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Abstract

The central observation of this paper is that if ǫn random arcs are added to any n-node
strongly connected digraph with bounded degree then the resulting graph has diameter O(ln n)
with high probability. We apply this to smoothed analysis of algorithms and property testing.

Smoothed Analysis: Recognizing strongly connected digraphs is a basic computational task
in graph theory. Even for digraphs with bounded degree, it is NL-complete. By XORing
an arbitrary bounded degree digraph with a sparse random digraph R ∼ Dn,ǫ/n we obtain a
“smoothed” instance. We show that, with high probability, a log-space algorithm will correctly
determine if a smoothed instance is strongly connected. We also show that if NL 6⊆ almost-L
then no heuristic can recognize similarly perturbed instances of (s, t)-connectivity.

Property Testing: A digraph is called k-linked if, for every choice of 2k distinct vertices
s1, . . . , sk, t1, . . . , tk, the graph contains k vertex disjoint paths joining sr to tr for r = 1, . . . , k.
Recognizing k-linked digraphs is NP-complete for k ≥ 2. We describe a polynomial time
algorithm for bounded degree digraphs which accepts k-linked graphs with high probability,
and rejects all graphs which are at least ǫn arcs away from being k-linked.

1 Introduction

The diameter of a graph G is the length of the longest shortest path in G. In other words, if d(u, v) is
the length of the shortest path from u to v in G, then the diameter of G is maxu,v d(u, v). A graph
is connected (and a directed graph is strongly connected) if it has finite diameter. The central
observation of this paper is that if ǫn random edges are added to any n-node connected graph
with degree not-too-large then the diameter becomes O(ln n) with high probability (throughout
this paper, “with high probability” will mean with probability tending to 1 as n → ∞ and will
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be abbreviated whp). This is also true for strongly connected directed graphs and digraphs with
not-too-large in-degree and out-degree and for several ways of generating the random edges. For
ease of exposition, we state this as a theorem only for a strongly connected digraph D̄ with degree
O

(

nǫ/100
)

that is perturbed by adding a random digraph R ∼ Dn,ǫ/n. Here R ∼ D means R is
distributed according to distribution D, and Dn,p is the distribution over of digraphs on vertex set
[n] in which each possible arc appears independently with probability p (so each digraph with m
arcs is realized with probability

(

n(n−1)
m

)

pm(1−p)n(n−1)−m). Below, we use the notation D = D̄+R
to mean that D is the graph formed by taking the union of the arcs of D̄ and R.

Theorem 1 Let ǫ be a positive constant with ǫ ≤ 1 and let ∆ = nǫ/100. Let D̄ be a strongly

connected n-node digraph with in-degree and out-degree at most ∆. Let D = D̄ + R where R ∼
Dn,ǫ/n. Then whp the diameter of D is at most 100ǫ−1 ln n.

Similar results hold for perturbations formed by adding ǫn arcs selected at random with or without
replacement, or by adding a random assignment with ǫn arcs.

Theorem 1 is related to a class of problems regarding the possible change of diameter in a graph
where edges are added or deleted, for example, the results of Alon, Gryárfás, and Ruszinkó in [2]
on the minimum number of edges that must be added to a graph to transform it into a graph of
diameter at most d. The study of these extremal diameter alteration questions was initiated by
Chung and Garey in [12]. It is also related to the theorem of Bollobás and Chung on the diameter
of a cycle plus a random matching [7].

1.1 Application: Smoothed Analysis

A digraph is strongly connected if, for every vertex pair (s, t), there is a directed path from s to
t. Recognizing strongly connected digraphs is a basic computational task, and the set of strongly
connected digraphs is NL-complete [21]. Thus, if NL 6⊆ L then there is no log-space algorithm
which recognizes strongly connected digraphs.

Perhaps this conclusion of worst-case complexity theory is too pessimistic. We will consider the
performance of a simple heuristic which runs in randomized log-space. We will show that the
heuristic succeeds on random instances whp. However, the “meaning” of this result depends on
the probability space from which we draw the random instances. It seems reasonable to assume
that most real-world digraphs will contain some amount of randomness, so it is tempting to believe
this result shows that in the real-world strong connectivity only requires log-space. Unfortunately,
this is not valid if we use the “wrong” model for randomness. For example, the distribution Dn,p

(which is generated by taking n nodes and including each ordered pair as an arc independently
with probability p) is pleasant for analysis, but basic statistics like the degree sequence seem to
differ from several observed instances of real-world graphs [14].

We will use a model of randomness that is more flexible. We will start with an arbitrary digraph
D̄ and perturb it by XORing it with a very sparse random graph R ∼ Dn,ǫ/n. This produces a
random instance which is “less random” than Dn,p. The study of worst case instances with small
random perturbations is called Smoothed Analysis.

Smoothed Analysis was introduced by Spielman and Teng in [28] and they discuss a perturbation

2



model for discrete problems in [29]. They consider perturbing graphs by XORing the adjacency
matrix with a random adjacency matrix, where each edge is flipped with some constant probability.
Since the probability of an edge flip is constant, the perturbed instances are all dense graphs (i.e.
a constant fraction of all possible edges appear). Independently, Bohman, Frieze and Martin [10]
studied the issue of Hamiltonicity in a dense graph when random edges are added, and other
graph properties were analyzed in this model by Bohman, Frieze, Krivelevich and Martin [11] and
Krivelevich and Tetali [23].

We will also use an XOR perturbation, but we will make the probability of corruption much lower
than [29]. Since we will have a linear number of arcs present, it is appropriate for the perturbation
to change about ǫn arcs, which is the expected number of arcs in Dn,ǫ/n.

1.1.1 Randomness and strong connectivity

Recognizing strongly connected digraphs is closely related to recognizing (s, t)-connectivity in di-
graphs, which is the canonical NL-complete problem. It is possible to recognize connectivity in
undirected graphs with a randomized log-space algorithm using random walks [1] (also, a deter-
ministic log-space algorithm was recently discovered [25]). Since the cover time of an arbitrary
connected graph is bounded by O(n3) (see [17] for a sharp bound), a random walk will visit every
vertex in polynomial time whp. This approach will not work for arbitrary digraphs, however, since
there the cover time can be exponential.

The diameter and connectivity of random graphs has been well-studied, see for example the books
of Bollobás [6] and Janson,  Luczak, and Ruciński [20]. Perhaps closest in spirit to our investigation
is the paper of Bollobás and Chung on the diameter of a Hamilton cycle plus a random matching
[7] and the paper of Chung and Garey on the diameter of altered graphs [12]. Also, the component
structure of random digraphs was studied by Karp in [22] and more recently by Cooper and Frieze
[13].

1.1.2 A heuristic for recognizing strong connectivity

For each ordered pair of vertices (s, t), repeat the following procedure N1 times: starting from s,
take N2 steps in a random walk on the digraph. Here a random walk is the sequence of vertices
X0, X1, . . . , Xt, . . . visited by a particle which moves as follows: if Xt = v then Xt+1 is chosen
uniformly at random from the out-neighbors of Xt. If any of the random walks ever reaches t then
the digraph contains an (s, t)-path, and we continue to the next pair of vertices.

If N1 and N2 are large enough, this algorithm is correct whp. For example, if there is a path from
s to t, then if the random walk has followed it correctly so far, it has probability more than 1/n
of following it correctly for one more step. Since the distance from s to t is less than n, taking
N2 = n we have that the success probability for a single walk exceeds n−n. So taking N1 = n2n we
will discover the path whp. We have just given a superexponential time algorithm for a problem
in NL but the values of N1 and N2 can be significantly improved for smoothed random instances.

The main theorem of this section is that when N1 and N2 are suitable functions of n, this heuristic,
which we will call Algorithm A, uses logarithmic space and is successful on perturbations of bounded
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out-degree instances whp. To prove this, we first show that it is successful when the initial instance
is a strongly connected digraph and the perturbation only adds arcs. Then we extend this to show
success when the initial instance is not necessarily strongly connected and the perturbation only
adds arcs. After this, it is simple to translate our results to the original perturbation model where
arcs are added and removed, since we can generate the perturbation in 2 rounds, by first deleting
each existing arc with some probability, and then adding random arcs to the resulting digraph.

Recall that Dn,ǫ/n is the distribution of digraphs on vertex set [n] in which each possible arc appears
independently with probability ǫ/n, and we write R ∼ Dn,ǫ/n to mean R is selected randomly
according to distribution Dn,ǫ/n. We write G1 ⊕ G2 to mean the XOR of digraphs G1 and G2,
(which is to say e ∈ G1 ⊕ G2 if and only if e ∈ G1 and e 6∈ G2 or vice versa.)

Theorem 2 Let ǫ and ∆ be positive constants with ǫ sufficiently small. For any n-node digraph

D̄ with maximum in-degree and out-degree ∆, let D = D̄ ⊕ R where R ∼ Dn,ǫ/n. Then there exist

absolute constants A1, B1 such that whp Algorithm A is correct on D when N1 = nA1ǫ−1 ln(10∆)

and N2 = B1ǫ
−1 ln n.

We find that A1 = 400 and A2 = 200 suffice in this theorem, but we do not attempt to optimize
these values.

If a strongly connected digraph has bounded out-degree and has diameter O(ln n) then a random
walk of length O(ln n) has a 1/ poly(n) chance of going from s to t, and Algorithm A will succeed
whp using values of N1 and N2 that can be realized in log-space. Unfortunately, even though our
initial instances have bounded out-degree and, as shown by Theorem 1, our perturbed instances
have logarithmic diameter, the perturbation increases the maximum degree to Ω(ln n/ ln ln n), so
we must work a little harder to show that the random walk has a non-negligible probability of
witnessing the path from s to t. (As an additional reward for this work, we find that Algorithm A
can be derandomized by checking all paths from s of length O(ǫ−1 ln n) and still only use log-space.)

The analysis of Algorithm A is further complicated by the possibility of an instance D̄ which is not
strongly connected combining with R to produce a smoothed instance which is strongly connected.
We handle this situation by a three-step argument. First, for the smoothed instance to become
strongly connected there cannot be too many small strongly connected components of D̄. Then, the
large components must merge to form a strongly connected component with low diameter. Finally,
the small components, if they are connected to the large component, must be “close” to it.

1.1.3 Why study instances with bounded degree?

It would be nice to extend our results to hold for perturbed copies of any digraph, instead of only
digraphs with bounded degree. However, such a result is not possible for our heuristic. We show
that our assumption that D̄ has bounded degree cannot be weakened too much by constructing a
family of instances with maximum out-degree and maximum in-degree growing with n for which
Algorithm A does not succeed whp.

Theorem 3 Let ǫ be a sufficiently small positive constant, and let R ∼ Dn,ǫ/n. Then, for every

sufficiently large n, there exists an n-node digraph D̄ with maximum out-degree O(ln n) and max-
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imum in-degree O(n1/3(ln n)2) such that for D̄ ⊕ R the probability that Algorithm A fails exceeds

e−ǫ − o(1).

1.1.4 Strong connectivity versus (s, t)-connectivity

Strong connectivity is an NL-complete problem, but (s, t)-connectivity is “the” NL-complete prob-
lem. In Sipser’s undergraduate text [27], the completeness of (s, t)-connectivity is proved in detail,
while the completeness of strong connectivity is left as an exercise (Appendix A includes a sim-
ple solution to this exercise which shows that completeness still persists for strong connectivity in
graphs with bounded out-degree.)

In light of this, it is natural to investigate the success of heuristics on smoothed instances of (s, t)-
connectivity. Here we find that there are instances on which Algorithm A fails whp. What is more,
no log-space heuristic exists, provided a conjecture of complexity theory holds.

Theorem 4 If NL 6⊆ almost-L then no log-space heuristic succeeds whp on smoothed instances of

bounded out-degree (s, t)-connectivity.

The proof consists of building a machine which simulates any nondeterministic log-space machine
using the log-space heuristic for (s, t)-connectivity, were such a heuristic to exist. Before the proof,
we will also recall the definition of almost-L and comment on why it appears instead of BPL.

1.1.5 Smoothed model versus semi-random model

The semi-random model was introduced by Santha and Vazirani in [26]. In this model an adversary
adaptively chooses a sequence of bits and each is corrupted independently with probability δ. The
authors propose this as a model for real-world random bits, such as the output of a Geiger counter
or noisy diode, and consider the possibility of using such random bits in computation on worst-case
instances. Blum and Spencer consider the performance of a graph coloring heuristic on random and
semi-random instances in [9]. Subsequent work has uncovered an interesting difference between the
random and semi-random instances in graph coloring. The work of Alon and Kahale [3] developed
a heuristic which succeeds whp on random instances with constant expected degree, while work
by Feige and Kilian [16] showed no heuristic can succeed on semi-random instances with expected
degree (1− ǫ) ln n (they also developed a heuristic for semi-random instances with expected degree
(1 + ǫ) ln n).

In the original semi-random model of Santha and Vazirani, an instance is formed by an adaptive
adversary, who looks at all the bits generated so far, asks for a particular value for the next
bit, and gets the opposite of what was asked for with probability δ. Several modifications are
proposed in Blum and Spencer [9] and also in Subramanian, Fürer, and Veni Madhavan [30] and
Feige and Krauthgamer [15]. However, all these variations maintain the adaptive aspect of the
adversary’s strategy, which at low density allows too much power; if the error probability p equals
(1 − ǫ) ln n/n then there will be roughly nǫ isolated vertices in Dn,p and the adversary can encode
a polynomial-sized instance which contains no randomness. Since we wish to consider extremely
sparse perturbations, where the error probability p equals ǫ/n, we cannot allow an adversary as
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powerful as in the semi-random model. The XOR perturbation considered in this paper is equivalent
to a natural weakening of the semi-random model: making the adversary oblivious.

1.2 Application: Property Testing

Property testing provides an alternative weakening of worst-case analysis of decision problems. It
was formalized by Goldreich, Goldwasser, and Ron in [18]. The goal in property testing is to design
an algorithm which decides whether an instance has a property or differs significantly from all
instances which have that property (usually without looking at more than a vanishing fraction of
the input bits). For example, a property tester for strong connectivity in bounded degree digraphs
should accept all strongly connected instances and reject all instances that are ǫn arcs away from
being strongly connected. Note that Algorithm A (which is designed to work on smoothed random
instances) can be converted into a property tester: given an instance D̄ and a gap parameter ǫ, we
can randomly perturb D̄ ourselves by adding ǫ

2n random arcs and then run Algorithm A on the
perturbed version. This does not yield anything impressive for testing strong connectivity, since the
undirected connectivity testing results of Goldreich and Ron in [19] can be applied to the directed
case to produce a constant time tester. However, our perturbation approach also yields a property
tester for a more difficult connectivity problem, that of being k-linked.

A digraph is said to be k-linked if for every choice of 2k distinct vertices s1, . . . , sk, t1, . . . , tk, the
graph contains k vertex disjoint paths joining s1 to t1, . . . , sk to tk. Recognizing whether or not
a digraph is k-linked is NP-complete for k ≥ 2. In the bounded-degree-property-testing version of
being k-linked, we are given a constant ǫ and a digraph D̄ with maximum in-degree and out-degree
∆ and our goal is to accept if D̄ is k-linked and reject if D̄ is more than ǫn arcs away from being
k-linked. (If D̄ is not k-linked, but is close to being so, we can accept or reject it.)

1.2.1 A heuristic for testing k-linkedness

Given D̄ and ǫ, we perturb D̄ by generating a graph R ∼ Dn,ǫ/2n ourselves and adding that to D.
Let D = D̄+R denote this perturbed instance. Then, for each choice of 2k distinct vertices, repeat
the following procedure N1 times: for i = 1, . . . , k, starting at si take N2 steps in a random walk
on the graph. If all k random walks ever reach the correct k terminals via vertex disjoint paths,
we continue to the next choice of 2k vertices. Otherwise reject.

Here k is assumed to be fixed, independent of the input.

Theorem 5 Let ǫ and ∆ be positive constants with ǫ sufficiently small. For any k-linked n-node

graph D̄ with maximum degree ∆, the algorithm above accepts in polynomial time whp.

A few comments regarding the difference between this theorem and Theorems 1 and 2: the fact that
k vertex disjoint paths exist whp follows from a calculation analogous to the proof of Theorem 1,
but now we must explore disjoint neighborhoods around all 2k terminals simultaneously. Also, the
analog of the most difficult part of Theorem 2, showing that Algorithm A is correct in the case
where a disconnected D̄ leads to a strongly connected D, is no longer necessary. In the property
testing setting, we are not required to correctly recognize instances that lead to this situation. It
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seems as though it might be possible to carry out this most difficult part and obtain a heuristic for
testing k-linkedness that works on smoothed instances, but the details remain elusive.

Often in property testing, the goal is to minimize the sample complexity (meaning the number
of times the algorithm accesses a bit of the input), and here we diverge from the norm, since the
algorithm above likely looks at every arc of the graph. So it may be more accurate to call this
an “algorithm for a promise problem version of k-linkedness”. Also, we will not make use of the
full power of ǫ-far-ness, and could succeed even on instances for which adding ǫn random arcs has
probability less than 1/2 of linking the unlinked.

1.3 Outline of what follows

We first prove Theorem 1 in Section 2. In Section 3 we prove Theorem 2, showing that Algorithm
A is successful whp. Section 4 is devoted to the proof of Theorem 3, by constructing an instance
with growing out-degree where Algorithm A fails with constant probability. In Section 5, we prove
Theorem 4 by showing how to use a log-space heuristic for (s, t)-connectivity to build an almost-L
simulator for any NL machine. Finally, in Section 6 we will prove Theorem 5, which is a reprise of
the proof of Theorem 1. Section 7 is a brief conclusion.

1.4 Some facts and notation

We will use the following Chernoff bounds from [20, Theorem 2.1] on the Binomial random variable
B(n, p):

Pr [B(n, p) ≥ np + t] ≤ exp

{

−
t2

2(np + t/3)

}

, (1)

Pr [B(n, p) ≤ np − t] ≤ exp

{

−
t2

2np

}

. (2)

Dn,ǫ/n is the distribution of digraphs on vertex set [n] in which each possible arc appears indepen-
dently with probability ǫ/n, and we write R ∼ Dn,ǫ/n to mean R is selected randomly according to
distribution Dn,ǫ/n.

We write G1 ⊕G2 to denote the digraph formed by XOR-ing digraphs G1 and G2, (which is to say
e ∈ G1 ⊕ G2 if and only if e ∈ G1 and e 6∈ G2 or vice versa.)

We write G1 + G2 to denote the digraph formed by taking the union of the arcs of G1 and G2.

2 Proof of Theorem 1

We now show that if D̄ is strongly connected and has in-degree and out-degree bounded by ∆ =
O(ln n) then, for R ∼ Dn,ǫ/n, the diameter of D = D̄ + R is O(ǫ−1 ln n) whp.

We will show that whp D contains short paths of a special form, alternating between some arcs
from D̄ and random arcs from R. This is similar to the approach of Bollobás and Chung [7].
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To proceed, we now fix 2 vertices s and t and look for a short path between them. Let P be a
shortest path from s to t in D̄. If P has length less than 100ǫ−1 ln n then this vertex pair is already
close, so suppose P has length at least 100ǫ−1 ln n.

Let S0 be the first 32ǫ−1 ln n nodes of P and let T0 be last 32ǫ−1 ln n nodes of P .

We call a node useful if it is not within distance d = 5ǫ−1 of any node which we have previously
placed in any set Si or Ti, where distance is the length of the shortest path in the undirected graph
underlying D̄.

To build Si, for each node s′ ∈ Si−1, we check if R contains an arc from s′ to some useful node s′′.
If it does, we include s′′ in Si and also all nodes reachable from s′′ by taking d steps in D̄.

Tj is defined analogously, but the paths lead towards t instead of away from s. So, for each t′ ∈ Ti−1,
if R contains an arc from some useful node t′′ to t′, we include t′′ in Tj and also all nodes from
which t′′ is reachable by taking d steps in D̄. To make this definition completely precise, we
include a pseudocode description of the procedure which produces Si and Tj , GenerateSets, in
Figure 1. We use U to denote the set of useful nodes. Also, the notation N+

d (S) denotes the set
of nodes reachable in D̄ in at most d steps starting from some node of S, the notation N−

d (S)
denotes the set of nodes from which some node of S is reachable in at most d steps in D̄, and
Nd(S) = N+

d (S) ∪ N−
d (S). Finally, let ℓ = ⌈log2 n⌉.

This procedure is convenient for analysis because no arc of R is examined more than once, due to
the way the useful set U is maintained. Therefore, we can employ the principle of deferred decisions

find a simple expression for the conditional probability that, for example, (s′, s′′) ∈ R at any step
of GenerateSets.

We will now show that when GenerateSets halts

Pr[|Si| ≤ n2/3 or |Tj | ≤ n2/3] = o(n−2). (3)

To see this, we first note that at any step of GenerateSets, |U | ≥ n − 2∆2d(ℓn2/3 + 32ǫ−1 ln n) =
(1 − o(1))n. This is because at most ∆2d ≤ n1/10 nodes are removed from U in any step where
U is changed, and it is changed at most n2/3 times in each inner loop, and the inner loops are
executed at most ℓ times each. And, by similar considerations, the initialization of U has size at
least n − 2∆2d(32ǫ−1 ln n).

Now we consider the event Es′ given by “s′ ∈ Si′ and there exists s′′ ∈ U with (s′, s′′) ∈ R.”
Since each arc appears in R independently with probability ǫ/n, we can apply the principle of
deferred decisions. We condition on the entire history of GenerateSets, which can be described
by H = 〈U, S1, T1, . . . , Si′ , Tj′ , S̃i′+1〉, where S̃i′+1 denotes the intermediate state of the set Si′+1,
and for s′ ∈ Si′ , we have that the probability of Es′ depends only on the size of U , which is
always (1 − o(1))n. So

Pr[Es′ | H] = 1 − (1 − p)|U | = (1 − o(1))ǫ.

Every time Es′ occurs, at least d vertices are added to Si′+1 (since |N+
d (s′′)| ≥ d), so conditioned

on |Si′ |, the random variable |Si′+1|/d stochastically dominates Zi′+1 ∼ B(|Si′ |, (1 − o(1))ǫ). Thus,
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procedure GenerateSets[(s, t)-path P ]

S0 := first 32ǫ−1 ln n nodes of P .
T0 := last 32ǫ−1 ln n nodes of P .
U := V \ Nd(S0 ∪ T0)

i := 0
j := 0

while (|Si| ≤ n2/3 and i ≤ ℓ) or (|Tj | ≤ n2/3 and j ≤ ℓ) do
if |Si| ≤ n2/3 and i ≤ ℓ then

Si+1 := ∅
for all s′ ∈ Si do

if |Si+1| ≤ n2/3 and there exists s′′ ∈ U such that (s′, s′′) ∈ R then
Si+1 := Si+1 ∪ N+

d ({s′′})
U := U \ Nd(Si+1)

end if
end for
i := i + 1

end if

if |Tj| ≤ n2/3 and j ≤ ℓ then
Tj+1 := ∅
for all t′ ∈ Tj do

if |Tj+1| ≤ n2/3 and there exists t′′ ∈ U such that (t′′, t′) ∈ R then
Tj+1 := Tj+1 ∪ N−

d ({t′′})
U := U \ Nd(Tj+1)

end if
end for
j := j + 1

end if
end while

Figure 1: Pseudocode to generate Si and Tj

letting Bi′+1 denote the event “|Si′+1| ≤ 2|Si′ |” we have

Pr
[

Bi′+1

∣

∣ Si′
]

≤ Pr

[

Zi′+1 ≤ E [Zi′+1] −
3

5
ǫ|Si′ |

∣

∣

∣

∣

Si′

]

≤ e−
9

50
ǫ|Si′ |,

where the final inequality is an application of the Chernoff bound (2).

Note that in order for GenerateSets to halt with |Si| ≤ n2/3 it must be that some Bi′ occurs for
i′ ≤ i. Since |S0| = 32ǫ−1 ln n, we have that

Pr[|Si| ≤ n2/3] ≤ Pr

[ i
⋃

i′=1

Bi′

]

≤
i

∑

i′=1

Pr
[

Bi′
∣

∣ |Si′−1| ≥ 32ǫ−1 ln n
]

≤ ℓ · e−5 ln n = o(n−2).

A similar argument shows that when GenerateSets halts we also have Pr[|Tj| ≤ n2/3] = o(n−2).
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Now, to finish the short path from s to t, we generate the random arcs of R between Si and Tj

Pr
[

R ∩ Si × Tj = ∅
∣

∣ |Si| ≥ n2/3 ∧ |Tj | ≥ n2/3
]

≤ (1 − p)n4/3

≤ e−ǫn1/3

= o(n−2).

Putting all the pieces together, we have an (s, t)-path consisting of a path of length at most
32ǫ−1 ln n, followed by at most 2ℓ paths in D̄ of length at most d + 1 joined by edges from R,
and finishing with a path of length at most 32ǫ−1 ln n, for total length which numerical calculation
shows is less than 100ǫ−1 ln n.

Since there are only n(n − 1) choices for (s, t), the theorem follows by the union bound. �

3 Proof of Theorem 2

3.1 When D̄ is strongly connected and perturbation does not delete edges

By Theorem 1 we know that the diameter of D is O(ln n) whp. Unfortunately we cannot yet
conclude that Algorithm A is successful whp. We must still argue that the probability of a random
walk traversing the short path is not too small. In a graph with out-degree less than some constant,
having a diameter of O(ln n) would imply an efficient algorithm. Our random perturbation has
likely created some vertices with out-degree Ω(ln n/ ln ln n), so we will have to work a little more.
We use the notation deg+

D(v) to denote the out-degree of a vertex v in digraph D.

Lemma 6 Let D = D̄ + R, where D̄ is an arbitrary digraph with maximum out-degree ∆ and

R ∼ Dn,ǫ/n. Then whp D contains no path P of length ℓ ≤ ℓ1 = 100ǫ−1 ln n with
∏

x∈P deg+
D(x)

≥ n100ǫ−1 ln(10∆).

Proof We prove the claim by the first moment method. First, we bound the number of paths
with ℓ vertices that use ℓ− a arcs of D̄. There are n places to start such a path, and there are

(

ℓ
a

)

different ways to decide when to take an arc not in D̄. For each arc in D̄, since the out-degree is
bounded, there are at most ∆ choices, and there are at most na choices for where the non-D̄ arcs
can go. So there are at most

n∆ℓ−a

(

ℓ

a

)

na

potential paths of length ℓ that use a arcs from R. The probability such a potential path appears
as a path in D is

(

ǫ
n

)a
.

Now we bound the probability that the sum of the logarithms of the out-degrees of the vertices
along a path P of length ℓ exceeds ℓ ln(∆ + 1) + t. To do so, we first bound a similar quantity for
the graph R′ = R \ P . Note that

Pr

[

∑

v∈P

ln{1 + deg+
R′(v)} ≥ t

]

≤ e−t E

[

∏

v∈P

(1 + deg+
R′(v))

]

= e−t
∏

v∈P

E
[

1 + deg+
R′(v)

]

≤ (1 + ǫ)|P |e−t.

10



Then, since P is a path, it contains at most one arc incident with v, so

ln{deg+
D(v)} ≤ ln{deg+

D̄
(v) + deg+

R(v)} ≤ ln{∆ + 1 + deg+
R′(v)} ≤ ln{1 + ∆} + ln{1 + deg+

R′(v)},

and we have

Pr

[

∑

v∈P

ln{deg+
D(v)} ≥ ℓ ln(1 + ∆) + t

]

≤ (1 + ǫ)ℓe−t.

So the expected number of paths of length ℓ with a arcs from R and product of degrees exceeding
ℓ ln(∆ + 1) + t is at most

n∆ℓ−a

(

ℓ

a

)

na
( ǫ

n

)a
(1 + ǫ)ℓe−t ≤ n((1 + ǫ)∆)ℓe−t

(

ℓ

a

)

.

Let ℓ1 = 100ǫ−1 ln n and let

t = 2 ln n + ln ℓ1 + ℓ1 ln(2(1 + ǫ)∆) ≤ 100ǫ−1 ln(10∆) ln n.

Then an upper bound on the probability that D contains such a path of length at most ℓ1 is

ℓ1
∑

ℓ=1

ℓ
∑

a=0

ne−t((1 + ǫ)∆)ℓ

(

ℓ

a

)

=

ℓ1
∑

ℓ=1

ne−t((1 + ǫ)∆)ℓ2ℓ

= ne−t
ℓ1

∑

ℓ=1

(2(1 + ǫ)∆)ℓ ≤ ne−tℓ1(2(1 + ǫ)∆)ℓ1} = o(1).

So whp there is no path P of length at most 100ǫ−1 ln n which has

∏

x∈P

deg+
D(x) ≥ n100ǫ−1 ln(10∆).

�

The correctness of Algorithm A in the case when D̄ is strongly connected now follows from the fact
that the probability that a random walk follows a path P from s to t is precisely

(
∏

x∈P deg+
D(x)

)−1
.

�

3.2 When D̄ not strongly connected and perturbation does not delete edges

The previous section shows that Algorithm A is correct whp for strongly connected digraphs D̄.
To prove that Algorithm A is correct whp when D̄ is not strongly connected, we must do some
more work.

Outline of approach
Consider the strong components of D̄. If there are many components of size less than 1

4ǫ−1 ln n,
then we show that whp one of them will be incident to no arcs of R and so D will not be
strongly connected and Algorithm A will be correct. In the case where D̄ consists mostly of larger
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strong components, we expose the random arcs R in two rounds. We argue that whp the strong
components of D̄ merge into a unique giant strong component Sg containing at least n − n16/17

vertices after the first round. Then we invoke Lemma 1 from the previous section to show that the
random arcs from the second round give the giant component a low diameter. Then we deal with
the vertices that belong to small strong components after the first round. These vertices might
be connected to Sg in both directions and they might not, and there is not necessarily a sharp
threshold for strong connectivity. However, we show that, for some constant A1, whp no vertex
outside of Sg is connected to Sg only by paths of length more than A1ǫ

−1 ln n. This implies that
any such vertex is close to the giant component, or cannot be reached at all. Finally, by Lemma 6,
we know that all the paths of length at most A1ǫ

−1 ln n have a non-negligible probability of being
traversed by Algorithm A (take the bound in Lemma 6 and raise it to the power A1/100). So
we conclude that whp either the graph is not strongly connected, in which case Algorithm A is
correct, or the graph is strongly connected, in such a way that Algorithm A is still correct.

The calculations required for this plan follow.

Lemma 7 If D̄ has more than n1/2 ln n strong components containing less than 1
4ǫ−1 ln n vertices,

then whp one of these components is not incident to any arcs of R.

Proof We use the second moment method (see, for example, [20, Page 54]). For each small strong
component C of D̄, let XC be an indicator random variable for the event that C is not incident to
any arc of R. Then E [XC ] = (1 − ǫ/n)2c(n−c) ≥ n−1/2(1 − o(1)), where c = |C| ≤ 1

4ǫ−1 ln n, and

E [XC1
XC2

] = (1 − ǫ/n)2c1(n−c1−c2)+2c2(n−c1−c2)+2c1c2

= (1 − ǫ/n)2c1(n−c1)(1 − ǫ/n)2c2(n−c2)(1 + O((ln n)2/n))

= E [XC1
] E [XC2

] (1 + o(1)),

where c1 = |C1| and c2 = |C2|. Let Z =
∑

C XC be the number of strong components that are
incident to no arc of R. Then, since there are at least n1/2 ln n terms in this sum, E [Z] ≥ 1

2 ln n.
We also have

E
[

Z2
]

E [Z]2
=

∑

C
E

[

X2
C

]

+
∑

C1 6=C2

E [XC1
XC2

]

(

∑

C

E [XC ]

)2

=

∑

C

E [XC ]

(

∑

C

E [XC ]

)2 + (1 + o(1))

∑

C1 6=C2

E [XC1
] E [XC2

]

(

∑

C

E [XC ]

)2 ≤
2

ln n
+ 1 + o(1).

Now, by the second moment method, (see, for example, [20, Inequality 3.3, Page 54]) we have
Pr[Z 6= 0] ≥ E [Z]2/E

[

Z2
]

= 1 − o(1). �

It follows from this lemma that Algorithm A works in the case where the number of small strong
components of D̄ is large.
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We now consider the case where D̄ has at most n1/2 ln n strong components of size less than
σ = 1

4ǫ−1 ln n. We consider adding the random arcs of R in two rounds, by introducing R′ and
R′′. We take R′ ∼ Dn,p′ with p′ = ǫ

2n and R′′ ∼ Dn,p′′ with p′′ = ǫ
2n−ǫ = (1 + o(1)) ǫ

2n . Then the
probability that an arc appears in R′ + R′′ is exactly ǫ

n , and R′ + R′′ is identically distributed with
R.

Let the strong components in D̄ with size exceeding σ be C1, C2, . . . , Ca and let their sizes be
n1, n2, . . . , na. For K ⊆ [a] let CK =

⋃

i∈K Ci, let nK =
∑

i∈K ni, and let A+
K denote the number

of arcs of R′ that go from CK to CK and let A−
K denote the number of arcs of R′ that go from CK

to CK . Then

Pr(A+
K = 0 or A−

K = 0) ≤ 2
(

1 −
ǫ

2n

)nK(n−σn1/2 log n−nK)
.

To obtain an upper bound on the number of choices for K with a given value of nK , first note that,
since each large strong component is of size at least σ, we have that a, the number of large strong
components, is at most n/σ. Also, as a consequence of the strong components being large, for a
given value of nK , we have |K| ≤ nK/σ. So the number of choices for K with a given value of nK

is at most
∑nK/σ

ℓ=1

(

a
ℓ

)

and, for nK ≤ n/2, this is at most nK/σ
( n/σ
nK/σ

)

. Thus

Pr(∃K ⊆ [a] : n16/17 ≤ nK ≤ n/2 and A+
K = 0 or A−

K = 0)

≤

n/2
∑

nK=n16/17

nK/σ

(

n/σ

nK/σ

)

2
(

1 −
ǫ

2n

)nK(n(1−o(1))−nK)

≤

n/2
∑

nK=n16/17

2nK/σ
(

(ne/nK)1/σe−ǫ/4(1−o(1))
)nK

≤

n/2
∑

nK=n16/17

e−(1−o(1))ǫnK/68 = o(1).

It follows that whp

D̄ + R′ contains a giant strong component Sg with |Sg| ≥ n − (1 + o(1))n16/17. (4)

We apply the results of the previous section to Sg. We have a strongly connected digraph Sg and
we add R′′ ∼ Dn,p′′ (recall that p′′ = ǫ/(2n − ǫ)), producing a digraph Dg with diameter at most

201ǫ−1 ln n for which all shortest paths P satisfy
∏

x∈P deg+
Dg

(x) ≤ n201ǫ−1 ln(10∆).

The only detail remaining is how to deal with the at most (1 + o(1))n16/17 + σn1/2 ln n vertices of
D̄ +R′ that are not in Sg. Let x be such a vertex. We will show that whp if there is a path from x
to any vertex in Sg then it is a short path. An identical argument shows the same property holds
for paths from Sg to x.

We consider two cases. Let Vx denote the set of vertices reachable by following 5ǫ−1 ln n arcs of
D̄ + R′, starting from x. If |Vx| ≥ 5ǫ−1 ln n we say x is medium and if |Vx| < 5ǫ−1 ln n we say x is
small. If x is a medium vertex, then the probability R′′ does not add an arc from a vertex in Vx to
the Sg is at most (1 − p′′)5ǫ−1 ln n(n−2n16/17) ≤ n−2. Thus whp all medium x are close to Sg in D.
Let Sm denote the set of medium vertices.
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Consider now a shortest path in D from a small vertex x to a vertex z in Sg ∪Sm. Removing all of
the arcs of R′′ from this path decomposes it into subpaths P1, P2, . . . , Pr. Let xi and yi denote the
starting and ending vertices of subpath Pi (it is possible that xi = yi if a subpath has length 0).
We will show that whp r is small by considering the probability that the subpaths has a sequence
x1, y1, . . . , xr, yr with r ≥ 18.

For any D̄ + R′ for which (4) holds, the number of choices for our sequence is at most (2n16/17 ×
5ǫ−1 ln n)rn and the probability that the R′′-arcs exist is (p′′)r. Thus the probability there exists a
small vertex x which requires r ≥ 18 is at most

∑

r≥18

n(2n16/17 × 5ǫ−1 ln n × p′′)r = o(1).

So whp, if D is strongly connected then its diameter is at most 201ǫ−1 ln n + 2 × 18(5ǫ−1 ln n + 1)
which, for n sufficiently large, is at most 400ǫ−1 ln n. (The worst case here comes from a path of
length at most 18(5ǫ−1 ln n + 1) from s to Sg, followed by a path of length at most 201ǫ−1 ln n to
some other vertex of Sg and then by a path of length at most 18(5ǫ−1 ln n + 1) from there to t.)

By applying Lemma 6, we see that whp these paths are traversed with probability n−400ǫ−1 ln(10∆)

and so Algorithm A is correct whp. �

4 Proof of Theorem 3: An example with growing degrees

We now consider the possibility of applying Algorithm A to the case where D̄ has maximum
in-degree and out-degree ∆ that grows with n. The following example shows that in this case
Algorithm A does not necessarily succeed when using logarithmic space.

Let d = n1/3 ln n. To form our instance, we start with the directed cycle C = (v1, v2 . . . , vn). Then,
for each vi with i ≥ n/d, we let i0 = 1 + ⌊(i − n/d)/d⌋, and we add arcs (vi, vj) to D̄, for each
j ∈ {i0, i0 + 1, . . . , i0 + ln n − 1}. We call these arcs the “backwards arcs”. Note that each vi with
i ≥ n/d has ln n backwards arcs going out, and every vj with j < n/d has d ln n backwards arcs
coming in. Let V1 = {v1, . . . , vn/d+lnn}, and note that all backwards arcs lead to V1.

When we perturb this D̄ to obtain D, the probability that we do not delete any arc of cycle C is
(1 − ǫ/n)n = e−ǫ − o(1), and so D is strongly connected with probability at least e−ǫ − o(1).

We now derive bounds showing two properties that hold whp and allow us to reason about the
probability of Algorithm A succeeding on D.

Lemma 8 Let L = (3ǫ)−1 ln n and V1 be as above. Then the following holds whp

(a) For ℓ ≤ L, there is no path from V1 to {vn−L, . . . , vn} of length ℓ which does not use any of

the backwards arcs.

(b) For ℓ > L, there are at most e2ǫℓ paths of length ℓ from V1 to vn which do not use any of the

backwards arcs.
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Proof Let P be a path from vi to vn of length at most ℓ. Removing all of the arcs of R from
this path decomposes it into subpaths P1, . . . , Pm, where each Pj is a path of D̄ (or possibly a
degenerate path containing no arcs). Let the lengths of subpath Pj be denoted by ℓj ≥ 0 and let
λ = ℓ1 + . . . + ℓm. Since the length of P is at most ℓ, we have m ≤ ℓ, and for a given m, we have
λ ≤ ℓ − m. Also, P1 starts at vi and, since Pm ends at vn, it must start at vn−ℓm . There are less
than n possibilities for where the subpaths Pk begin for k = 2, . . . , m− 1. So, since there are m− 1
arcs of R in P , each of which appears with probability ǫ/n, the expected number of path from vi

to vn with length at most ℓ is at most

E [# paths from vi to vn with length ≤ ℓ] ≤
ℓ

∑

m=0

ℓ−m
∑

λ=0

∑

ℓ1+···+ℓm=λ

nm−2
( ǫ

n

)m−1

= n−1
ℓ

∑

m=0

ǫm−1
ℓ−m
∑

λ=0

(

λ + m − 1

m − 1

)

= n−1
ℓ

∑

m=0

ǫm−1

(

ℓ

m

)

≤ (ǫn)−1
ℓ

∑

m=0

(ǫℓ)m

m!

≤ (ǫn)−1eǫℓ.

(a) Since there are (1 + o(1))n/d vertices vi in V1, the probability that D contains a path of length
at most L from some vertex of V1 to vn is at most

(1 + o(1))(n/d)(ǫn)−1eǫL = (1 + o(1))d−1ǫ−1n1/3 = o(1).

(b) Since there are (1 + o(1))n/d vertices vi in V1, the expected number of paths of length at most
ℓ from some vertex of V1 to vn is at most (1 + o(1))(dǫ)−1eǫℓ and then for ℓ ≥ L, the Markov
inequality and the union bound show that

Pr
[

∃ℓ ≥ L : number paths ≥ e2ǫℓ
]

≤ (1 + o(1))(dǫ)−1
∑

ℓ≥L

e−ǫℓ = o(1).

�

Now consider a random walk W from v1 to vn. Let the parts of W between the use of backwards
arcs of D̄ be called attempts and let W ′ denote the last attempt of W (denoted successful). All
other attempts will be termed failures. Note that W ′ starts in V1.

At some point Algorithm A checks for (v1, vn)-connectivity by executing T steps of a random walk
from v1 and declaring connectivity if vn is reached. Also, this is to be repeated N times. Now
we must have T = nO(1), N = nO(1) in order that we can realize the counters in log-space. The
probability that any walk reaches vn can be bounded by T

∑n
ℓ=L(ln n − 2)−ℓe2ǫℓ ≤ (ln n)−L/2. The

factor T accounts for the ≤ T times at which the successful attempt may begin, e2ǫℓ bounds the
number of possible paths making up this attempt and (ln n−2)−ℓ bounds the probability we follow
this path. This is because every vertex visited after i0 on the successful attempt has out-degree at
least ln n − 2 whp. (Note that we may have deleted some of the backwards arcs when we XORed
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with R, but the probability that there exists some vertex for which 2 backwards arcs are deleted is
at most n

(

ln n
2

) (

ǫ
n

)2
= o(1).)

Thus the probability that we will declare v1 connected to vn is at most N(ln n)−L/2 = o(1) and the
algorithm fails with probability at least e−ǫ − o(1).

(This constructions works with any slowly growing function as the out-degree, instead of ln n. But
to reduce the in-degree, it seems that some additional work is necessary.)

5 Proof of Theorem 4

Suppose a heuristic exists which uses log-space and is successful whp on smooth instances of
(s, t)-connectivity. Then, using a log-space transducer, we convert a worst-case instance of (s, t)-
connectivity on n nodes into a smoothed instance of (s, t)-connectivity. Unfortunately, this reduc-
tion is not sufficient to show the existence of a heuristic implies NL ⊆ BPL, since a nondeterminis-
tic log-space simulator does not have the space to store the output of the log-space transducer. The
traditional technique for simulating a log-space machine on the output of a log-space transducer is
to, each time a bit of the input is requested, restart the transducer and simulate it until it produces
the bit in question. This is an inefficient use of time, but in exchange for taking longer we use only
logarithmically bounded space.

In our case, since the reduction is randomized, we somehow need the log-space transducer to produce
the same random instance each time. This seems to require “multiple access randomness” (also
known as the “wrong” definition of BPL and denoted BP⋆L). Nisan provides some evidence that
multiple access randomness is more powerful than read-once randomness in [24]. He also shows that
BP⋆L = almost-L ⊆ L/poly (where almost-L is the set of languages L for which µ(L ∈ LA) = 1,
where µ is the standard measure for the set of oracles. For more details on almost classes, see the
survey of Vollmer and Wagner [31].)

Given an instance D0 of (s, t)-connectivity on n nodes, we construct an instance D̄ on n3 nodes
by adding n3 − n isolated vertices. Call the original n vertices A and the additional vertices B.
We smooth the instance by XORing it with R ∼ Dn3,ǫ/n3 to form D = D̄ ⊕ R. (This is where
our log-space machine uses multiple access randomness; there is not room to write out this whole
graph, so we must generate the i-th bit from scratch every time the heuristic asks for it. The values
of D differ from D̄ with some small probability and they should differ in the same way every time
the heuristic asks for the i-th bit.)

The probability R contains an arc between any pair of vertices of A is bounded by n2(ǫ/n3) = o(1).
So if D0 is (s, t)-connected, then D is (s, t)-connected whp. Now, since the vertices of B are isolated
in D̄, they form a sparse random graph in D, so whp no component has size exceeding O(ln n)
(see, for example, [20, Theorem 5.4]). Thus, the probability that D contains a component of B
with arcs to and from vertices of A is less than O((n3 ln n)n2(ǫ/n3)2) = o(1). (Explanation: there
are n3 − n < n3 choices for one endpoint in B, and O(ln n) choices for the other, since it must be
in the same component. There are O(n) choices for each endpoint in A, and the probability that
each random arc appears is ǫ/n3.)

Since, whp, there are no arcs added to A and no components of B that serve as a shortcut between
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vertices of A, if D0 is not (s, t)-connected, then D is not (s, t)-connected whp. This is sufficient to
conclude that if a heuristic exists then NL ⊆ almost-L, since, given any D0, we could form D and
use the heuristic to solve it, which would give the correct answer to the original problem about D0

whp.

6 Proof of Theorem 5

We will show that if D̄ is k-linked then whp D contains disjoint paths of length at most 100kǫ−1 ln n
which witness this.

Fix s1, . . . , sk, t1, . . . , tk, and let P1, P2, . . . , Pk be vertex disjoint paths in D̄ such that Pr goes from
sr to tr.

We order the paths from longest to shortest and define r⋆ so that, for r ≤ r⋆, each Pr has length
at least 64kǫ−1 ln n. If r⋆ = 0 then there is nothing to prove, so suppose r⋆ ≥ 1.

We use the same type of argument as in the proof of Theorem 1 to show the existence of short
paths between sr and tr, but we work with all r ≤ r⋆ simultaneously to ensure that the paths that
we find are vertex disjoint. To this end, we define a sequence of collections of subsets of vertices
Si,r and Ti,r for i ≥ 0 and 1 ≤ r ≤ r⋆, (we also define Si,r = Pi for i ≥ 0 and r > ℓ). Let S0,r be
the first 32kǫ−1 ln n vertices of Pr and T0,r be the last 32kǫ−1 ln n vertices of Pr, for 1 ≤ r ≤ ℓ.

We will call a node useful if it is not within distance d = 5ǫ−1 of any node which we have previously
placed in any S or T set, where “distance” is the length of the shortest path in the undirected graph
corresponding to D̄.

To define Si,r, we check, for each node s′ in Si−1,r, if R contains an arc from s′ to some useful node
s′′. If it does, we add s′′ and all nodes reachable from s′′ by d steps in D̄ to Si,r. Note that if s′′ is
useful, this will add at least d nodes to Si,r.

Tj,r is defined analogously, but the paths lead towards tr instead of away from sr. For a node t′ in
Tj−1,r, we look for useful nodes t′′ where an arc of R is directed from t′′ to t′, and add all nodes
from which t′ is reachable by d steps in D̄.

To make this definition completely precise, we include a pseudocode description of the procedure
GenerateSets2 for forming Si,r and Tj,r in Figure 2. We use U to denote the set of useful nodes.
Also, the notation N+

d (S) denotes the set of nodes reachable in D̄ in at most d steps starting
from some node of S, the notation N−

d (S) denotes the set of nodes from which some node of S is
reachable in at most d steps in D̄, and Nd(S) = N+

d (S) ∪ N−
d (S). Finally, let ℓ = ⌈log2 n⌉.

The proof is largely the same at Theorem 2. We now must argue that when GenerateSets2 halts,
Pr[Sir,r ≤ n2/3 ∨ Tjr ,r ≤ n2/3] = o(n−2).

As with GenerateSets, the procedure GenerateSets2 is convenient for analysis because no arc of
R is examined more than once, due to the way the useful set U is maintained. Therefore, we can
employ the principle of deferred decisions find a simple expression for the conditional probability
that, for example, (s′, s′′) ∈ R at any step of the procedure.

We first note that at any step of GenerateSets2, |U | ≥ n−2k∆2d(ℓn2/3 +32ǫ−1 ln n) = (1−o(1))n.
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This is because at most ∆2d nodes are removed from U in any step where U is changed, and it is
changed at most n2/3 times in each inner loop, and the 2 inner loops are executed at most ℓk times
each. And, by similar considerations, the initialization of U has size at least n− 2k∆2d(32ǫ−1 ln n).

Now we consider the event Es′ given by “s′ ∈ Si′,r and there exists s′′ ∈ U with (s′, s′′) ∈ R.” Since
each arc appears in R independently with probability ǫ′/n, we can apply the principle of deferred
decisions. We condition on the entire history of the procedure, and for s′ ∈ Si′,r, we have that the
probability of Es′ depends only on the size of U , which is always (1 − o(1))n. So

Pr[Es′ | H] = 1 − (1 − p)|U | = (1 − o(1))ǫ.

Every time Es′ occurs, at least d vertices are added to Si′+1,r, so conditioned on |Si′,r|, the random
variable |Si′+1,r|/d stochastically dominates Zi′+1 ∼ B(|Si′,r|, (1−o(1))ǫ). Thus, letting Bi′+1 denote
the event “|Si′+1,r| ≤ 2|Si′,r|” we have

Pr
[

Bi′+1

∣

∣ Si′,r

]

≤ Pr

[

Zi′+1 ≤ E [Zi′+1] −
3

5
ǫ|Si′,r|

∣

∣

∣

∣

Si′,r

]

≤ e−
9

50
ǫ|Si′,r|,

where the final inequality is an application of the Chernoff bound in (2).

Note that, in order for the procedure to halt with |Sir,r| ≤ n2/3, it must be that some Bi′ occurs
for i′ ≤ i. Since |S0,r| = 32ǫ−1 ln n, we have that

Pr
[

|Sir,r| ≤ n2/3
]

≤ Pr

[ ir
⋃

i′=1

Bi′

]

≤
ir

∑

i′=1

Pr
[

Bi′
∣

∣ |Si′−1,r| ≥ 32kǫ−1 ln n
]

≤ ℓ · e−5k ln n = o(n−2k).

A similar argument shows that when the procedure halts we also have Pr
[

|Tjr,r| ≤ n2/3
]

= o(n−2k).

Now, to finish the short path from s to t, we generate the random arcs of R between Sir and Tjr

Pr
[

R ∩ (Sir × Tjr) = ∅
∣

∣ |Sir,r| ≥ n2/3 ∧ |Tjr,r| ≥ n2/3
]

≤ (1 − p)n4/3

≤ e−ǫn1/3

= o(n−2k).

Putting all the pieces together, we have k disjoint paths, each consisting of a path of length at most
32ǫ−1 ln n, followed by at most 2ℓ paths of length d+1 from D̄ joined by edges from R, and finishing
with a path of length at most 32ǫ−1 ln n, for total length which numerical calculation shows is less
than 100kǫ−1 ln n.

Since there are less than n2k choices for the terminal pairs, the union bound shows that all choices
of 2k nodes have short vertex disjoint paths linking them whp.

To conclude, we apply Lemma 6, which shows that these short paths will be discovered whp in
polynomial time.

�

7 Conclusion

Spielman and Teng introduced smoothed analysis to help explain the success of the simplex al-
gorithm. We have used smoothed analysis to examine the complexity of strong connectivity and
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(s, t)-connectivity. In the analysis of NP-hard optimization problems, one can judge the degree
of difficulty based on approximability. Here we provide another measure of difficulty, based on
the existence of heuristics for smoothed instances. We find that, according to this measure, strong
connectivity seems easier than (s, t)-connectivity. This claim is somewhat surprising, since we deter-
mine if a graph is strongly connected by repeatedly checking if pairs of vertices are (s, t)-connected.
However, strong connectivity is a more global property, so much so that in an instance like that
of Section 5, even though there exists some pair which Algorithm A incorrectly concludes is not
connected, there will almost always be another pair which Algorithm A correctly concludes is not
connected, so the net result will be correct.

There are several directions for future research. First, it is easy to come up with a measure
of difficulty; it is not easy to come up with a good measure. This paper represents a piece of
“experimental data”. Are there other problems which appear solvable or insolvable by heuristics
on smoothed instances? Does this property seem to relate to the difficulty of these problems in
practice? This is especially interesting in the case of NP-complete problems. (Questions of this
nature are investigated by Beier and Vöcking in [5].)

Second, it would be nice if Theorem 4 was about BPL instead of almost-L. It is not clear how to
achieve this, however. This complication seems related to the limitations of log-space computation.
An analogous result holds (by the same proof, even) for the possibility of heuristics for recognizing
if a digraph contains edge disjoint paths connecting 2 terminal pairs. In that case, the worst-case
problem is NP-complete, and since the reduction has room to store the perturbed copy, we can
show that if NP 6⊆ BPP then no heuristic is successful on smoothed instances. A similar question
addresses the growing out-degree case, as in Section 3. We know Algorithm A does not work,
but does some other heuristic? It would be nice to have a result of a form similar to Theorem 4
suggesting no heuristic works on graphs with unbounded out-degree.

Finally, it would be natural to extend these results to computing k-strong-connectivity and being
k-linked to work for smoothed instances. Here we face some unresolved technical difficulties.
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A NL-completeness

The standard proof of the NL-completeness of (s, t)-connectivity makes nodes correspond to ma-
chine configurations, and includes out-edges for each pair of machine configurations which can
follow directly one after the other. Since Turing machines have a finite set of symbols, there is
a finite set of configurations which can follow a given configuration. So the reduction produces a
graph with bounded in-degree and out-degree, and (s, t)-connectivity of bounded out-degree graphs
is NL-complete.

Now, given a bounded degree instance of (s, t)-connectivity, we reduce it to an instance of strong
connectivity by, for each node i 6= s, t, adding an arc from i to s and an arc from t to i. This
does not add any path from s to t, so not-connected instances stay not-connected. If the original
instance contained an (s, t)-path, the new instance is strongly connected, since there is an arc from
any vertex to s, a path from s to t, and an arc from t to any vertex.

Unfortunately, this does not have bounded degree, since we increased the out-degree of t and in-
degree of s both to n − 2. To avoid this, we add 2 complete undirected binary trees with depth
⌈log(n−2)⌉, (realized by directed arcs appearing in both directions for each undrected edge). Then
we direct an arc from t to the root of tree one, and also add arcs from leaves to the vertices of
the original graph (with at most one arc added per leaf). This has the same effect as adding the
arcs directly from t to everything, but increases the out-degree of t by 1 and adds O(n) vertices
with in-degree and and out-degree at most 3. Similarly, we connect the root of tree two to s and
connect each vertex of the original graph to a leaf of tree two, at most one vertex per leaf. This
has the same effect as adding the arcs directly from everything to s, but increases the in-degree of
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s by 1 and adds O(n) vertices with in-degree out-degree at most 3. This transformation can be
implemented by a log-space transducer, since it only requires a little bit-shifting to produce the
binary tree. �
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procedure GenerateSets2(Disjoint paths P1, P2, . . . , Pk)

U := V

for r = 1, . . . , r⋆ do
S0,r := first 32ǫ−1 ln n nodes of Pr.
T0,r := last 32ǫ−1 ln n nodes of Pr.
U := U \ Nd(S0,r ∪ T0,r)

ir := 0
jr := 0

end for
for r = r⋆ + 1, . . . , k do

U := U \ {nodes of Pr}
end for

while ∃r : (|Si,r| ≤ n2/3 and ir ≤ ℓ) or (|Tj,r| ≤ n2/3 and jr ≤ ℓ) do
if |Sir | ≤ n2/3 and ir ≤ ℓ then

Si+1,r := ∅
for all s′ ∈ Si,r do

if |Si+1,r| ≤ n2/3 and there exists s′′ ∈ U such that (s′, s′′) ∈ R then
Si+1,r := Si+1,r ∪ N+

d ({s′′})
U := U \ Nd(Si+1,r)

end if
end for
ir := ir + 1

end if

if |Tj,r| ≤ n2/3 and jr ≤ ℓ then
Tj+1,r := ∅
for all t′ ∈ Tj,r do

if |Tj+1,r| ≤ n2/3 and there exists t′′ ∈ U such that (t′′, t′) ∈ R then
Tj+1,r := Tj+1,r ∪ N−

d ({t′′})
U := U \ Nd(Tj+1,r)

end if
end for
jr := jr + 1

end if
end while

Figure 2: Pseudocode to generate Si,r and Tj,r for r = 1, . . . , r⋆
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