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Abstract14

We present a rigorous and precise analysis of the degree distribution in a dynamic graph model15

introduced by Pastor-Satorras et al. in which nodes are added according to a duplication-divergence16

mechanism, i.e. by iteratively copying a node and then randomly inserting and deleting some edges17

for a copied node. This graph model finds many applications in the real world from biology to social18

networks. It is discussed in numerous publications with only very few rigorous results, especially for19

the degree distribution.20

In this paper we focus on two related problems: the expected degree of a given node over the21

evolution of the graph and the expected and large deviation of the average degree in the graph. We22

present exact and asymptotic results showing that both quantities may decrease or increase over23

time depending on the model parameters. Our findings are a step towards a better understanding of24

aspects of the graph behavior such as degree distribution, symmetry—that eventually will lead to25

structural compression, an important open problem in this area.26
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1 Introduction36

On the one hand, it is widely accepted that we live in the age of data deluge. On a daily37

basis we observe the increasing availability of data collected and stored in various forms,38

as sequences, expressions, interactions or structures. A large part of this data is given in a39

complex form which conveys also a “shape” of the structure, such as network data. Examples40

are various biological networks, social networks or Web graphs.41

On the other hand, compression is a well-known area of information theory which mostly42

deals with the compression of sequences. Yet, we note that already in 1953 Shannon argued43

as to the importance of extending the theory to data without a linear structure, such as44
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lattices [16]. Recently, we saw some work directed towards more complex data structures45

such as trees [10, 15] and graphs [5, 3, 13]. Compression for such non-conventional types of46

data has become an important issue, since e.g. graph data are nowadays widely used in Big47

Data computing [11]. It is therefore an imperative to provide efficient storage and processing48

to speed up computations and lower memory and hardware costs.49

The recent survey by Besta and Hoefler [4] collected over 450 papers concerned with the50

topic of lossless graph compression. There were several well-known heuristics proposed for51

the compression of real-world graphs, such as the algorithm by Adler and Mitzenmacher52

[2] devised for the Web graph. But the first rigorous analysis of an asymptotically optimal53

algorithm for Erdős-Renyi graphs was presented in [5], while recently it was extended to the54

preferential attachment model (also known as Barábasi-Albert) graphs [14]. However, many55

real-world networks such as protein-protein and social networks follow a different model56

of generation known as the duplication-divergence model in which new nodes are added to57

the network as copies of existing nodes together with some random divergence, resulting in58

differences among the original nodes and their copies. In this paper we focus on analyzing59

the degree distribution – a first step towards graph compression – in such a network, which60

we first define more precisely.61

Consider the most popular duplication-divergence model as introduced by Pastor-Satorras62

et al. [17], referred to below as DD(t, p, r). It is defined as follows: starting from a given63

graph on t0 vertices (labeled from 1 to t0) we add subsequent vertices labeled t0, t0 + 1, . . . ,64

t as copies of some existing vertices in the graph and then we introduce divergence by adding65

and removing some edges connected to the new vertex independently at random. Finally, we66

remove the labels and return the structure, i.e. the unlabeled graph.67

In order to pursue compression and other algorithms (e.g., finding the node arrivals) for68

duplication-divergence model we need to observe [5, 13] the close affinity between (structural)69

compression and symmetries of the graph. In turn, graph symmetries (motivated further70

below), are closely related to the degree distribution, which is the main topic of this paper.71

Indeed, as discussed in [13] a graph is asymmetric if two properties hold: (i) new nodes72

do not make the same choices among old nodes, and (ii) old nodes have distinct degrees.73

Thus the degree distribution plays a crucial role in many graph algorithms including graph74

compression and others (e.g., inferring node arrival in such dynamic networks [?]).75

Before we summarize our main results on the degree distribution in DD(t, p, r) networks,76

let us explore further the connection between compression and graph symmetries. The77

linking concepts here are the graph entropy H(G) (also known as the labeled graph entropy)78

and structural graph entropy H(S(G)) (also known as the unlabeled graph entropy). Both79

quantities depend deeply on the degree distribution. Let Gn be the set of all labeled graphs80

on n vertices (with vertices having labels 1, 2, . . . , n) and Sn be the set of all unlabeled81

graphs on n vertices. Then, the graph entropy and the structural graph entropy are defined82

as83

H(G) =
∑
G∈Gn

Pr[G] log Pr[G],84

H(S(G)) =
∑

S(G)∈Sn

Pr[S(G)] log Pr[S(G)],85

86

where S(G) is the structure of graph G, that is, the graph G with labels removed.87

It turns out that for many well-known random graph models, the structural graph entropy88

can be expressed by a following formula:89

H(G)−H(S(G)) = E log |Aut(G)| − E log |Γ(G)|90
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91

where H(G) and H(S(G)) are, respectively, the entropy of the labelled and unlabelled graph92

generated by a given model, Aut(G) is the automorphism group of the graph G (representing93

graph symmetries) and Γ(G) is the set of all re-labelings of G that give a graph which can94

be generated by the given graph model with positive probability [13].95

In fact, many real-world networks, such as protein-protein and social networks, have been96

shown to contain lots of symmetries, as presented in Table 1. This is in stark contrast to the97

Erdős-Renyi and preferential attachment models, as both generate completely asymmetric98

graphs with high probability , that is log |Aut(G)| = 0 [5, 13], and therefore we do not99

consider these models as likely matches for these kinds of networks.100

Network Nodes Edges log |Aut(G)|

Baker’s yeast protein-protein interactions 6,152 531,400 546
Fission yeast protein-protein interactions 4,177 58,084 675
Mouse protein-protein interactions 6,849 18,380 305
Human protein-protein interactions 17,295 296,637 3026
ArXiv high energy physics citations 7,464 116,268 13
Simple English Wikipedia hyperlinks 10,000 169,894 1019
CollegeMsg online messages 1,899 59,835 232

Table 1 Symmetries of the real-world networks [18, 21].

Consequently, in order to study and understand the behavior of real-world networks we101

need dynamic graph models that naturally generate internal graph symmetries. It turns out102

that the discussed duplication-divergence model is such a candidate. However, at the moment103

there do not exist any rigorous general results on symmetries for such graphs. However, if we104

generate experimentally multiple random graphs from this model with different parameters,105

we observe the pattern presented in Figure 1: there is a large set of parameters for which the106

generated graphs are highly symmetric, as exhibited by the size of their automorphisms group107

(expressed in a logarithmic scale), log |Aut(G)|. Moreover, as it was shown by Sreedharan et108

al. [18], the possible values of the parameters for real-world networks under the assumption109

that they were generated by this model lie in the blue-violet area, indicating a lot of symmetry.110

In view of these, it is imperative that we understand symmetry in duplication-divergence111

networks. Overall, the question of symmetry is tightly related to the behavior of the degree112

distribution, as already discussed above. We note that in the previous work on various graph113

models, such as preferential attachment [13], the analysis of the degree distribution was a114

vital step in proving results on structural compression. For this, as discussed in [13], we need115

to study the average and large deviation of their degree sequence, which is the main topic of116

this conference paper.117

Turowski et al. showed in [20] that for the special case of p = 1, r = 0 the expected118

logarithm of the number of automorphisms for graphs on t vertices is asymptotically Θ(t log t),119

which indicates a lot of symmetry. Therefore, they were able to obtain asymptotically optimal120

compression algorithms for graphs generated by such models. However, their approach used121

certain properties of the model which cannot be applied for different parameter values.122

For r = 0 and p < 1, it was recently proved by Hermann and Pfaffelhuber in [7] that123

depending on value of p either there exists a limiting distribution of degree frequencies with124

almost all vertices isolated or there is no limiting distribution as t → ∞. Moreover, it is125

shown in [12] that the number of vertices of degree one is Ω(ln t) but again the precise rate126

CVIT 2016
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Figure 1 Symmetry of graphs (log |Aut(G)|) generated by Pastor-Satorras model.

of growth of the number of vertices with degree k > 0 is as yet unknown. Recently, also for127

r = 0, Jordan [9] showed that the non-trivial connected component has a degree distribution128

which conforms to a power-law behavior, but only for p < e−1. In this case the exponent is129

equal to γ which is the solution of 3 = γ + pγ−2.130

In this paper we approach the problem of the degree distribution from a different131

perspective. We focus on presenting exact and precise asymptotic results for the expected132

degree of a given vertex s at time t (denoted by degt(s)) and the average degree in the graph133

(denoted by D(Gt)).134

We present in Theorems 2–7 exact and precise asymptotics of these quantities when135

t→∞. We show that E[degt(s)] and E[D(Gt)] exhibit phase transitions over the parameter136

space: as a function of p and r. In particular, we find that E[degt(s)] grows respectively137

like
(
t
s

)p, √ t
s log s or

(
t
s

)p
s2p−1, depending whether p < 1

2 , p = 1
2 or p > 1

2 . Furthermore,138

E[D(Gt)] is either Θ(1), Θ(log t) or Θ(t2p−1) for the same ranges of p. We also determine139

the exact constants for the leading terms that strictly depend on p, r, t0 and the structure140

of the seed graph Gt0 . This confirms the empirical findings of [8] regarding the seed graph141

influence on the structure of Gt.142

We also present some results concerning the the tail of the asymptotic distribution of143

the variables D(Gt) and degt(s) for s = O(1). It turns out that it is sufficient to only go a144

polylogarithmic factor under or over the mean to obtain a polynomial tail, that is to get an145

O(t−A) tail probability.146

These findings allow us to better understand why the DD(t, p, r) model differs quite147

substantially from other graph models such as the preferential attachment model [13, 22]. In148

particular, we observe that the expected degree behaves differently as t→∞ for different149

values of s and p. For example, if p > 1
2 , then for s = O(1) (that is, for very old nodes)150

we observe that E[degs(t)] = Ω(tp) while for s = Θ(t) (i.e., very young nodes) we have151

E[degs(t)] = O(t2p−1). This behavior is very different than the degree distribution for, say,152

the preferential attachment model, for which the expected degree of a vertex s in a graph on153

t vertices is of order
√
t/s for s up to an order of tε for some constant ε > 0 [13].154

We now present our main results on degree distributions. All proofs are delegated to155

appendices.156
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2 Main results157

In this section we present our main results with proofs and auxiliary lemmas presented in158

the respective appendices.159

We use standard graph notation, e.g. from [6]: V (G) denotes the set of vertices of graph
G, NG(u) – the set of neighbors of vertex u in G, degG(u) = |NG(u)| – the degree of u in G.
For brevity we use the abbreviations for Gt, e.g. degt(u) instead of degGt(u). All graphs are
simple. Let us also introduce the average degree D(Gt) of G as

D(G) = 1
|V (G)|

∑
v∈V (G)

degG(u).

It is also known in the literature as the first moment of the degree distribution, and it is160

related to the number of edges.161

Formally, we define the model DD(t, p, r) as follows: let 0 ≤ p ≤ 1 and 0 ≤ r ≤ t0 be the162

parameters of the model. Let also Gt0 be a graph on t0 vertices, with V (Gt0) = {1, . . . , t0}.163

Now, for every t = t0, t0 + 1, . . . we create Gt+1 from Gt according to the following rules:164

1. add a new vertex t+ 1 to the graph,165

2. pick vertex u from V (Gt) = {1, . . . , t} uniformly at random – and denote u as parent(t+ 1),166

3. for every vertex i ∈ V (Gt):167

a. if i ∈ Nt(parent(t+ 1)), then add an edge between i and t+ 1 with probability p,168

b. if i /∈ Nt(parent(t+ 1)), then add an edge between i and t+ 1 with probability r
t .169

We focus now on the expected value of degt(s), that is, the degree of node s at time t.170

We start with a recurrence relation for E[degt(s)]. Observe that for any t ≥ s we know that171

vertex s may be connected to vertex t+ 1 in one of the following two cases:172

either s ∈ Nt(parent(t+ 1)) (which holds with probability degt(s)
t ) and we add an edge173

between s and t+ 1 (with probability p),174

or s /∈ Nt(parent(t+ 1)) (with probability t−degt(s)
t ) and we an add edge between s and175

t+ 1 (with probability r
t ).176

From the definition presented above we directly obtain the following recurrence for177

E[degt(s)]:178

E[degt+1(s)
∣∣ Gt] =

(
degt(s)

t
p+ t− degt(s)

t

r

t

)
(degt(s) + 1)179

+
(

degt(s)
t

(1− p) + t− degt(s)
t

(
1− r

t

))
degt(s)180

= degt(s)
(

1 + p

t
− r

t2

)
+ r

t
.181

182

After removing the conditioning on Gt, we find:183

E[degt+1(s)] = E[degt(s)]
(

1 + p

t
− r

t2

)
+ r

t
. (1)184

185

This recurrence falls under a general recurrence of the form186

E[f(Gn+1)
∣∣ Gn] = f(Gn)g1(n) + g2(n) (2)187

where g1 and g2 are given functions. As we shall see these type of recurrences occur a few188

times in this paper, therefore we need appropriate tools to solve it. We derive a series of189

lemmas (Lemma 9–14), providing exact and asymptotic behavior of E[f(Gn+1). They are190

CVIT 2016
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based on well-known martingale theory and they use various asymptotic properties of Euler191

gamma function. For convenience, the associated lemmas with their proofs were moved to192

Appendix A.193

First, we use Lemma 9 to obtain the equation for the exact behavior of the degree of a194

given node s at time t:195

E[degt(s)] = E[degs(s)]
t−1∏
k=s

(
1 + p

k
− r

k2

)
+

t−1∑
j=s

r

j

t−1∏
k=j+1

(
1 + p

k
− r

k2

)
. (3)196

197

However, we see that to solve this recurrence we need to know the expected value of degs(s)198

for all s ≥ t0, which we tackle next.199

Turning our attention to this variable we find the following lemma connecting E[degt(t)]200

and the average degree E[D(Gt)] (see proof in Appendix B):201

I Lemma 1. For any t ≥ t0 it holds that202

E[degt+1(t+ 1)] =
(
p− r

t

)
E[D(Gt)] + r.203

204

It is quite intuitive that the expected degree of a new vertex behaves as if we would choose a205

vertex with the average degree E[D(Gt)] as its parent, and then copy p fraction of its edges,206

adding also almost r more edges to all other vertices in the graph.207

Thus to complete our analysis we need to find E[D(Gt)], that is, the average degree of208

Gt. Using a similar argument to the above, we find the following recurrence for the average209

degree of Gt+1:210

E[D(Gt+1)
∣∣ Gt] = 1

t+ 1E
[
t+1∑
i=1

degt+1(i)
∣∣ Gt]211

= 1
t+ 1E

[
t∑
i=1

degt(i) + 2 degt+1(t+ 1)
∣∣ Gt]212

= 1
t+ 1

(
t∑
i=1

degt(i) + 2E
[
degt+1(t+ 1)

∣∣ Gt])213

= 1
t+ 1

(
tD(Gt) + 2E[degt+1(t+ 1)

∣∣ Gt]) = D(Gt)
(

1 + 2p− 1
t+ 1 −

2r
t(t+ 1)

)
+ 2r
t+ 1 .214

215

Therefore, after removing the conditioning on Gt:216

E[D(Gt+1)] = E[D(Gt)]
(

1 + 2p− 1
t+ 1 −

2r
t(t+ 1)

)
+ 2r
t+ 1 . (4)217

218

This is again recurrence of the form (2) that we can handle in a uniform manner as discussed219

above.220

Finally, we obtain a recurrence which does not refer to any other variable defined over Gt221

or Gt+1. We can solve this recurrence by using Lemma 9 from the next section and derive222

Theorem 2. The proof is given in Appendix C.223

I Theorem 2. For all t ≥ t0 we have224

E[D(Gt)] =Γ(t+ c3)Γ(t+ c4)
Γ(t)Γ(t+ 1)225

(
D(Gt0) Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4) + 2r
t−1∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)
,226
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227

where c3 = p+
√
p2 + 2r, c4 = p−

√
p2 + 2r, and Γ(z) is the Euler gamma function.228

Furthermore, asymptotically as t→∞ we find229

E[D(Gt)] =



2r
1−2p (1 + o(1)) if p < 1

2 and r > 0,
2r ln t (1 + o(1)) if p = 1

2 and r > 0,
t2p−1 Γ(t0)Γ(t0+1)

Γ(t0+c3)Γ(t0+c4) (1 + o(1))×(
D(Gt0) +

2rt0 3F2
[ t0+1,t0+1,1
t0+c3+1,t0+c4+1 ;1

]
t20+2pt0−2r

)
if p > 1

2 or r = 0,

230

231

where D(Gt0) is the average degree of the initial graph Gt0 and232

3F2
[ a1,a2,a3

b1,b2 ; z
]

=
∞∑
l=0

(a1)l(a2)l(a3)l
(b1)l(b2)l

zl

l!233

is the generalized hypergeometric function with (a)l = a(a+ 1) . . . (a+ l − 1), (a)0 = 1 the234

rising factorial (see [1] for details).235

As we see, the asymptotic behavior of E[D(Gt)] has a threefold characteristic: when p < 1
2236

and r > 0, the majority of the edges are not created by copying them from parents, but237

actually by attaching them according to the value of r. For p = 1
2 and r > 0 we note the238

curious situation of a phase transition (still with non-copied edges dominating), and only if239

either p > 1
2 or r = 0 do the edges copied from the parents contribute asymptotically the240

major share of the edges.241

Finally, we turn to estimations of the tails of the distribution of D(Gt). It turns out that242

this variable is concentrated in the sense that with probability 1−O(t−A) it is contained243

only within polylogarithmic ratio from the mean.244

More specifically, the right tail of the distributions may be bounded as following:245

I Theorem 3. Asymptotically it holds that246

Pr[D(Gt) ≥ AC log2(t)] = O(t−A) for p < 1
2 ,247

Pr[D(Gt) ≥ AC log3(t)] = O(t−A) for p = 1
2 ,248

Pr[D(Gt) ≥ AC t2p−1 log2(t)] = O(t−A) for p > 1
2 .249

250

for some fixed constant C > 0 and any A > 0.251

Similarly, we have the behavior of the left tail:252

I Theorem 4. For p > 1
2 asymptotically it holds that253

Pr
[
D(Gt) ≤

C

A
t2p−1 log−3−ε(t)

]
= O(t−A).254

255

for some fixed constant C > 0 and any ε,A > 0.256

Note that since D(Gt) = O(log t) for p ≤ 1
2 , the bounds of the above form are trivial and257

not interesting.258

Now we return to the computation of the expected values of E[degt(t)] and E[degt(s)].259

By applying Theorem 2 to Lemma 1 we obtain the following corollary.260

CVIT 2016
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I Corollary 5. For all t > t0 it is true that261

E[degt(t)] = (pt− p− r) Γ(t+ c3 − 1)Γ(t+ c4 − 1)
Γ(t)2262 (

D(Gt0) Γ(t0)Γ(t0 + 1)
Γ(t0 + c3)Γ(t0 + c4) + 2r

t−2∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)
+ r,263

264

where c3, c4 are as above.265

Moreover, asymptotically as t→∞ it holds that266

E[degt(t)] =



pt2p−1 Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)D(Gt0)(1 + o(1)) if p ≤ 1

2 , r = 0,
r

1−2p (1 + o(1)) if p < 1
2 , r > 0,

2rp ln t (1 + o(1)) if p = 1
2 , r > 0,

Γ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)pt

2p−1(1 + o(1)) if p > 1
2 ,(

D(Gt0) + 2rt0
t20+2pt0−2r 3F2

[ t0+1,t0+1,1
t0+c3+1,t0+c4+1 ; 1

])
267

268

with the same notation as in Theorem 2.269

As was mentioned above, the asymptotic expected behavior is similar to the behavior of270

E[D(Gt)].271

We are finally in a position to state the exact and asymptotic expressions for E[degt(s)].272

This we need to split in two parts: first, for the initial vertices of Gt0 (1 ≤ s ≤ t0) and all273

other vertices (t0 < s < t). Note that the first of the theorems may be derived directly from274

Eqn. (3), (using only lemmas from Appendix A) and the second one requires Corollary 5.275

For the proofs of both theorems see Appendix C.276

I Theorem 6. For all 1 ≤ s ≤ t0 it is true that277

E[degt(s)] = Γ(t+ c1)Γ(t+ c2)
Γ(t)2278 [

degt0(s) Γ(t0)2

Γ(t0 + c1)Γ(t0 + c2) + r

t−1∑
j=t0

Γ(j)Γ(j + 1)
Γ(j + c1 + 1)Γ(j + c2 + 1)

]
,279

280

where c1 = p+
√
p2+4r
2 , c2 = p−

√
p2+4r
2 , c3 and c4 as above.281

Asymptotically as t→∞:282

283

E[degt(s)] =



r ln t (1 + o(1)) if p = 0 and r > 0,

tp

[
degt0(s) Γ(t0)2

Γ(t0+c1)Γ(t0+c2)

+ rΓ(t0)Γ(t0+1)
Γ(t0+c1+1)Γ(t0+c2+1) 3F2

[ t0,t0+1,1
t0+c1+1,t0+c2+1 ; 1

]]
(1 + o(1)) if p > 0 or r = 0.

284

285

Here we observe only two regimes. In the first, for the case when p = 0, when edges286

are added mostly due to the parameter r, we have logarithmic growth of E[degt(s)]. In the287

second one, edges attached to s accumulate mostly by choosing vertices adjacent to s as288

parents of the new vertices, and therefore the expected degree of s grows proportionally to289

tp.290
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I Theorem 7. For all t0 < s < t it is true that291

E[degt(s)] = Γ(t+ c1)Γ(t+ c2)
Γ(t)2292 [

(ps− p− r) Γ(s+ c3 − 1)Γ(s+ c4 − 1)
Γ(s+ c1)Γ(s+ c2)293

(
D(Gt0) Γ(t0)Γ(t0 + 1)

Γ(t0 + c3)Γ(t0 + c4) + 2r
s−2∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

)
294

+ rΓ(s)2

Γ(s+ c1)Γ(s+ c2) + r

t−1∑
j=s

Γ(j)Γ(j + 1)
Γ(j + c1 + 1)Γ(j + c2 + 1)

]
,295

296

where c1–c4 are as above.297

Asymptotically as t→∞:298

(i) for s = O(1)299

E[degt(s)] = tp(1 + o(1))300 [
(ps− p− r) Γ(s+ c3 − 1)Γ(s+ c4 − 1)

Γ(s+ c1)Γ(s+ c2)301 D(Gt0) Γ(t0)Γ(t0 + 1)
Γ(t0 + c3)Γ(t0 + c4) + 2r

s−2∑
j=t0

Γ(j + 1)2

Γ(j + c3 + 1)Γ(j + c4 + 1)

302

+ rΓ(s)2

Γ(s+ c1)Γ(s+ c2)

(
1 + 3F2

[ s,s+1,1
s+c1+1,s+c2+1 ; 1

] s

s2 + ps− r

)]
.303

304

(ii) for s = ω(1) and s = o(t)305

E[degt(s)] =



D(Gt0) pΓ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4)

(
t
s

)p
s2p−1(1 + o(1)) if p ≤ 1

2 , r = 0,
r log

(
t
s

)
(1 + o(1)) if p = 0, r > 0,

r(1−p)
p(1−2p)

(
t
s

)p (1 + o(1)) if 0 < p < 1
2 , r > 0,

r
√

t
s log s (1 + o(1)) if p = 1

2 , r > 0,(
D(Gt0) + 2rt0

t20+2pt0−2r 3F2
[ t0+1,t0+1,1
t0+c3+1,t0+c4+1 ; 1

])
pΓ(t0)Γ(t0+1)

Γ(t0+c3)Γ(t0+c4)
(
t
s

)p
s2p−1(1 + o(1)) if p > 1

2 .

306

307

(iii) for s = ct− o(t), 0 < c ≤ 1,308

E[degt(s)] =



D(Gt0) pΓ(t0)Γ(t0+1)
Γ(t0+c3)Γ(t0+c4) t

2p−1cp−1(1 + o(1)) if p ≤ 1
2 , r = 0,

r (1− log c) (1 + o(1)) if p = 0, r > 0,(
r(1−p)

p(1−2p)cp −
r
p

)
(1 + o(1)) if 0 < p < 1

2 , r > 0,
r√
c

log t (1 + o(1)) if p = 1
2 , r > 0,(

D(Gt0) + 2rt0
t20+2pt0−2r 3F2

[ t0+1,t0+1,1
t0+c3+1,t0+c4+1 ; 1

])
pΓ(t0)Γ(t0+1)

Γ(t0+c3)Γ(t0+c4) t
2p−1cp−1(1 + o(1)) if p > 1

2 .

309

310

The theorem above shows that there is a threefold behavior with respect to the range311

of s: s small (constant), s medium (growing, but slower than t), and s large (when s is312

directly proportional to t). In the first case we observe a behavior very similar to the one313
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for 1 ≤ s ≤ t0. In the second case we have a dependency on both s and t depending on the314

values of p and r. When the majority of the edges are created due to the copying (for r = 0315

or p > 1
2 ), then E[degt(s)] = Θ

((
t
s

)p
s2p−1). When the majority of the edges are created316

due to the random addition (for r > 0 and p < 1
2 ), then E[degt(s)] = Θ

((
t
s

)p). Finally, we317

observe a phase transition for p = 1
2 , r = 0 with E[degt(s)] = Θ

((
t
s

)p log s
)
. In the last case,318

the rates of growth of E[degt(s)] are exactly like for E[degt(t)]: Θ(1), Θ(log t) or Θ(t2p−1)319

respectively for different ranges of p and r.320

Note that given the results presented in [18] and [21] we expect the real-world networks321

to fit the range p > 1
2 and r > 0.322

Finally, we derive the theorems showing the concentration of the quantity degt(s), given323

Gs. It is possible to show the following results:324

I Theorem 8. Asymptotically for s = O(1) it holds that325

Pr[degt(s) ≥ AC tp log2(t)] = O(t−A)326
327

for some fixed constant C > 0 and any A > 0.328

XYZ
329

We note additionally, that since degt(t) is closely dependent on the degree distribution in330

Gt−1, it is very unlikely that for s close to t the analogous bounds for degt(s) exist.331

3 Discussion332

In this paper we have focused on a rigorous and precise analysis of the average degree of a333

given node over the evolution of the network as well as the average degree. We present exact334

and asymptotic results showing the behavior of important graph variables such as D(Gt),335

degt(t) and degt(s).336

It is worth noting that it is the parameter p that drives the rate of growth of expected337

value for these parameters. The value of the parameter r and the structure of the starting338

graph Gt0 impact only the leading constants and lower order terms.339

We note that there are several phase transitions of these quantities as a function of p340

and r. However, as demonstrated in [18], it is seems that all real-world networks fall within341

a range 1
2 < p < 1, r > 0 – and this case should probably be the main topic of further342

investigation.343

The proposed methodology can be easily extended to obtain variance and higher moments344

of the above quantities. Future work may include investigations into both the large deviation345

of the degree distribution as well as proving properties of the degree distribution (i.e., the346

number of nodes of degree k) as a function of both degree and time t. This, in turn, would347

allow us to differentiate between the ranges of parameters for which we obtain an asymmetric348

graph with high probability and the range where non-negligible symmetry occurs. Estimation349

of the graph entropy and the structural entropy would give us a way towards our ultimate350

aim: good quality (and efficient) algorithms which would match the entropy for this graph351

model.352
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A Useful lemmas403

Here we derive a series of lemmas useful for the analysis of the following type of recurrence404

E[f(Gn+1)
∣∣ Gn] = f(Gn)g1(n) + g2(n) (5)405

for some nonnegative functions g1(n), g2(n) and a Markov process Gn. It should be again406

noted that our recurrences for E[degt(s)] and E[D(Gt)] (e.g., see (1) and (4)) fall under this407

pattern.408

First lemma is a generalization of a result obtained in [7], where only the case g1(n) = 1+ a
n ,409

a > 0, was analyzed.410

I Lemma 9. Let (Gn)∞n=n0
be a Markov process for which Ef(Gn0) > 0 and (5) holds with411

g1(n) > 0, g2(n) ≥ 0 for all n = n0, n0 + 1, . . .. Then412

(ii) The process (Mn)∞n=n0
defined by Mn0 = f(Gn0) and413

Mn = f(Gn)
n−1∏
k=n0

1
g1(k) −

n−1∑
j=n0

g2(j)
j∏

k=n0

1
g1(k)414

is a martingale.415

(ii) For all n ≥ n0416

Ef(Gn) = f(Gn0)
n−1∏
k=n0

g1(k) +
n−1∑
j=n0

g2(j)
n−1∏
k=j+1

g1(k)417

=
n−1∏
k=n0

g1(k)

f(Gn0) +
n−1∑
j=n0

g2(j)
j∏

k=n0

1
g1(k)

 .418

419

Proof. Observe that420

E[Mn+1
∣∣ Gn] = E[f(Gn+1)

∣∣ Gn]
n∏

k=n0

1
g1(k) −

n∑
j=n0

g2(j)
j∏

k=n0

1
g1(k)421

= f(Gn)
n−1∏
k=n0

1
g1(k) −

n−1∑
j=n0

g2(j)
j∏

k=n0

1
g1(k) = Mn422

423

which proves (i). Furthermore, after some algebra and taking expectation with respect to424

Gn we arrive at425

Ef(Gn) = E[Mn]
n−1∏
k=n0

g1(k) +
n−1∑
j=n0

g2(j)
j∏

k=n0

1
g1(k)

n−1∏
k=n0

g1(k)426

= f(Gn0)
n−1∏
k=n0

g1(k) +
n−1∑
j=n0

g2(j)
n−1∏
k=j+1

g1(k)427

428

which completes the proof. J429

We now observe that any solution of recurrences of type (5) contains sophisticated products430

and sum of products (e.g., see Eqn. (3)) with which we must deal to find asymptotics. The431

next lemma shows how to handle such products.432
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I Lemma 10. Let W1(k), W2(k) be polynomials of degree d with respective roots ai, bi433

(i = 1, . . . , d), that is, W1(k) =
∏d
i=1(k − ai) and W2(k) =

∏d
j=1(k − bj). Then434

n−1∏
k=n0

W1(k)
W2(k) =

d∏
i=1

Γ(n− ai)
Γ(n− bi)

Γ(n0 − bi)
Γ(n0 − ai)

.435

436

Proof. We have437

n−1∏
k=n0

W1(k)
W2(k) =

n−1∏
k=n0

d∏
i=1

k − ai
k − bi

=
d∏
i=1

n−1∏
k=n0

k − ai
k − bi

=
d∏
i=1

Γ(n− ai)
Γ(n− bi)

Γ(n0 − bi)
Γ(n0 − ai)

438

439

which completes the proof. J440

The next lemma presents well-known asymptotic expansion of the gamma function but441

we include it here for the sake of completeness.442

I Lemma 11 (Abramowitz, Stegun [1]). For any a, b ∈ R if n→∞, then443

Γ(n+ a)
Γ(n+ b) = na−b

∞∑
k=0

(
a− b
k

)
B

(a−b+1)
k (a) · n−k444

= na−b
(

1 + (a− b)(a+ b− 1)
2n +O

(
1
n2

))
,445

446

where B(l)
k (x) are the generalized Bernoulli polynomials.447

Now we deal with sum of products as seen in (5). In particular, we are interested in the
following sum of products

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

with a =
∑k
i=1 ai, b =

∑k
i=1 bi. In the next three lemmas we consider three cases: a+ 1 > b,448

a+ 1 = b and a+ 1 < b.449

I Lemma 12. Let ai, bi ∈ R (k ∈ N) with a =
∑k
i=1 ai, b =

∑k
i=1 bi such that a + 1 > b.450

Then it holds asymptotically for n→∞ that451

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

= na−b+1

a− b+ 1 +O
(
nmax{a−b,0}

)
452

453

Proof. We estimate the sum using Lemma 11 and the Euler-Maclaurin formula [19, p. 294]454

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
n∑

j=n0

ja−b
(

1 +O

(
1
j

))
=
∫ n

n0

ja−b
(

1 +O

(
1
j

))
dj455

=
[
ja−b+1

(
1

a− b+ 1 +O

(
1
j

))]n
n0

= na−b+1
(

1
a− b+ 1 +O

(
1
n

))
+O(1)456

457

which completes the proof. J458

I Lemma 13. Let ai, bi ∈ R (k ∈ N) with a =
∑k
i=1 ai, b =

∑k
i=1 bi such that a + 1 = b.459

Then asymptotically460

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

= lnn+O (1)461

462
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Proof. We proceed as before463

n∑
j=n0

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
n∑

j=n0

1
j

(
1 +O

(
1
j

))
=
∫ n

n0

1
j

(
1 +O

(
1
j

))
dj = lnn+O(1)464

465

which completes the proof. J466

I Lemma 14. Let ai, bi ∈ R (i = 1, . . . , k, k ∈ N) with a =
∑k
i=1 ai, b =

∑k
i=1 bi such that467

a+ 1 < b. Then it holds for every n ∈ N+ that468

∞∑
j=n

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
∏k
i=1 Γ(n+ ai)∏k
i=1 Γ(n+ bi)

k+1Fk

[
n+a1,...,n+ak,1
n+b1,...,n+bk ; 1

]
469

470

where pFq[ a
b ; z] is the generalized hypergeometric function. Moreover it is true that asymp-471

totically472

∞∑
j=n

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

= na−b+1
(

1
b− a− 1 +O

(
1
n

))
.473

474

Proof. The proof of the first formula follows directly from the definition of the generalized475

hypergeometric function. Second formula follows from Lemma 11, as we know that for476

n→∞:477

∞∑
j=n

∏k
i=1 Γ(j + ai)∏k
i=1 Γ(j + bi)

=
∞∑
j=n

ja−b
(

1 +O

(
1
j

))
=
∫ ∞
n

ja−b
(

1 +O

(
1
j

))
dj478

=
[
ja−b+1

(
1

b− a− 1 +O

(
1
j

))]∞
n

= na−b+1
(

1
b− a− 1 +O

(
1
n

))
479

480

as desired. J481

B Proof of Lemma 1482

Now we turn our attention to the proof of Lemma 1. We first observe that it follows from483

the definition of the model that the degree of the new vertex t+ 1 is the total number of484

edges from t+ 1 to Nt(parent(t+ 1)) (chosen independently with probability p) and to all485

other vertices (chosen independently with probability r
t ). Note that it can be expressed as a486

sum of two independent binomial variables487

degt+1(t+ 1) ∼ Bin (degt(parent(t+ 1)), p) + Bin
(
t− degt(parent(t+ 1)), r

t

)
.488

489

Hence490

E[degt+1(t+ 1)
∣∣ Gt] =

t∑
k=0

Pr(degt(parent(t+ 1)) = k)
k∑
a=0

(
k

a

)
pa(1− p)k−a491

t−k∑
b=0

(
t− k
b

)(r
t

)b (
1− r

t

)t−k−b
(a+ b)492

=
t∑

k=0
Pr(degt(parent(t+ 1)) = k)

(
pk + r

t
(t− k)

)
493
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=
(
p− r

t

) t∑
k=0

kPr(degt(parent(t+ 1)) = k) + r.494

495

Since parent sampling is uniform, we know that Pr(parent(t+ 1) = i) = 1
t and therefore496

D(Gt) =
t∑
i=1

Pr(parent(t+ 1) = i) degt(i) =
t∑

k=0
kPr(degt(parent(t+ 1)) = k).497

498

Combining the last two equations above with the law of total expectation we finally establish499

Lemma 1.500

C Proofs of Theorem 2 and Theorems 6–7501

We start with the proof of Theorem 2. First, we observe that by combining Eqn. (4) with502

Lemmas 9 and 10 we prove the first part of Theorem 1. In similar fashion, the second part503

of Theorem 2 follows directly from the first part, combined with Lemmas 12, 13 and 14 for504

the respective ranges of p.505

Finally, we proceed to the proof of Theorems 6 and 7. First, we apply Lemma 9 with506

g1(t) = 1 + p
t −

r
t2 and g2(t) = r

t to Eqn. (1) and we obtain aforementioned Eqn. (3). Now507

we combine this result with Lemma 10. First, we if we apply it for 1 ≤ s ≤ t0 we obtain508

directly the exact formula in Theorem 6.509

Similarly, for Theorem 7, we get the almost identical formula. The only difference is that510

we do not stop the recurrence at Gt0 , but at Gs:511

E[degt(s)] =Γ(t+ c1)Γ(t+ c2)
Γ(t)2512

(
E[degs(s)]

Γ(s)2

Γ(s+ c1)Γ(s+ c2) +
t−1∑
j=s

rΓ(j)Γ(j + 1)
Γ(j + c1 + 1)Γ(j + c2 + 1)

)
513

514

where c1 = p+
√
p2+4r
2 , c2 = p−

√
p2+4r
2 .515

Now it is sufficient to apply Corollary 5 to this equation to get the exact formula for516

E[degt(s)].517

The asymptotic formulas in Theorems 6 and 7 – as it was in the case of E[D(Gt)] above –518

are derived as straightforward consequences of Lemmas 12, 13 and 14.519

D Proof of Theorem 3520

In order to prove the theorem we proceed as following: first we provide an asymptotic bound521

on E
[
exp(λ degt+1(t+ 1))|Gt

]
, then we apply it for a suitable choices of λ, which allow us522

to use Chernoff bound.523

I Lemma 15. For any λ = O( 1
t ) it holds that

E
[
exp(λ degt+1(t+ 1))|Gt

]
≤ exp (λpD(Gt)(1 +O(λt)) + λr(1 +O(λ))) .

Proof.

E
[
exp(λ degt+1(t+ 1))|Gt

]
524

= 1
t

t∑
i=1

E
[
exp

(
λBin(degt (i), p) + λBin

(
t− degt (i), r

t

))
|Gt
]

525
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≤ 1
t

t∑
i=1

(
1− p+ peλ

)degt(i)
(

1− r

t
+ r

t
eλ
)t−degt(i)

.526

527

Since ex ≤ 1 + x + x2 for all x ∈ [0, 1], (1 + x)y ≤ 1 + xy + (xy)2 for 0 ≤ xy ≤ 1 and528

1 + x ≤ ex for any x:529

E
[
exp(λ degt+1(t+ 1))|Gt

]
530

≤ 1
t

t∑
i=1

(1 + pλ(1 +O(λ))degt(i)
(

1 + rλ

t
(1 +O(λ))

)t−degt(i)
531

≤ 1
t

t∑
i=1

(1 + pλ degt(i)(1 +O(λt)) (1 + rλ(1 +O(λ)))532

≤ 1
t

t∑
i=1

(1 + pλ degt (i)(1 +O(λt))) exp (rλ(1 +O(λ)))533

= (1 + pλD(Gt)(1 +O(λt))) exp (rλ(1 +O(λ)))534

≤ exp (λpD(Gt)(1 +O(λt)) + λr(1 +O(λ))) .535
536

J537

Now we are ready to finally prove the theorem.538

E
[
exp (λt+1D(Gt+1))

∣∣ Gt] = E
[
exp

(
λt+1

(
t

t+ 1D(Gt) + 2
t+ 1 degt+1(t+ 1)

)) ∣∣ Gt]539

= exp
(
λt+1t

t+ 1 D(Gt)
)
E
[
exp

(
2λt+1

t+ 1 degt+1(t+ 1)
) ∣∣ Gt]540

541

Now we may use Lemma 16 with λ = 2λt+1
t+1 to get542

E
[
exp (λt+1D(Gt+1))

∣∣ Gt] =543

≤ exp
(
λt+1D(Gt)

(
1− 2p− 1

t+ 1

)
(1 +O(λt+1)) + 2rλt+1

t+ 1 (1 + o(t−1))
)
.544

545

Let us define for k = t0, . . . , t− 1546

λk = λk+1

(
1 +

(
2p− 1
t+ 1

)
(1 +O(λk+1))

)
547

548

and let εt ≥ λk for all k.549

Then clearly550

λt0 ∈

[
λt

t−1∏
k=t0

(
1 + 2p− 1

k + 1

)
, λt

t−1∏
k=t0

(
1 +

(
2p− 1
k + 1

)
(1 +O(εt))

)]
551

⊆

[
λt

(
t

t0

)2p−1
(1 + o(1)), λt

(
t

t0

)(2p−1)(1+O(εt))
(1 + o(1))

]
552

553

It follows that554

E [exp (λtD(Gt))] ≤ exp (λt0D(Gt0))
t−1∏
k=t0

exp
(

2rλk+1

k + 1
(
1 + o(k−1)

))
555
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≤ exp (λt0D(Gt0)) exp
(

2rεt+1 ln t

t0
+ C1

)
= exp (λt0D(Gt0))

(
t

t0

)2rεt+1+C1

556

557

for a certain constant C1.558

Finally, let λt = εt

(
t
t0

)−(2p−1)(1+O(εt)))
so that λt0 ≤ εt. Then from Chernoff bound it559

follows that560

Pr[D(Gt) ≥ αED(Gt)] = Pr[exp(D(Gt)− αED(Gt)) ≥ 1]561

≤ exp (−αλtED(Gt))E[exp (λtD(Gt))]562

≤ exp (−αλtED(Gt)) exp (λt0D(Gt0))
(
t

t0

)2rεt+1+C1

563

564

Assume εt = 1
ln (t/t0) . For p >

1
2 we have ED(Gt) = C2

(
t
t0

)2p−1
(1 + o(1)), and therefore565

Pr
[
D(Gt) ≥ αC2

(
t

t0

)2p−1
(1 + o(1))

]
566

≤ exp
(
−αC2εt

(
t

t0

)−(2p−1)εt
)

exp (εt(t0 − 1)))
(
t

t0

)2rεt+1+C1

567

≤ exp
(
−αC2

exp (−2p+ 1)
ln (t/t0)

)
exp

(
t0 − 1

ln (t/t0)

)
exp (2r + C1)568

569

The last two elements are bounded by a constant, so it is sufficient to pick α = A
C2

exp(2p−570

1) ln2(t) to complete the proof for the case p > 1
2 .571

Now, for p < 1
2 and p = 1

2 it is sufficient to use ED(Gt) = C2(1 + o(1)) and ED(Gt) =572

C2 ln t(1 + o(1)), respectively.573

E Proof of Theorem 4574

We start the proof by obtaining a simple lemma, analogous to Lemma 15:575

I Lemma 16. For any λ = O( 1
t ) it holds that

E
[
exp(λ degt+1(t+ 1))|Gt

]
≤ exp (2λpD(Gt)(1 +O(λ)) + 2λr(1 +O(λ))) .

Proof.

E
[
exp(λ degt+1(t+ 1))|Gt

]
576

= 1
t

t∑
i=1

E
[
exp

(
λBin(degt (i), p) + λBin

(
t− degt (i), r

t

))
|Gt
]

577

≤ 1
t

t∑
i=1

(
1− p+ peλ

)degt(i)
(

1− r

t
+ r

t
eλ
)t−degt(i)

.578

579

Since ex ≤ 1 + x+ x2 for all x ∈ [0, 1], (1 + x)y ≤ 1 + 2xy for 0 ≤ xy ≤ 1, and 1 + x ≤ ex580

for all x581

E
[
exp(λ degt+1(t+ 1))|Gt

]
582

≤ 1
t

t∑
i=1

(1 + pλ(1 +O(λ))degt(i)
(

1 + rλ

t
(1 +O(λ))

)t−degt(i)
583
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≤ 1
t

t∑
i=1

(1 + 2pλ degt(i)(1 +O(λ))) (1 + 2rλ(1 +O(λ))))584

≤ 1
t

t∑
i=1

(1 + 2pλ degt (i)(1 +O(λ))) exp (2r(1 +O(λ)))585

= (1 + 2pλD(Gt)(1 +O(λ))) exp (2r(1 +O(λ))))586

≤ exp (2λpD(Gt)(1 +O(λ)) + 2λr(1 +O(λ))) .587
588

J589

Next, using the lemma above and Theorem 3 we limit the growth of D(Gt) over certain590

intervals:591

I Lemma 17. Let p > 1
2 . For sufficiently large t and all k < t it is true that592

Pr[D(G(k+1)t)−D(Gkt) ≥ AC((k + 1)2p−1 − k2p−1)t2p−1 log2(t)] = O(t−A)593
594

for some fixed constant C > 0 and any A > 0.595

Proof. First, let us define events Bi = [D(Gi+1) ≥ (A+ 1)C1 i
2p−1 log2(i)] with a constant596

C1 such that by Theorem 3 it is true that Pr[Bi] = O(i−A−1). Let us also denote Ak =597 ⋃(k+1)t−1
i=kt Bi and observe that Pr [Ak] = O(t−A).598

Now, we note that from Lemma 15 for any λ = o(1)599

E
[
exp (λ(D(Gt+1)−D(Gt)))

∣∣∣∣Gt,¬Bt]600

≤ E
[
exp

(
2λ
t+ 1 degt+1(t+ 1)

) ∣∣∣∣Gt,¬Bt]601

≤
[
exp

(
2λp
t+ 1D(Gt)(1 +O(λ)) + 2λr

t+ 1(1 +O(λ))
) ∣∣∣∣¬Bt]602

≤ exp
(
λ (A+ 1)C2 t

2p−2 log2(t)(1 + o(1))
)

603
604

for a certain constant C2.605

Now we proceed as following:606

Pr[D(G(k+1)t)−D(Gkt) ≥ d|Gkt]607

≤ Pr[D(G(k+1)t)−D(Gkt) ≥ d|Gkt,¬Ak] Pr[¬A] + Pr[Ak]608

≤ exp(−λd)E
[
exp

(
λ(D(G(k+1)t)−D(Gkt))

)
|Gkt,¬Ak

]
+O(t−A)609

≤ exp(−λd)
(k+1)t−1∏
i=kt

E
[
exp (λ(D(Gi+1)−D(Gi)))

∣∣∣∣Gi,¬Bi]+O(t−A)610

≤ exp(−λd)
(k+1)t−1∏
i=kt

exp
(
λ (A+ 1)C2 i

2p−2 log2(i)(1 + o(1))
)

+O(t−A)611

≤ exp(−λd) exp

(k+1)t−1∑
i=kt

λ (A+ 1)C3 i
2p−2 log2(t)(1 + o(1))

+O(t−A)612

≤ exp(−λd) exp
(
λ (A+ 1)C3((k + 1)2p−1 − k2p−1)t2p−1 log2(t)

)
+O(t−A)613

614

for a certain constant C3.615

Finally, it is sufficient to take λ =
(
((k + 1)2p−1 − k2p−1) log2(t)

)−1 and d = AC4((k +616

1)2p−1 − k2p−1)t2p−1 log2(t) for sufficiently large C4 to obtain the final result. J617
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Now we may return to the main theorem. Let Yk = D(G(k+1)t)−D(Gkt). We know that618

for p > 1
2619

EYk = ED(G(k+1)t)− ED(Gkt) = C1
(
(k + 1)2p−1 − k2p−1) t2p−1(1 + o(1))620

621

for some constant C1.622

Let now define the following events:623

A1 =
[
Yk ≤

t2p−1

f(t)

]
624

A2 =
[
t2p−1

f(t) < Yk ≤ C2((k + 1)2p−1 − k2p−1)t2p−1 log2(t)
]

625

A3 =
[
Yk > C2((k + 1)2p−1 − k2p−1)t2p−1 log2(t)

]
626
627

for a constant C2 such that (from the lemma above) Pr[A3] = O(t−2). Here f(t) is any628

(monotonic) function such that f(t)→∞ as t→∞.629

We know that630

EYk = E [Yk|A1] Pr [A1] + E [Yk|A2] Pr [A2] + E [Yk|A3] Pr [A3]631

EYk ≥ C1
(
(k + 1)2p−1 − k2p−1) t2p−1

632

E [Yk|A1] ≤ t2p−1

f(t)633

E [Yk|A2] ≤ C2((k + 1)2p−1 − k2p−1)t2p−1 log2(t)634

E [Yk|A3] ≤ (k + 1)t635
636

and therefore for sufficiently large t it holds that637

Pr[A1] ≤
C2
(
(k + 1)2p−1 − k2p−1) log2(t)− C1

(
(k + 1)2p−1 − k2p−1)

C2 ((k + 1)2p−1 − k2p−1) log2(t)− 1
f(t)

638

≤ 1− C1

2C2 log2(t)
.639

640

Let now τ = kt.641

Pr
[
D(Gτ ) ≤ t2p−1f−1(t)

]
= Pr

[
k⋂
i=1

Yi ≤
t2p−1

f(t)

]
642

≤
k∏
i=1

Pr
[
Yi ≤

t2p−1

f(t)

]
≤

k∏
i=1

(
1− C1

2C2 log2(t)

)
643

644

Therefore, if we assume k = 2AC2
C1

log3(t), we get645

Pr
[
D(Gτ ) ≤ t2p−1

f(t)

]
= exp (−A log(t)) = O(t−A)646

647

and finally648

Pr
[
D(Gt) ≤

C3

A2p−1 t
2p−1 log−3(2p−1)−ε(t)

]
= O(t−A).649

650

for some constant C3 and any ε > 0.651
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F Proof of Theorem 8652

E
[
exp

(
λt+1 degt+1(s)

) ∣∣ Gt] =653

=
(

degt(s)
t

p+ t− degt(s)
t

r

t

)
exp (λt+1 (degt(s) + 1))654

+
(

degt(s)
t

(1− p) + t− degt(s)
t

(
1− r

t

))
exp (λt+1 degt(s))655

= exp (λt+1 degt(s))656 (
degt(s)

t
(1− p+ p exp (λt+1)) + t− degt(s)

t

(
1− r

t
+ r

t
exp (λt+1)

))
657

≤ exp (λt+1 degt(s))
(

1 +
(
p degt(s)

t
+ r (t− degt(s))

t2

)(
λt+1 + λ2

t+1
))

658

≤ exp
(
λt+1 degt(s) +

(
p degt(s)

t
+ r (t− degt(s))

t2

)(
λt+1 + λ2

t+1
))

659

= exp
(
λt+1 degt(s)

(
1 +

(p
t
− r

t2

)
(1 + λt+1)

))
exp

(
λt+1 (1 + λt+1) r

t

)
.660

661

Let us assume that λk ≤ εt = o(1) for all s ≤ k ≤ t. Then for all k = s, s+ 1, . . . , t we662

have663

λk = λk+1

(
1 +

(p
k
− r

k2

)
(1 + λk+1)

)
≤ λk+1

(
1 +

(p
k
− r

k2

)
(1 + εt)

)
664
665

which lead us to666

λs ≤ λt
t−1∏
k=s

(
1 +

(p
k
− r

k2

)
(1 + εt)

)
≤ λt exp

(
(1 + εt)

t−1∑
k=s

(p
k
− r

k2

))
667

≤ λt exp
(

(1 + εt)
∫ t

s

(p
k
− r

k2 dk
))

= λt exp
(

(1 + εt)
(
p ln t

s
+ r

(
1
t
− 1
s

)))
668

≤ λt
(
t

s

)p(1+εt)
exp

(r
t

(1 + εt)
)
.669

670

It follows that671

E [exp (λt degt(s)) |Gs] ≤ exp (λs degs(s)))
t−1∏
k=s

exp
(
λk+1 (1 + λk+1) r

k

)
672

≤ exp (λs degs(s))) exp
(
εt (1 + εt) r ln t

s

)
≤ exp (λs degs(s)))

(
t

s

)rεt(1+εt)
673

674

Now, let λt = εt
(
t
s

)−p(1+εt) exp
(
− rt (1 + εt)

)
so that λs ≤ εt. Then, from Chernoff675

bound it follows that676

Pr[degt(s) ≥ αEdegt(s)|Gs] = Pr[exp(degt(s)− αEdegt(s)) ≥ 1|Gs]677

≤ exp (−αλtE[degt(s)|Gs])E[exp (λt degt(s)) |Gs]678

≤ exp (−αλtE[degt(s)|Gs]) exp (λs degs(s))
(
t

s

)rεt(1+εt)
.679

680

Let’s assume εt = 1
ln t . Recall now from Theorems 6 and 7 that if s = O(1), then it holds681

that E[degt(s)|Gs] = C1t
p and therefore682

Pr[degt(s) ≥ αC1t
p|Gs] ≤ exp

(
−αC2εtt

−pεt
)

exp (εt degs(s)))
(
t

s

)rεt(1+εt)
683
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≤ exp
(
−αC3

ln t

)
exp

(
degs(s)

ln t

)
exp (2r)684

685

for certain constants C2, C3.686

Therefore, it is sufficient to set α = A
C3

ln2 t to get the final result.687

G Proof of Theorem ??688

We start by showing two lemmas, giving us the crude lower bound on the degree of a given689

vertex:690

I Lemma 18. Let s = O(1). Then asymptotically as t→∞, if r > 0, then691

Pr
[
degt(s) ≤

C√
A

ln t
]

= O(t−A)692

693

for some constant C and any A > 0.694

Proof. Let Xk ∼ Bin
(
k, rk

)
, Yl =

∑t
k=l+1Xk. Then695

EYl =
t∑

k=l+1
EXk = r ln t

l
+O(1).696

697

We note that if l = min{s, rp}, we have degt(s) ≥ degt(s)− degl(s) ≥ Yl. Therefore, from698

the Chernoff bound699

Pr[degt(s) ≤ r(1− 2δ) ln t] ≤ Pr
[
degt(s) ≤ r(1− δ) ln t

l

]
≤ Pr

[
Yl ≤ r(1− δ) ln t

l

]
700

≤ exp
(
−δ

2

2 EYl
)

= O
(
t−

rδ2
2

)
,701

702

and it is sufficient to pick δ =
√

2A
r to finish the proof. J703

Now we may go to the proof of the theorem.704

E
[
exp

(
−µt+1 degt+1(s)

) ∣∣ Gt]705

=
(

degt(s)
t

p+ t− degt(s)
t

r

t

)
exp (−µt+1 (degt(s) + 1))706

+
(

degt(s)
t

(1− p) + t− degt(s)
t

(
1− r

t

))
exp (−µt+1 degt(s))707

= exp (−µt+1 degt(s))708 (
degt(s)

t
(1− p+ p exp (−µt+1)) + t− degt(s)

t

(
1− r

t
+ r

t
exp (−µt+1)

))
709

≤ exp (−µt+1 degt(s))
(

1 +
(
p degt(s)

t
+ r (t− degt(s))

t2

)(
−µt+1 + µ2

t+1
))

710

≤ exp
(
−µt+1 degt(s) +

(
p degt(s)

t
+ r (t− degt(s))

t2

)(
−µt+1 + µ2

t+1
))

711

= exp
(
−µt+1 degt(s)

(
1 +

(p
t
− r

t2

)
(1− µt+1)

))
exp

(
−µt+1 (1− µt+1) r

t

)
.712

713
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Let us assume that µk ≤ εt = o(1) for all s ≤ k ≤ t. Then for all k = s, s+ 1, . . . , t we714

have715

µk = µk+1

(
1 +

(p
k
− r

k2

)
(1− µk+1)

)
≥ µk+1

(
1 +

(p
k
− r

k2

)
(1− εt)

)
716
717

which lead us to718

µs ≥ µt
t−1∏
k=s

(
1 +

(p
k
− r

k2

)
(1− εt)

)
≥ µt exp

(
(1− εt)

t−1∑
k=s

(p
k
− r

k2

))
719

≥ µt exp
(

(1− εt)
∫ t

s

(p
k
− r

k2 dk
))

= µt exp
(

(1− εt)
(
p ln t

s
+ r

(
1
t
− 1
s

)))
720

≥ µt
(
t

s

)p(1−εt)
exp

(r
t

(1− εt)
)

721

722

and723

µs ≤ µt
t−1∏
k=s

(
1 +

(p
k
− r

k2

))
≤ µt

(
t

s

)p
exp

(r
t

)
.724

725

It follows that for any s ≤ v ≤ t726

E [exp (−µt degt(s)) |Gs] ≤ E [exp (−µv degv(s))) |Gs]
t−1∏
k=v

exp
(
−µk+1 (1− µk+1) r

k

)
727

≤ E [exp (−µv degv(s))) |Gs]728
729

Now, let µt = εt
(
t
v

)−p exp
(
− rt
)
so that Cεt ≤ εt

(
t
s∗

)−pεt exp
(
− rεtt

)
≤ µs∗ ≤ εt. Then,730

from Chernoff bound it follows that731

Pr[degt(s) ≤ βEdegt(s)|Gs] = Pr[exp(βEdegt(s)− degt(s)) ≥ 1|Gs]732

≤ exp (βµtE[degt(s)|Gs])E[exp (−µt degt(s)) |Gs]733

≤ exp (βµtE[degt(s)|Gs])E[exp (−µs∗ degs∗(s)) |Gs].734
735

Now we know that736

E [exp (−µs∗ degs∗(s))) |Gs]737

≤ exp
(
−µs∗rδ ln s

∗

s

)
Pr
[
degt(s) > rδ ln s

∗

s

]
+ Pr

[
degt(s) ≤ rδ ln s

∗

s

]
738

≤
(
s∗

s

)−µs∗rδ

+O

(s∗
s

)− δ2
2

739

740

Let’s assume s∗ = tγ and εt = A
Crγ ln ln t . For p > 0 we may proceed further:741

Pr[degt(s) ≤ βEdegt(s)|Gs]742

≤ exp
(
βεtt

−p(1−γ)(degs(s) + C2(p, r))
(
t

s

)p)
E [exp (−µs∗ degs∗(s))) |Gs]743

≤ exp
(
βεt(degs(s) + C2(p, r)) t

pγ

sp

)( tγ
s

)−Cεtrδ
+O

( tγ
s

)− δ2
2

744
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≤ exp
(
β

A

Crγ ln ln t (degs(s) + C2(p, r)) t
pγ

sp

)(
t−

A
ln ln t δ +O

(
t−

γδ2
2

))
745

746

Let now β = t−pγ . Then747

Pr[degt(s) ≤ t−pγE degt(s)|Gs]748

≤ exp
(
A(degs(s) + C2(p, r))

Crγsp ln ln t

)(
t−

A
ln ln t δ +O

(
t−

γδ2
2

))
749

750
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