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Abstract

Motivated by the problem of routing reliably and scalably in a graph, we introduce the notion
of a splicer, the union of a small number of spanning trees of a graph. We prove that for any
bounded-degree n-vertex graph, the union of two uniformly random spanning trees approximates
the expansion of the graph to within a factor of O(log n). For the complete graph, we prove that
the union of two uniformly random spanning trees is an expander with high probability. For
the random graph Gn,p, for p = Ω(log n/n), we give a randomized algorithm for constructing
two spanning trees whose union is an expander. A closely related construction, which we call a
selector, has similar properties. A random selector of a graph is obtained by starting with any
spanning tree of the graph and adding a small number of random edges at each vertex.

1 Introduction

In this paper, we present a new method for obtaining sparse expanders from spanning trees. We
begin with some motivation.

Recovery from failures is considered an important problems for the internet today. Ideally, one
desires a network where “even right after failure, routing finds path to destination” [23]. How
should routing proceed in the presence of link or node failures?

Roughly speaking, to recover from failures, the network should have many alternative paths, a
property sometimes called path diversity, measured in several way, including network reliability and
congestion. It is well-known that expander graphs have low congestion and remain connected even
after many (random) failures. Indeed, there is a large literature on routing to minimize congestion
and on finding disjoint paths that is closely related to the study of expansion (or more generally,
conductance); e.g. [22, 13, 3].

In practice, efficient routing also needs to be compact and scalable; in particular, the memory
overhead should be linear or sublinear in the number of vertices. This requirement is satisfied by
routing using trees, one tree per destination. In fact, the most commonly used method in practice
is shortest path routing which is effectively one tree per destination 1. Since the final destination
determines the next edge to be used, this gives an O(n) bound on the size of the routing table that
needs to be stored at each vertex. If a constant-factor stretch is allowed, this can be reduced. For
example, with stretch 3, tables of size O(

√
n) suffice as shown by Abraham et al [1].
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The main problem with shortest-path routing or any tree-based scheme is the lack of path
diversity. Failing any edge disconnects some pairs of vertices. Recovery is usually achieved by
recomputing shortest path trees in the remaining network, an expensive procedure. Moreover,
congestion (number of pairs using the same edge) can be high for tree-based routing, despite the
fact that the underlying graph might have high expansion, implying that low congestion and high
fault-tolerance are possible. There is evidence that AS-level internet topologies are expanders; some
stochastic models for networks lead to expanders [16]. However, known algorithms that achieve
near-optimal congestion use arbitrary paths in the network and therefore violate the scalability
requirement. This raises the following question: is it possible to have a routing scheme that is both
scalable and achieves congestion and fault-tolerance approaching that of the underlying graph?

Our work is motivated by the idea and experimental results of the method known as path splicing
[18, 17], a conceptually simple extension of tree-based routing to multiple trees. With one tree there
is a unique path between any two points. With two trees, by allowing a path to switch between
the trees multiple times, there could be a large number of available paths. Motiwala et al. showed
experimentally that a small number of randomly perturbed shortest path trees for each destination
leads to a highly reliable routing method: the union of these trees has reliability approaching that
of the underlying graph.

This raises the question whether the results of this experiment can be true in general. In other
words, for a given graph does there exist a small collection of spanning trees such that the reliability
of the union approaches that of the base graph? As a first step, we study the question of whether
for a given graph the union of a few spanning trees captures the expansion of the original graph. In
this paper, we propose very simple constructions that use only a small number of trees in total (as
opposed to one tree per destination) and work for graphs with bounded degrees, random graphs,
and the complete graph. The trees are chosen independently from the uniform distribution over all
spanning trees, a distribution that can be sampled efficiently with simple algorithms. The simplest
of these, due to Aldous [2] and Broder [8], is to take a random walk in the graph, and include in
the tree every edge that goes to a previously unvisited vertex. Roughly speaking, our main result
is that for bounded degree graphs and for the complete graph a small number of such trees give
a subgraph with expansion comparable to the original graph for each cut. Splicers can thus be
viewed as a new way to construct expanders with O(n) edges.

In our routing application, the fault-tolerance property we want from splicers is that no cut
that was large in the original graph is small in the splicer, thus we are looking for one-sided
approximation of cuts in the original graph. If we look for two-sided approximation then we
get the well-studied notion of cut-sparsifiers: The goal here is to approximate every cut using
only a small subgraph of the original graph. Note that the property of having efficient routing
is not required unlike for splicers. Cut sparsifiers were first defined by Benczur–Karger [6], who
gave an algorithm to construct cut-sparsifiers with O(n log n) edges. Spielman–Srivastava [24]
used a stronger definition requiring that the sparsifier should approximate the Laplacian quadratic
form of the original graph. They gave an algorithm that constructs O(n log n)-size sparsifiers.
Batson et al. [5] gave an algorithm to construct O(n)-size sparsifiers. It is an important problem to
find simple and fast sparsification algorithms. Splicers, constructed using random spanning trees
obtained by a simple random process called Process Bp, provide cut-sparsifiers of size O(n) for
random graphs in Gn,p: When the base graph is random, with high probability, the union of two
spanning trees approximates all cuts to within a factor of O(log n). A similar result holds for random
selectors. This is a modest step towards a simple and fast algorithm for graph sparsification.
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1.1 Our results

A k-splicer is the union of k spanning trees of a graph. By a random k-splicer we mean the union
of k uniformly randomly chosen spanning trees. We show that for any bounded degree graph, the
union of two random spanning trees of the graph approximates the expansion of every cut of the
graph. Using more trees gives a better approximation. In the following δG(A) stands for the set of
edges in graph G that have exactly one endpoint in A, a subset of vertices of G.

Theorem 1.1. For a graph G = (V,E) with degree at most d, let UkG be a random k-splicer,
obtained by the union of k uniformly random spanning trees. Also let α > 0 be a constant and
α(k − 1) ≥ 9d2. Then with probability 1− o(1), for every A ⊂ V , we have

|δUkG(A)| ≥ 1

α log n
· |δG(A)|.

Our proof of this makes novel use of a known property of a random spanning tree of a graph,
namely the events of two given edges in the graph being included in the tree are negatively corre-
lated.

Next we show that the factor 1/ log n is the best possible for k-splicers constructed from random
spanning trees for any constant k. Definitions of expansion and expanders referred to below can
be found in Section 2.

Theorem 1.2. For every n, there is a bounded-degree edge expander G on n vertices such that
with probability 1− o(1) the edge expansion of a random k-splicer UkG is at most k2/C log n for any
k ≥ 1, and a constant C > 0 depending only on the maximum degree of G.

For the complete graph, one can do better, requiring only two trees to get a constant-factor
approximation. In fact, we get constant vertex expansion.

Theorem 1.3. The union of two uniformly random spanning trees of the complete graph on n
vertices has constant vertex expansion with probability 1− o(1).

Since constant vertex expansion implies constant edge expansion, we get that the union of two
uniform random spanning trees has constant edge expansion with high probability.

Next we turn to the random graph Gn,p. Our main result here is that w.h.p., Gn,p has two
spanning trees whose union has constant vertex expansion. We give a simple random process (called
Process Bp henceforth) to find these trees.

Theorem 1.4. There exists an absolute constant C, such that for p ≥ C log n/n, with probability
1 − o(1), the union of two random spanning trees obtained from Process Bp applied to a random
graph H drawn from Gn,p has constant vertex expansion.

The proof of this theorem is via a coupling lemma (Lemma 7.2) showing that a tree generated
by Process Bp applied to a random graph H is nearly uniform among spanning trees of the complete
graph.

Theorem 1.4 relates to the work of [6, 24, 5] and leads to simple linear-size sparsifiers with
nontrivial approximation guarantees for random graphs. Let w(δH′(A)) denotes the sum of the
weights of the edges in δH′(A).
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Theorem 1.5. There exists an absolute constant C > 0 such that for p ≥ C log n/n the following
holds: Let H be a Gn,p random graph, and let H ′ be the 2-splicer obtained from it via process Bp,
with a weight of pn on every edge. Then with probability 1− o(1), for every A ⊂ V we have

c1|δH(A)| ≤ w(δH′(A)) ≤ c2|δH(A)| log n,

for some absolute constants c1, c2 > 0.

We now provide an alternative construction that gives basically the same results. We will
replace our k random trees by the union of (i) an arbitrary tree and (ii) k− 1 random G-mappings.
A G-mapping is a function f : V → V such that (v, f(v)) ∈ E for all v ∈ V . Less formally,
in a random G-mapping each v ∈ V independently chooses a uniformly random neighbor f(v).
As we are always dealing with loopless graphs, we can assume that f(v) 6= v here. We call this
construction a k-selector.

When G = Kn, it is known that the graph Gf induced by the edges (v, f(v)) is “close” to being
a spanning tree. Gf is the union of γ cycles containing γ̄ vertices and a forest of rooted trees with a
root for each cycle vertex. Furthermore, E(γ) ∼ log n and E(γ̄) ∼ (πn/2)1/2 (see e.g. Chapter XIV
of Bollobás [7]). Hopefully, this gives the reader some intuition as to why k-selectors have similar
properties to k-splicers.

Theorem 1.6. For a graph G = (V,E) with vertex degree at most d, let W k
G be a random k-selector,

k ≥ 2, obtained by the union of an arbitrary tree and k − 1 independent random G-mappings. Let

θk = 1−
(
1− 1

d

)2k−2
and let α = 16/θk. Then with probability 1− o(1), for every A ⊂ V , we have

|δWk
G

(A)| ≥ 1

α log n
· |δG(A)|.

In analogy to Theorem 1.3 we note that the union of k random Kn-mappings is a well-studied
model called Gk−out.

Theorem 1.7. G2−out has constant vertex expansion whp.

We now consider the random graph Gn,p.

Theorem 1.8. If p ≥ 1+ε
n log n where ε > 0 is constant then the following holds: Let G be a Gn,p

random graph, and let H be the graph obtained from it by letting each vertex independently choose
two neighbors. Put a weight of pn on every edge. Then with probability 1− o(1), for every A ⊂ V
we have

c1|δG(A)| ≤ w(δH(A)) ≤ c2|δG(A)| log n,

for some absolute constants c1, c2 > 0.

Note that whp G(n, p) is connected and has minimum degree Ω(logn) for p ≥ 1+ε
n log n.

The theorem can be strengthened so that p = 1
n(log n + ω(n)) where ω(n) → ∞. For slowly

growing ω we can have O(log n) vertices of degree one. This makes the calculations more compli-
cated and we do not include them here.
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1.2 Related work

The idea of using multiple routing trees and switching between them is inspired by the work of
[18] who proposed a multi-path extension to standard tree-based routing. The method, called Path
Splicing, computes multiple trees to each destination vertex, using simple methods to generate the
trees; in one variant, each tree is a shortest path tree computed on a randomly perturbed set of
edge weights. Path splicing appears to do extremely well in simulations, approaching the reliability
of the underlying graph using only a small number of trees2.

Sampling for approximating graph cuts was introduced by Karger, first for global min-cuts and
then extended to min s-t cuts and flows. The most recent version due to Benczur and Karger [6]
approximates the weight of every cut of the graph within factors of 1+ε and 1−ε using O(n log n/ε2)
samples; edges are sampled independently with probability inversely proportional to a connectivity
parameter and each chosen edge is weighted with the reciprocal of their probability. Recently,
Spielman and Srivastava [24], gave a similar method where edges are sampled independently with
probability proportional to the effective resistance and weighted in a similar way, by the reciprocal
of the probability with which they are chosen. They show that the quadratic form of the Laplacian
of the original graph is approximated within factors 1 − ε and 1 + ε. The similarity in the two
methods extends to their analysis also—both parameters, edge strength and edge resistance share
a number of useful properties.

A well-known fact (e.g. [14]) about uniformly random spanning trees is that the probability
that an edge e belongs to the uniformly random spanning tree is equal to the effective resistance
of e. [There are several equivalent definitions of effective resistance. One of them is the following:
Thinking of the graph as an electrical network, let each edge have unit resistance, then the effective
resistance of e is the potential difference applied to the endpoints of e to induce a unit current.]
This fact shows a connection of our work with [24], who sample edges in a graph according to their
effective resistances to construct a sparsifier.

It is well-known that the union of three random perfect matchings in a complete graph with
an even number of vertices (see, e.g., [11]) is an expander with high probability. Our result on the
union of random spanning trees of the complete graph can be considered as a result in a similar
vein. While our proof for spanning trees has a similar high-level outline, it seems to require new
ideas. On the other hand, our result for the union of spanning trees of bounded degree graphs
does not seem to have any analog for the union of matchings. Indeed, generating random perfect
matchings of graphs is a highly nontrivial problem—computing the permanent of 0–1 matrices
being the special case of bipartite graphs [12].

2 Preliminaries

Let G = (V,E) be an undirected graph. For v ∈ V define Γ(v) := {u ∈ V : (u, v) ∈ E}, the
set of neighbors of v. For A ⊆ V , define Γ(A) := ∪v∈AΓ(v), and Γ′(A) := Γ(A) \ A. Finally, let
δG(A) := {(u, v) ∈ E : u ∈ A, v /∈ A}. The edge expansion of G is

min
A⊆V,1≤|A|≤|V |/2

|δG(A)|
|A|

.

2It has several other features from a practical viewpoint, such as allowing end vertices to specify paths, that we
do not discuss in detail here.

5



The vertex expansion of G is

min
A⊆V,1≤|A|≤|V |/2

|Γ′(A)|
|A|

.

We say that a family of graphs is an edge expander (family) if the edge expansion of the family
is bounded below by a positive constant. Vertex expanders are defined similarly.

Let Kn denote the complete graph on n vertices.
For a ∈ R, let [a] := {i ∈ N : 1 ≤ i ≤ a}. On several occasions we will use the inequality(

n
k

)
≤ (nek )k.

3 Uniform random spanning trees

Uniformly random spanning trees of graphs are fairly well-studied objects; see, e.g., [15]. In this
section we describe properties of random spanning trees that will be useful for us. There are several
algorithms known for generating a uniformly random spanning tree of a graph, e.g., [2, 8, 21, 15].
The algorithm due to Aldous and Broder is very simple and will be useful in our analysis: Start a
uniform random walk at some arbitrary vertex of the graph, and when the walk visits a vertex for
the first time, include the edge used to reach that vertex in the tree. When all the vertices have
been visited we have a spanning tree which is uniformly random regardless of the initial vertex.

For a connected base graph G = (V,E), random variable TG denotes a uniformly random
spanning tree of G. UkG will denote the union of k such trees chosen independently. For edge e ∈ E,
abusing notation a little, we will refer to events e ∈ E(TG) and e ∈ E(UkG) as e ∈ TG and e ∈ UkG.

Negative correlation of edges. The events of various edges belonging to the random spanning
tree are negatively correlated: For any subset of edges e1, . . . , ek ∈ E we have

P
[
(e1 ∈ TG) ∧ (e2 ∈ TG) ∧ · · · ∧ (ek ∈ TG)

]
≤ P[e1 ∈ TG]P[e2 ∈ TG] · · ·P[ek ∈ TG]. (1)

A similar property holds for the complementary events:

P
[
(e1 /∈ TG) ∧ (e2 /∈ TG) ∧ · · · ∧ (ek /∈ TG)

]
≤ P[e1 /∈ TG]P[e2 /∈ TG] · · ·P[ek /∈ TG]. (2)

These are easy corollaries of [15, Theorem 4.5], which in turn is based on the work of Feder and
Mihail [10] and a classical result that (1) holds for two edges.

Negatively correlated random variables and tail bounds. For e ∈ E, define indicator
random variables Xe to be 1 if e ∈ T , and 0 otherwise. Then we can rewrite (1) as follows.

For any subset of edges e1, . . . , ek ∈ E we have

E[Xe1 · · ·Xek ] ≤ E[Xe1 ] · · ·E[Xek ]. (3)

For random variables {Xe} satisfying (3) we say that {Xe} are negatively correlated. Several
closely related notions exist; see Dubhashi and Ranjan [9], and Pemantle [20]. [9] gave a property
of negative correlation that will be useful for us: It essentially says that Chernoff’s bound for the
tail probability for sums of independent random variables applies unaltered to negatively correlated
random variables. More precisely, we will use the following version of Chernoff’s bound.
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Theorem 3.1. Let {Xi}ni=1 be a family of 0–1 negatively correlated random variables such that
{1−Xi}ni=1 are also negatively correlated. Let pi be the probability that Xi = 1. Let p := 1

n

∑
i∈[n] pi.

Then for λ > 0

P
[∑
i∈[n]

Xi < pn− λ
]
≤ e−λ2/(2pn).

Proof. The proof splits into two steps: In the first step we prove that for arbitrary λ we have

E
[
exp
(
λ

n∑
i=1

Xi

)]
≤

n∏
i=1

E
[
exp(λXi)

]
. (4)

The second step is a standard Chernoff bound argument as in the proof of Theorem A.1.13 in
[4]. Since the first step is short and perhaps not that well-known, we provide a proof here for
completeness. In this, we basically follow Dubhashi and Ranjan [9].

The case λ = 0 is trivially true. We now prove (4) for λ > 0. Since Xi’s take 0–1 values, for
any integers a1, . . . , an > 0, we have Xa1

1 Xa2
2 · · ·Xan

n = X1X2 · · ·Xn. Now, writing exp(λ
∑n

i=1Xi)
using the Taylor series for ex, and expanding each summand, we get a sum over various mono-
mials over the Xi’s. For each monomial we have by the definition of negative correlation that
E[X1 · · ·Xn] ≤

∏n
i=1 E[Xi]. This gives (4) for λ > 0.

For λ < 0, a similar argument using 1−Xi in the role of Xi gives (4).

4 Expansion when base graph is a complete graph

Our proof here has the same high-level outline as the proof for showing that the union of three
random perfect matchings in a complete graph with even number of vertices is a vertex-expander
(see, e.g., [11]): One shows that for any given vertex set A of size ≤ n/2, the probability is very
small for the event that |Γ′(A)| is small in the union of the matchings. A union bound argument
then shows that the probability is small for the existence of any set A with |Γ′(A)| small. However,
new ideas are needed in our case because spanning trees are generated by the random walk process,
which appears to be more complex to analyze than random matchings in complete graphs.

Proof (of Theorem 1.3). For given A ⊆ V , |A| = a and given expansion constant c, we will upper
bound the probability that |Γ′T (A)| ≤ ca for random spanning tree T in Kn. To this end, we fix a
set A′ ⊆ V \A of size bcac and bound the probability that Γ′T (A) ⊆ A′, and then use a union bound
over all possible choices of A and A′ to show that no such A,A′ are likely to exist. Without loss of
generality the vertices are labeled V = {1, . . . , n}, A = [a] = {1, . . . , a} and A′ = {a+ 1, a+ bcac}.
The probability that there exists a set A ⊆ V such that |A| ≤ n/2 and |Γ′T (A)| ≤ ca in the union
of t random independent spanning trees is at most

bn/2c∑
a=1

(
n

a

)(
n

bcac

)
P
(
ΓT (A) ⊆ [a+ ca]

)t
. (5)

We divide the sum into two parts and bound them separately: For a ≤ n/12, we use the random
walk construction of the random spanning tree which, as we will see, can be interpreted as every
vertex in A essentially picking a random neighbor (but not in a completely independent way). For
a ∈ (n/12, n/2], we look at all the edges of the cut as if they were independently selected in the
spanning tree by negative correlation.
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For a ≤ n/12, we first consider a random walk on V starting outside A. We use this walk to
generate the random spanning tree. Let X1, X2, . . . denote the states of this random walk. Let
T = {τ1, τ2, . . . , τa} be the times when the walk adds an new member of A to the tree. Let Ut
denote the set of vertices in A that have not been visited at the completion of step t.

At the completion of step τi we have Xτi /∈ Uτi and |Uτi | = a− i and so

P(Xτi+1 ∈ Uτi) =
a− i
n− 1

. (6)

This holds conditional on X1, X2, . . . , Xτi .
In addition, if B = [a+ ca] then

P(Xt ∈ [a+ ca] | Ut, t /∈ T , t+ 1 ∈ T ) ≤ |B| − |Ut|
n− 1− |Ut|

. (7)

Here the conditioning tells us that Xt is chosen uniformly in B \ (Ut−1 ∪ {Xt−1}) whereas Xt has
n−1−|Ut−1| choices overall. Note that Ut = Ut−1. Also, (7) holds conditional on X1, X2, . . . , Xt−1.

Let k be the number of times that Xτi+1 ∈ Uτi . Then

P(ΓT (A) ⊆ [a+ ca]) ≤
a−1∑
k=0

a−k∏
j=1

a+ ca− j
n− 1− j

(a− 1

k

)( k∏
i=1

a− i
n− 1

)
(8)

≤
a−1∑
k=0

(
a− 1

k

)(
a+ ca

n− 1

)a−k (a
n

)k
=
a+ ca

n

(
a+ ca

n− 1
+
a

n

)a−1
≤
(

2(1 + c)a

n

)a
.

Explanation of (8): If we fix k then
(
a−1
k

)
determines the i for which Xτi+1 ∈ Uτi . The product

terms maximise the corresponding products (6), (7) under these circumstances.

We now use this in (5), for a ≤ n/12. Let K = 2(1 + c).

bn/12c∑
a=1

(
n

a

)(
n

bcac

)
P
(
ΓT (A) ⊆ [a+ ca]

)t
≤
bn/12c∑
a=1

(en
a

)a (en
ca

)ca(aK
n

)at

=

bn/12c∑
a=1

αaKat
(a
n

)a(t−1−c)
(where α =

e1+c

cc
)

≤
b√nc∑
a=1

αaKat

(
1√
n

)a(t−1−c)
+

bn/12c∑
a=b√nc+1

αaKat

(
1

12

)a(t−1−c)

≤

[
αKtn−(t−1−c)/2 +

(
αKt

12t−1−c

)b√nc+1
]

1

1− αKt12−(t−1−c)
,
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which goes to 0 as n → ∞ when αKt/12t−1−c < 1, and this happens for t = 2 and a sufficiently
small constant c.

For the rest of the sum in (5), a ∈ (n/12, n/2], we use negative correlation of the edges of the
random spanning tree T (Section 3) to estimate the probability that ΓT (A) ⊆ [a+ ca]. Any fixed
edge from Kn appears in T with probability 2/n. We have that ΓT (A) ⊆ [a+ca] iff no edge between
A and V \ [a+ca] is present in T , and negative correlation (Equation (2)) implies that this happens
with probability at most (1− 2/n)a(n−(a+ca)). Thus,

bn/2c∑
a=bn/12c+1

(
n

a

)(
n

bcac

)
P(ΓT (A) ⊆ [a+ ca])t

≤
bn/2c∑

a=bn/12c+1

(en
a

)a (en
ca

)ca(
1− 2

n

)ta(n−(a+ca))

≤ n sup
γ∈[1/12,1/2]

(
e

γ

)γn( e

cγ

)cγn(
1− 2

n

)tγn(n−(1+c)γn))
≤ n sup

γ∈[1/12,1/2]

(
(e/γ)1+c

cc

)γn
e−2tγn(1−(1+c)γ)

= n sup
γ∈[1/12,1/2]

(
(e/γ)1+c

cce2t(1−(1+c)γ)

)γn
For any fixed c > 0, the function

f(γ) =
(e/γ)1+c

cce2t(1−(1+c)γ)

is convex for γ > 0 and hence the sup is attained at one of the boundary points 1/12 and 1/2,
and the function is strictly less than 1 at these boundary points for t = 2 and a sufficiently small
constant c. This implies that this sum goes to 0 as n→∞.

5 Expansion when base graph is a bounded-degree graph: positive
result

In this section we consider graphs with bounded degrees. To simplify the presentation we restrict
ourselves to regular graphs; it is easy to drop this restriction at the cost of extra notation. We
show that for constant degree graphs the edge expansion is captured fairly well by the union of a
small number of random spanning trees.

Proof (of Theorem 1.1). It follows by the random walk construction of random spanning trees that
for any edge (u, v) ∈ E we have P[(u, v) ∈ T ] ≥ 1/d(u). To see this, note that if we start the
random walk at vertex u then with probability 1/d(u) the first traversed edge is (u, v), which then
gets included in T . Thus for A ⊂ V , we have that

E
[
|δTG(A)|

]
≥ 1

d
· |δG(A)|.

We would now like to use the above expectation result to prove our theorem. Recall the
definition of random variables Xe from Section 3: For edge e ∈ E, Xe is the indicator random
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variable taking value 1 if e ∈ T , and value 0 otherwise. Thus we have |δT (A)| =
∑

e∈δG(A)Xe.
We want to show that

∑
e∈δG(A)Xe is not much smaller than its expectation with high probability.

Random variables Xe are not independent. Fortunately, they are negatively correlated as we saw
in Section 3, which allows us to use Theorem 3.1:

P

 ∑
e∈δG(A)

Xe < p|δG(A)| − λ

 < e−λ
2/(2p|δG(A)|) ≤ e−λ2/(2|δG(A)|), (9)

where p is the average of P[Xe = 1] for e ∈ δG(A). Since P[Xe = 1] ≥ 1/d for all edges e, we have
p ≥ 1/d, and for λ =

(
p− 1/(2d)

)
|δG(A)| we have

P
[
|δTG(A)| < 1

2d
|δG(A)|

]
< e−

|δG(A)|
8d2 .

This gives

P
[
|δUkG(A)| < 1

2d
|δG(A)|

]
< e−

k|δG(A)|
8d2 . (10)

Now we estimate the probability that there is a bad cut, namely a cut A such that |δUkG(A)| = a

and |δG(A)| ≥ αa lnn. To do this we first look at cuts of size a in the first random tree, which have
size at least αa lnn in G (This step is necessary: the modified Chernoff bound that we use is only
as strong as the independent case, and when edges are chosen independently one is likely to get
isolated vertices; looking at the first tree ensures that this does not happen). In order to be bad,
these cuts have to have small size in all the remaining trees. The probability of that happening is
given by (10). The number of cuts in the first tree of size a is clearly no more than

(
n−1
a

)
<
(
n
a

)
, as

there are
(
n−1
a

)
ways of picking a edges out of n − 1, although not all of these may correspond to

valid cuts. Then, the probability that a bad cut exists is at most

n/ lnn∑
a=1

(
n

a

)
e−

(k−1)αa lnn

8d2 ≤
n/ lnn∑
a=1

(en
a

)a
e−

(k−1)αa lnn

8d2

=

n/ lnn∑
a=1

exp

((
ln(en/a)− (k − 1)α lnn

8d2

)
a

)

=

n/ lnn∑
a=1

exp

((
ln(e/a) +

(
1− (k − 1)α

8d2

)
lnn

)
a

)
.

Choosing (k − 1)α > 9d2 makes the above sum o(1).

6 Expansion when base graph is a bounded-degree graph: nega-
tive result

Here we show that Theorem 1.1 is best possible up to a constant factor for expansion:

Proof (of Theorem 1.2). We begin with a d-regular edge expander G′ on n vertices with a Hamil-
tonian cycle, where d > 4 is a fixed integer. [It is easy to construct such expanders by starting with
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a (d− 2)-regular expander and adding edges of a Hamiltonian cycle to it, so that the graph can be
completed to a d-regular graph. We omit the easy details.] Let 0 < ` < log n be an integer to be
chosen later, and let H be a Hamiltonian path in G′. Subdivide H into subpaths P1, . . . , Pn/` each
of length ` (to keep the formulas simple we suppress the integrality issues here which are easily
taken care of).

For two subpaths Pi and Pj , we say that they interact if (Pi ∪ Γ′(Pi)) ∩ (Pj ∪ Γ′(Pj)) 6= ∅.
Since G′ is d-regular, |Γ′(Pi)| ≤ d`. So, any subpath can interact with at most d2` other subpaths.
Indeed, Pi can interact with Pj only if there is a vertex in Pj within distance two of a vertex in
Pi. There are at most d2` vertices at distance two from a vertex of Pi and as the Pr’s are vertex
disjoint, each one of these vertices within distance two of a vertex in Pi can be in at most one such
Pj . So there are at most d2` Pj ’s that interact with any given Pi.

Thus we can find a set I of 1
d2`
·n/` paths among P1, . . . , Pn/`, so that no two paths in I interact.

We now describe the construction of G, which will be obtained by adding edges to G′. For each
path P ∈ I, we do the following. Add an edge between the two end-points of P , if such an edge
did not already exist in G′. If the subgraph G[Γ′(P )] induced by the neighborhood of path P does
not have a Hamiltonian cycle, then we add edges to it so that it becomes Hamiltonian. Clearly, in
doing so we only need to increase the degree of each vertex by at most two. The final graph that
we are left with is our G. For each path P ∈ I we fix a Hamiltonian cycle in G[Γ′(P )], and we also
have the cycle of which P is a part. We denote these two cycles by C1(P ) and C2(P ).

We will generate a random spanning tree T of G by the random walk algorithm starting the
random walk at some vertex outside of all paths in I. For P ∈ I, we say that event EP (over the
choice of a random spanning tree T of G) occurs if the random walk, on first visit to C1(P )∪C2(P ),
first goes around C1(P ) without going out or visiting any vertex twice, and then it goes on to
traverse C2(P ), again without going out or visiting any vertex twice until it has visited all vertices
in C2(P ). For all P ∈ I we have

P[EP ] ≥ 1/(d+ 2)|C1(P )|+|C2(P )|−1 ≥ 1/(d+ 2)(d+1)`−1. (11)

If event EP happens then in the resulting tree T we have |δT (V (P ))| = 1. Thus our goal will be to
show that with substantial probability there is a P ∈ I such that EP happens. Since no two paths
in I interact with each other, events EP are mutually independent. If we are choosing k random
spanning trees, then define EkP to be the event that EP occurs for all k spanning trees. Clearly,
P[EkP ] = P[EP ]k. Then the probability that EkP doesn’t occur for any P ∈ I is at most(

1− 1

(d+ 2)k(d+1)`−k

)|I|
=

(
1− 1

(d+ 2)k(d+1)`−k

) n
d2`2

≤ exp

(
− n

(d+ 2)k(d+1)`−k+2`2

)
.

It follows readily that there is a constant C (that depends on d) such that for `k ≤ C log n
the above probability is o(1). Hence, with probability 1 − o(1) there is a path P ∈ I such that
|δUkG(V (P ))| ≤ k. The edge expansion of P therefore is k/` = k2/(C log n) for ` = C(log n)/k.

7 Splicers of random graphs

We will construct a random process on random graphs that generates random spanning trees with
a distribution that is very close to the uniform distribution on the complete graph. The process
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first directs edges to mimic the distribution of a directed random graph.
Given an undirected graph H and a parameter 0 < p ≤ 1, construct a random directed graph

denoted Dp(H) with vertex set V (H) and independently for every edge (u, v) of H:

• directed edges (u, v) and (v, u) with probability −p−2
√
1−p+2
p ,

• only directed edge (u, v) with probability p+
√
1−p−1
p , and

• only directed edge (v, u) with probability p+
√
1−p−1
p .

If H is random according to Gn,p, then Dp(H) is random with each edge picked with probability
q = 1−

√
1− p. Note that p/2 ≤ q ≤ p.

Let T be the uniform distribution on spanning trees of Kn. We now describe Process Bp, which
is a random process that given an undirected graph H and a parameter 0 < p ≤ 1 generates a
spanning tree with a distribution that we denote Tp,H Consider the following random process that
generates a walk in Dp(H) or stops with no output:

1. Start at a vertex v0 of Dp(H).

2. At a vertex v, an edge is traversed as follows. Suppose d1(v) out of d(v) outgoing edges at
v are previously traversed. Then, the probability of picking a previously traversed edge is
1/(n− 1) while the probability for each new edge is

1− d1(v)
n−1

d(v)− d1(v)
.

3. If all vertices have been visited, output the walk and stop. If this has not happened and at
the current vertex v one has d1(v) = d(v), stop with no output.

As in the random walk algorithm, the spanning tree given by Process Bp (if it succeeds in visiting
all the vertices) is the set of edges that are used on first visits to each vertex, but the random
sequence of edges is different here.

A covering walk of a graph is a walk passing through all vertices. Let D be the distribution on
covering walks of the (undirected) complete graph starting at a vertex v0 where a walk is generated
by a random walk that starts at v0 and walks until it has visited all the vertices. Let Dp be the
distribution on covering walks of the complete graph given by first choosing H according to Gn,p
and running Process Bp starting from v0.

Lemma 7.1. There exists an absolute constant c such that for p > c log n/n the total variation
distance3 between the distributions D and Dp is o(1).

Proof. We will couple D and Dp so that the walk in D picks the same edges as the walk in Dp,
but if Dp fails, then D continues its random walk. Then these covering walks coincide whenever
Dp succeeds, and thus the probability of success is an upper bound to the total variation distance
between D and Dp. Now, Dp does not fail if every vertex in Hd has out-degree at least c1 log n and
Process Bp does not visit any vertex more than c2 log n times, for c1 > c2. A Chernoff bound gives c
(from the statement of the lemma) and c1 such that the first part happens with probability 1−o(1).

3The variation distance ||D1−D2|| between two distributions on a finite set X is defined as 1
2

∑
x∈X |D1(x)−D2(x)|
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For the second part, we observe that if there is no failure then Process Bp behaves exactly like a
random walk in the complete graph, and therefore it visits all vertices in at most c3n log n steps
with probability 1 − o(1) for some constant c3 (this is essentially the coupon collector’s problem
with n−1 coupons, see [19, Section 3.6 and Chapter 6]) and a walk of that length does not visit any
vertex more than c2 log n times with probability 1−o(1) for some constant c2 (by a straightforward
variation of the occupancy problem in [19, Section 3.1]).

Let Tp be the distribution on trees obtained by first choosing H from Gn,p and then generating
a random spanning tree according to Process Bp.

Lemma 7.2. There exists an absolute constant c such that for p > c log n/n the total variation
distance between the distributions T and Tp is o(1).

Proof. This is immediate from Lemma 7.1, as random trees from T or Tp are just functions of walks
from D or Dp, respectively.

Proof (of Theorem 1.4). In the random graph H, we generate two random trees by using one long
sequence of edges, with a breakpoint whenever we complete the generation of a spanning tree. In
the complete graph also, we generate two trees from such a sequence obtained from the uniform
random walk. Using the same coupling as in Lemma 7.2 we see that these distributions on these
sequences have variation distance o(1). Therefore the spanning trees of H obtained by the first
process have total variation distance o(1) to random spanning trees of the complete graph. By
Theorem 1.3, the union of these trees has constant expansion with probability 1− o(1) overall.

With this results we are ready to prove our theorem about sparsifiers of random graphs:

Proof (of Theorem 1.5). We need the fact that for sufficiently large constant C, with probability
1− o(1), all cuts δH(A) in random graph H satisfy

c3p|A|(n− |A|) ≤ |δH(A)| ≤ c4p|A|(n− |A|). (12)

This is well-known and follows immediately from appropriate Chernoff-type bounds.
We only need to prove the theorem for |A| ≤ n/2. We now prove the first inequality in

the statement of the theorem. By Theorem 1.3, with probability 1 − o(1), for any A ⊂ V such
that |A| ≤ n/2, we have |δH′(A)| ≥ c5|A| for some c5 > 0, and so w(δH′(A)) ≥ c5|A|pn ≥
c5p|A|(n− |A|) ≥ c5

c4
|δH(A)|.

For the second inequality in the statement of the theorem, we use the fact that the maximum
degree of a vertex in a random spanning tree in the complete graph is O(log n) with probability
1 − o(1). Thus, by Lemma 7.2 the same holds for random spanning trees generated by process
Bp. We then have |δH′(A)| ≤ c6|A| log n for some c6 > 0, and so w(δH′(A)) ≤ c6pn|A| log n ≤
2c6pn|A|(n− |A|) log n ≤ (2c6/c3)|δH(A)| log n.

8 Selectors

8.1 Expansion when base graph is a bounded-degree graph

Proof (of Theorem 1.6). Let T be an arbitrary spanning tree of G and let M1,M2, . . . ,Mk−1 be
independently chosen random G-mappings. Let H = T ∪M1 ∪ · · · ∪Mk−1. Let A be a subset of
V . Let a = |δT (A)|. Since H ⊇ T we can assume now that |δG(A)| > aα log n.
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For each edge e = (u, v) ∈ δG(A) let ηe = 1 if ∃i : Mi(u) = v or ∃i : Mi(v) = u and zero
otherwise and let X =

∑
e∈δG(A) ηe.

Now
E(X) ≥ θk|δG(A)|

where

θk = 1−
(

1− 1

d

)2k−2
.

Now we will see that X is the sum of negatively correlated {0, 1} random variables and so we
can use Chernoff-type bounds. Therefore

P

(
X ≤ 1

2
E(X)

)
≤ e−E(X)/8 ≤ e−θk|δG(A)|/8 ≤ n−αθka/8 ≤ n−2a

since αθk ≥ 16.
The theorem now follows from the fact, observed in Section 5, that there are at most

(
n−1
a

)
sets

such that a = δT (A).
Negative correlation of the ηe’s: Let ei = (ui, vi) ∈ δG(A), i = 1, 2. . . . ,m. We have to prove
(see (3)) that if em /∈ {e1, e2, . . . , em−1} then

P(ηem = 1 | ηe1 = · · · = ηem−1 = 1) ≤ P(ηem = 1). (13)

Because ηem is independent of ηei when ei ∩ em = ∅, we will assume that ei ∩ em 6= ∅ for i =
1, 2, . . . ,m− 1.

Let Ω = {G−mappings}k−1. Partition Ω into Ω1,Ω2, . . . , where Ωj is determined by Ml(u), l =
1, 2, . . . , k − 1 for u /∈ {um, vm}. Suppose that there are Π parts in all to this partition. Then each
Ωj can be expressed as Ωj = {ωj} × Nk−1

um × Nk−1
vm where ωj defines Ml(u), l = 1, 2, . . . , k − 1

for u /∈ {um, vm} and Num , Nvm are the G-neighborhoods of um, vm respectively. Now let Ω∗j =
Ωj ∩ {ηe1 = · · · = ηem−1 = 1} for j = 1, 2, . . . ,Π. Equation (13) will follow from

P(ηem = 1 | Ω∗j ) ≤ P(ηem = 1), j = 1, 2, . . . ,Π. (14)

(To verify (13), we only need to prove this when Ω∗j 6= ∅).
Next let Ij = {i ∈ [m − 1] : ηei = 1,∀ω ∈ Ωj} be those indices i for which ηei = 1 is already

determined by the choices in ωj . Here we have ei = {x, y} where y ∈ em and in Ωj we have
Ml(x) = y. In this case, ηem is (conditionally) independent of ηei . We can therefore assume that
Ij = ∅.

Claim (14) now amounts to the following: We randomly place k−1 balls into boxesB1, B2, . . . , Bd
(the random values of Ml(um), l = 1, 2, . . . , k − 1) and randomly place k − 1 balls into boxes
C1, C2, . . . , Cd (the random values of Ml(vm), l = 1, 2, . . . , k − 1). (Strictly speaking there are at
most d boxes here, but this only causes a change in notation). Let Xr be the number of balls in
box Br and let Ys be the number of balls in box Cs. Then if B1, C1 correspond to um, vm then we
have to show that

P(X1 + Y1 ≥ 1 | Xl ≥ 1, l ∈ I and Yl ≥ 1, l ∈ J) ≤ P(X1 + Y1 ≥ 1) (15)

where I, J are subsets of [d] \ {1}.
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Now let

π1 = P(X1 ≥ 1 | Xl ≥ 1, l ∈ I) ≤ π′1 = P(X1 ≥ 1)

π2 = P(y1 ≥ 1 | Yl ≥ 1, l ∈ I) ≤ π′2 = P(Y1 ≥ 1)

where the inequalities follow from [9], Theorem 13.
The independence of the Xi’s and Yi’s implies that

LHS(15) = 1− (1− π1)(1− π2) ≤ 1− (1− π′1)(1− π′2) = RHS(15).

8.2 Expansion when base graph is a complete graph

Proof (of Theorem 1.7). Let G = G2−out. We choose some small positive ε. Then the probability
that G has vertex expansion at most ε can be bounded by

n/2∑
k=3

(
n

k

)(
n

εk

)(
k + εk

n

)2k (n− k
n

)2(n−k−εk)
(16)

The sum starts at 3 because in G2−out every set of size one or two has at least one neighbor.

≤
n/2∑
k=3

(ne
k

)k (ne
εk

)εk (k + εk

n

)2k (n− k
n

)2(n−k−εk)

=

n/2∑
k=3

uk,

where

uk =

((
k

n

)1−ε
· e ·

(e
ε

)ε
· (1 + ε)2

)k (
n− k
n

)2(n−k−εk)
.

When k ≤ n1/2 then uk ≤ vk =
((

k
n

)1−ε · e · ( eε)ε · (1 + ε)2
)k
≤ n−k/3. If k ≤ n/3 then vk ≤

(0.95)k for ε sufficiently small. If n/3 ≤ k ≤ n/2 then
(
n−k
n

)2(n−k−εk) ≤ (23)2(1−ε)k and so uk ≤(
e1+ε(1+ε)2

21−εεε ·
(
2
3

)2(1−ε))k ≤ (0.7)k for ε sufficiently small.

8.3 Selectors of random graphs

Proof (of Theorem 1.8). The upper bound proof of Theorem 1.5 rests on the fact that the maximum
degree of a random tree is O(log n) whp. This is also true for a random mapping (actually o(log n)
to be precise) and so the proof of the upper bound goes through unchanged.

For the lower bound we let M1 = k + εk − 1 and N1 = n − M1 and M2 = n − k − 1 and
N2 = n−M2 and replace (16) by

o(1) +

n/2∑
k=3

(
n

k

)(
n

εk

)
Ak1A

n−k−εk
2 . (17)
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The o(1) term accounts for connectivity and minimum degree at least two. And

Ai =
∑
l≥2

∑
a+b=l

(
Mi

a

)(
Ni

b

)
pl(1− p)n−1−l a(a− 1)

l(l − 1)

=
∑
l≥2

pl(1− p)n−1−lMi(Mi − 1)

l(l − 1)

∑
a+b=l

(
Mi − 2

a− 2

)(
Ni

b

)

=
∑
l≥2

pl(1− p)n−1−lMi(Mi − 1)

l(l − 1)

(
n− 3

l − 2

)

=
Mi(Mi − 1)p2

(n− 1)(n− 2)p2

∑
l≥0

(
n− 1

l

)
pl(1− p)n−1−l

=
Mi(Mi − 1)

(n− 1)(n− 2)
. (18)

Explanation of (17): Fix disjoint sets K,L of size k and εk respectively. Then for v ∈ K, A1

will be the probability that both its chosen neighbors are in K ∪ L and for v /∈ K ∪ L, A2 will be
the probability that both its chosen neighbors are not in K. Now for v ∈ K the number of Gn,p
neighbors in K ∪L will be a = Bin(M1, p) and the number of Gn,p neighbors not in K ∪L will be
b = Bin(N1, p). The probability of this is

(
M1

a

)(
N1

b

)
pl(1− p)n−1−l where l = a+ b. The probability

that both of v’s choices are in K ∪ L is
(
a
2

)
/
(
l
2

)
. When v /∈ K ∪ L the number of Gn,p neighbors

not in K will be a = Bin(M2, p) and the number of Gn,p neighbors in K will be b = Bin(N2, p).
The probability of this is

(
M2

a

)(
N2

b

)
pl(1− p)n−1−l where l = a+ b. The probability that both of v’s

choices are not in K is
(
a
2

)
/
(
l
2

)
. Finally note that the described events are independent for each

possible v.
It follows from (18) that

A1 ≤
(
k + εk

n

)2

and A2 ≤
(
n− k
n

)2

.

Comparing (16) and (17) we see that whp H has constant vertex expansion. The lower bound
proof of Theorem 1.5 rests on the fact that H ′ has constant vertex expansion and so this proof can
be repeated here.

9 Discussion

The problem of scalable routing in the presence of failures motivated our constructions in this
paper. The use of trees is particularly natural for routing. Our results suggest using a constant
number of trees in total for routing, as opposed to the norm of one or more trees per destination.
Further, the manner in which the trees are obtained is simple to implement and can lead to faster
recovery since (a) paths exist after several failures and (b) fewer trees need to be recomputed in
any case.

One aspect of splicers that we have not explored is the stretch of the metric induced by them.
For the case of the complete graph, it is not hard to see that the diameter is O(log n) and hence so
is the expected stretch for a pair of random vertices. This continues to hold for Gn,p, in fact giving
better bounds for small p (expected stretch of O(log log n) for p = poly(log n)/n). It remains to
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study the stretch of splicers for arbitrary graphs or bounded-degree graphs. This seems to be an
interesting question since on the complete graph, the expected stretch on one tree is Θ(

√
n) while

that of two trees is O(log n).
One future direction of research is to understand the trade-off between fault-tolerance and

stretch achievable by splicers (not necessarily union of uniformly random spanning trees, but more
carefully chosen spanning trees).

References

[1] I. Abraham, C. Gavoille, D. Malkhi, N. Nisan, and M. Thorup. Compact name-independent
routing with minimum stretch. In SPAA ’04: Proceedings of the sixteenth annual ACM sympo-
sium on Parallelism in algorithms and architectures, pages 20–24, New York, NY, USA, 2004.
ACM.

[2] D. Aldous. The random walk construction of uniform spanning trees and uniform labelled
trees. SIAM J. Discrete Math., 3(4):450–465, 1990.

[3] N. Alon and M. R. Capalbo. Finding disjoint paths in expanders deterministically and online.
In FOCS, pages 518–524, 2007.

[4] N. Alon and J. H. Spencer. The probabilistic method. Wiley-Interscience Series in Discrete
Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], New York, second
edition, 2000.

[5] J. Batson, D. A. Spielman, and N. Srivastava. Twice-ramanujan sparsifiers. arXiv:0808.0163v1,
2008.
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