L.Miller and J.F.Pekny, Exact solution of large asymmetric traveling salesman prob-
lems, Science 251 (1991) 754-762.

[Wal1] D.W.Walkup, On the expected value of a random assignment problem, SIAM Journal of
Computing 8 (1979) 440-445.

[Wal2] D.W.Walkup, Matchings in random regular bipartite graphs, Discrete Mathematics 31
(1980) 59-64.

12

