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—— Abstract

We present a rigorous and precise analysis of the degree distribution in a dynamic graph model
introduced by Pastor-Satorras et al. in which nodes are added according to a duplication-divergence
mechanism, i.e. by iteratively copying a node and then randomly inserting and deleting some edges
for a copied node. This graph model finds many applications in the real world from biology to social
networks. It is discussed in numerous publications with only very few rigorous results, especially for
the degree distribution.

In this paper we focus on two related problems: the expected degree of a given node over the
evolution of the graph and the expected and large deviation of the average degree in the graph. We
present exact and asymptotic results showing that both quantities may decrease or increase over
time depending on the model parameters. Our findings are a step towards a better understanding of
aspects of the graph behavior such as degree distribution, symmetry—that eventually will lead to
structural compression, an important open problem in this area.
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1 Introduction

On the one hand, it is widely accepted that we live in the age of data deluge. On a daily
basis we observe the increasing availability of data collected and stored in various forms,
as sequences, expressions, interactions or structures. A large part of this data is given in a
complex form which conveys also a “shape” of the structure, such as network data. Examples
are various biological networks, social networks or Web graphs.

On the other hand, compression is a well-known area of information theory which mostly
deals with the compression of sequences. Yet, we note that already in 1953 Shannon argued
as to the importance of extending the theory to data without a linear structure, such as
© Alan Frieze, Krzysztof Turowski and Wojciech Szpankowski;
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s lattices [16]. Recently, we saw some work directed towards more complex data structures
s such as trees [10, 15] and graphs [5, 3, 13]. Compression for such non-conventional types of
« data has become an important issue, since e.g. graph data are nowadays widely used in Big
s Data computing [11]. Tt is therefore an imperative to provide efficient storage and processing
2 to speed up computations and lower memory and hardware costs.

50 The recent survey by Besta and Hoefler [4] collected over 450 papers concerned with the
s topic of lossless graph compression. There were several well-known heuristics proposed for
52 the compression of real-world graphs, such as the algorithm by Adler and Mitzenmacher
53 [2] devised for the Web graph. But the first rigorous analysis of an asymptotically optimal
s« algorithm for Erdés-Renyi graphs was presented in [5], while recently it was extended to the
s preferential attachment model (also known as Bardbasi-Albert) graphs [14]. However, many
s real-world networks such as protein-protein and social networks follow a different model
st of generation known as the duplication-divergence model in which new nodes are added to
ss  the network as copies of existing nodes together with some random divergence, resulting in
so differences among the original nodes and their copies. In this paper we focus on analyzing
e the degree distribution — a first step towards graph compression — in such a network, which
61 we first define more precisely.

62 Consider the most popular duplication-divergence model as introduced by Pastor-Satorras
&3 et al. [17], referred to below as DD(¢,p,r). It is defined as follows: starting from a given
s« graph on tg vertices (labeled from 1 to tg) we add subsequent vertices labeled to, to + 1, ...,
6 t as copies of some existing vertices in the graph and then we introduce divergence by adding
6 and removing some edges connected to the new vertex independently at random. Finally, we
ez remove the labels and return the structure, i.e. the unlabeled graph.

68 In order to pursue compression and other algorithms (e.g., finding the node arrivals) for
e duplication-divergence model we need to observe [5, 13] the close affinity between (structural)
7 compression and symmetries of the graph. In turn, graph symmetries (motivated further
n below), are closely related to the degree distribution, which is the main topic of this paper.
» Indeed, as discussed in [13] a graph is asymmetric if two properties hold: (i) new nodes
7z do not make the same choices among old nodes, and (ii) old nodes have distinct degrees.
7 Thus the degree distribution plays a crucial role in many graph algorithms including graph
s compression and others (e.g., inferring node arrival in such dynamic networks [?]).

76 Before we summarize our main results on the degree distribution in DD(¢, p, ) networks,
77 let us explore further the connection between compression and graph symmetries. The
s linking concepts here are the graph entropy H(G) (also known as the labeled graph entropy)
w and structural graph entropy H(S(G)) (also known as the unlabeled graph entropy). Both
s quantities depend deeply on the degree distribution. Let G, be the set of all labeled graphs

a1 on n vertices (with vertices having labels 1, 2, ..., n) and S,, be the set of all unlabeled
&2 graphs on n vertices. Then, the graph entropy and the structural graph entropy are defined
83 as
" H(G)= Y Pr[G]logPr|[G],

GeGn
o5 H(S(G) = > Pr[S(G)]logPr[S(G)],
. S(G)ES

e where S(G) is the structure of graph G, that is, the graph G with labels removed.
8 It turns out that for many well-known random graph models, the structural graph entropy
s can be expressed by a following formula:

w  H(GQ)— H(S(Q)) = Elog|Aut(G)| — Elog [T(G)]
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where H(G) and H(S(G)) are, respectively, the entropy of the labelled and unlabelled graph
generated by a given model, Aut(G) is the automorphism group of the graph G (representing
graph symmetries) and I'(G) is the set of all re-labelings of G that give a graph which can
be generated by the given graph model with positive probability [13].

In fact, many real-world networks, such as protein-protein and social networks, have been
shown to contain lots of symmetries, as presented in Table 1. This is in stark contrast to the
Erdoés-Renyi and preferential attachment models, as both generate completely asymmetric
graphs with high probability , that is log |Aut(G)| = 0 [5, 13], and therefore we do not
consider these models as likely matches for these kinds of networks.

Network Nodes  Edges log|Aut(G)|
Baker’s yeast protein-protein interactions 6,152 531,400 546
Fission yeast protein-protein interactions 4,177 58,084 675
Mouse protein-protein interactions 6,849 18,380 305
Human protein-protein interactions 17,295 296,637 3026
ArXiv high energy physics citations 7,464 116,268 13
Simple English Wikipedia hyperlinks 10,000 169,894 1019
CollegeMsg online messages 1,899 59,835 232

Table 1 Symmetries of the real-world networks [18, 21].

Consequently, in order to study and understand the behavior of real-world networks we
need dynamic graph models that naturally generate internal graph symmetries. It turns out
that the discussed duplication-divergence model is such a candidate. However, at the moment
there do not exist any rigorous general results on symmetries for such graphs. However, if we
generate experimentally multiple random graphs from this model with different parameters,
we observe the pattern presented in Figure 1: there is a large set of parameters for which the
generated graphs are highly symmetric, as exhibited by the size of their automorphisms group
(expressed in a logarithmic scale), log |Aut(G)|. Moreover, as it was shown by Sreedharan et
al. [18], the possible values of the parameters for real-world networks under the assumption

that they were generated by this model lie in the blue-violet area, indicating a lot of symmetry.

In view of these, it is imperative that we understand symmetry in duplication-divergence
networks. Overall, the question of symmetry is tightly related to the behavior of the degree
distribution, as already discussed above. We note that in the previous work on various graph
models, such as preferential attachment [13], the analysis of the degree distribution was a
vital step in proving results on structural compression. For this, as discussed in [13], we need
to study the average and large deviation of their degree sequence, which is the main topic of
this conference paper.

Turowski et al. showed in [20] that for the special case of p = 1, r = 0 the expected
logarithm of the number of automorphisms for graphs on ¢ vertices is asymptotically ©(¢logt),
which indicates a lot of symmetry. Therefore, they were able to obtain asymptotically optimal
compression algorithms for graphs generated by such models. However, their approach used
certain properties of the model which cannot be applied for different parameter values.

For r = 0 and p < 1, it was recently proved by Hermann and Pfaffelhuber in [7] that
depending on value of p either there exists a limiting distribution of degree frequencies with
almost all vertices isolated or there is no limiting distribution as ¢ — oco. Moreover, it is
shown in [12] that the number of vertices of degree one is Q(Ilnt) but again the precise rate
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Figure 1 Symmetry of graphs (log|Aut(G)|) generated by Pastor-Satorras model.

127 of growth of the number of vertices with degree k > 0 is as yet unknown. Recently, also for
s 1 =0, Jordan [9] showed that the non-trivial connected component has a degree distribution
s which conforms to a power-law behavior, but only for p < e~!. In this case the exponent is
1 equal to v which is the solution of 3 = v 4 p7~2.

131 In this paper we approach the problem of the degree distribution from a different
12 perspective. We focus on presenting exact and precise asymptotic results for the expected
133 degree of a given vertex s at time ¢ (denoted by deg,(s)) and the average degree in the graph
1 (denoted by D(G)).

135 We present in Theorems 2-7 exact and precise asymptotics of these quantities when
w  t — 0o. We show that E[deg,(s)] and E[D(G;)] exhibit phase transitions over the parameter
w space: as a function of p and r. In particular, we find that E[deg,(s)] grows respectively
i like (1), \/glogs or (£)”s?P~1 depending whether p < 3, p=1 or p > 1. Furthermore,
1 E[D(Gy)] is either ©(1), O(logt) or O(?P~1) for the same ranges of p. We also determine
o the exact constants for the leading terms that strictly depend on p, r, to and the structure
11 of the seed graph Gy,. This confirms the empirical findings of [8] regarding the seed graph
12 influence on the structure of G;.

143 We also present some results concerning the the tail of the asymptotic distribution of
us  the variables D(G;) and deg,(s) for s = O(1). It turns out that it is sufficient to only go a
s polylogarithmic factor under or over the mean to obtain a polynomial tail, that is to get an
us  O(t~#) tail probability.

147 These findings allow us to better understand why the DD(¢,p,r) model differs quite
us  substantially from other graph models such as the preferential attachment model [13, 22]. In
u  particular, we observe that the expected degree behaves differently as ¢ — oo for different
150 values of s and p. For example, if p > %, then for s = O(1) (that is, for very old nodes)
151 we observe that E[deg,(¢)] = Q(t?) while for s = O(t) (i.e., very young nodes) we have
12 Eldeg,(t)] = O(#*~1). This behavior is very different than the degree distribution for, say,
153 the preferential attachment model, for which the expected degree of a vertex s in a graph on
st vertices is of order y/¢/s for s up to an order of ¢ for some constant ¢ > 0 [13].

155 We now present our main results on degree distributions. All proofs are delegated to
16 appendices.
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2 Main results

In this section we present our main results with proofs and auxiliary lemmas presented in
the respective appendices.
We use standard graph notation, e.g. from [6]: V(G) denotes the set of vertices of graph

G, Ng(u) — the set of neighbors of vertex u in G, deg(u) = |[Ng(u)| — the degree of u in G.

For brevity we use the abbreviations for Gy, e.g. deg,(u) instead of degg, (u). All graphs are
simple. Let us also introduce the average degree D(G) of G as

1

It is also known in the literature as the first moment of the degree distribution, and it is
related to the number of edges.
Formally, we define the model DD(¢, p, ) as follows: let 0 <p <1 and 0 <r <ty be the

parameters of the model. Let also Gy, be a graph on t vertices, with V(Gy,) = {1,...,%0}.

Now, for every t = tg,to + 1, ... we create Gyy1 from G; according to the following rules:
1. add a new vertex ¢t 4+ 1 to the graph,
2. pick vertex u from V(G;) = {1, ..., t} uniformly at random — and denote u as parent(t + 1),
3. for every vertex i € V(Gy):

a. if i € Ny(parent(t + 1)), then add an edge between ¢ and ¢ + 1 with probability p,

b. if i ¢ Ny(parent(t + 1)), then add an edge between i and ¢ + 1 with probability *.

We focus now on the expected value of deg,(s), that is, the degree of node s at time t.

We start with a recurrence relation for E[deg,(s)]. Observe that for any t > s we know that
vertex s may be connected to vertex ¢ + 1 in one of the following two cases:
either s € N;(parent(t + 1)) (which holds with probability deth(s)) and we add an edge
between s and t + 1 (with probability p),
or s & N;(parent(t + 1)) (with probability M) and we an add edge between s and
t 41 (with probability 7).

From the definition presented above we directly obtain the following recurrence for
El[deg, (s)]:

degt(s)p n t —deg,(s) r

M@&Hwnadz( )m%4g+n

t t ot
deg,(s) t — deg,(s) r
(1 0B (1) g

_ A

= deg,(s) (1+t t2)+t'
After removing the conditioning on G4, we find:
p T r

Eldeg ()] = Eldeg,(s)] (1+ 2 = ) + . M

This recurrence falls under a general recurrence of the form

E[f(Gn+1) ‘ Gn] = f(Gn)g1 (n) + 92(n) (2)

where g1 and g, are given functions. As we shall see these type of recurrences occur a few
times in this paper, therefore we need appropriate tools to solve it. We derive a series of
lemmas (Lemma 9-14), providing exact and asymptotic behavior of E[f(Gp+1). They are
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11 based on well-known martingale theory and they use various asymptotic properties of Euler
12 gamma function. For convenience, the associated lemmas with their proofs were moved to
13 Appendix A.

104 First, we use Lemma 9 to obtain the equation for the exact behavior of the degree of a
105 given node s at time t:

o Edog(s)] = Eldog, ()] [ ] (1+2-5)+ Z] T () )
! .

197 =s j=s k:j+

s However, we see that to solve this recurrence we need to know the expected value of deg,(s)
1o for all s > tg, which we tackle next.

200 Turning our attention to this variable we find the following lemma connecting E[deg,(¢)]
20 and the average degree E[D(G)] (see proof in Appendix B):

20 B Lemma 1. For any t > tg it holds that

203 ]E[degt+1(t + 1)} = ( - g) E[D(Gt)] +r

204

25 It is quite intuitive that the expected degree of a new vertex behaves as if we would choose a
205 vertex with the average degree E[D(G})] as its parent, and then copy p fraction of its edges,
27 adding also almost r more edges to all other vertices in the graph.

208 Thus to complete our analysis we need to find E[D(G})], that is, the average degree of
200 Gy. Using a similar argument to the above, we find the following recurrence for the average
20 degree of Gypq:

t+1
211 ]E[D(Gt+1) | Gt] = T 1 Zdegt+1 ‘ Gt
t
212 t T 1E Zdegt + 2degt+1 ‘ Gy
t
213 + <Z degt + 2E [degtH t+1 | Gt]>
i=1
1 2p —1 2r 2r
=——(tD 2E|d t+1 =D 1 - .
. rq (HD(Go) + 2Eldeg s (¢4 1) | Gil) (Gt)< T t(t+1)>+t+1

26 Therefore, after removing the conditioning on Gy:

_ 2p—1 2r 2r
o E[D(Gi1)] = E[D(GY)] <1 R e 1)) T

(4)

20 This is again recurrence of the form (2) that we can handle in a uniform manner as discussed
20 above.

21 Finally, we obtain a recurrence which does not refer to any other variable defined over G;
22 or Gyi1. We can solve this recurrence by using Lemma 9 from the next section and derive
23 Theorem 2. The proof is given in Appendix C.

24 » Theorem 2. For allt > tg we have

F(t + Cg)F(t + C4)

= EDG)] = T(OD(t+1)
T(to)T(to + 1) — T(j + 1)
(D(Gt")l“(to )Tl +ea) 2r ) T(j+cs+ DG +ca+ 1))
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where cg =p+ /P> +2r, ca =p — /P> +2r, and T'(2) is the Euler gamma function.
Furthermore, asymptotically as t — oo we find

1E—gp(l—l—o(l)) ifp<iandr>o0,
2rint (14 o(1)) ifp=1%andr >0,
BID(Go) = § 2 Hi )1 1))

totcs+1,totcatl’
t2+2pto—2r

D(Gy,) + ifp>35 orr=0,

2rto 3F2[ tot1,to+1,1 1] )

where D(Gy,) is the average degree of the initial graph Gy, and

ara2.03 = (a1)1(az)i(as); 2!
F 9 9 ; — I
Pl ; (buba) 1!

is the generalized hypergeometric function with (a); =ala+1)...(a+1-1), (a)o =1 the
rising factorial (see [1] for details).

As we see, the asymptotic behavior of E[D(G;)] has a threefold characteristic: when p < &
and r > 0, the majority of the edges are not created by copying them from parents, but
actually by attaching them according to the value of r. For p = % and r > 0 we note the
curious situation of a phase transition (still with non-copied edges dominating), and only if
either p > % or r = 0 do the edges copied from the parents contribute asymptotically the
major share of the edges.

Finally, we turn to estimations of the tails of the distribution of D(G;). It turns out that
this variable is concentrated in the sense that with probability 1 — O(t~4) it is contained
only within polylogarithmic ratio from the mean.

More specifically, the right tail of the distributions may be bounded as following:

» Theorem 3. Asymptotically it holds that
Pr[D(G;) > AC log?(t)] = O(t™™)  forp<
Pr[D(Gy) > AC log*(t)] = O(t™*)  forp= <,
Pr[D(G;) > ACt* og?(t)] = O(t~*) forp> %

for some fized constant C' > 0 and any A > 0.

Similarly, we have the behavior of the left tail:

» Theorem 4. Forp > % asymptotically it holds that
c 2p—1 —3—¢ —A
Pr |D(G:) < Zt P~ log )| =0@t™").

for some fixed constant C > 0 and any €, A > 0.

Note that since D(G;) = O(logt) for p < 1, the bounds of the above form are trivial and
not interesting.

Now we return to the computation of the expected values of E[deg,(t)] and E[deg,(s)].
By applying Theorem 2 to Lemma 1 we obtain the following corollary.
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1 B Corollary 5. For all t >ty it is true that

IFt+cg— DIt +cq—1)

22 E[deg,(t)] = (pt —p — )

I(t)?
-2
T(to)T(to + 1) L(j+1)?
D(G . + 7,
( (G ) Tty + ea)Tlao + ca) zt: T(j+cs+ D0 +ca+ 1)
264
%5 where c3, cq are as above.
266 Moreover, asymptotically as t — oo it holds that
_1_ T(to)T(to+1 .
Pt Gt ) D (G, )(1+ o(1)) ifp<i r=o,
T (1 +0(1)) ifp<i r>o0,
267 Eldeg,(t)] = { 2rplnt (1 + o(1)) ifp==%1r>0,
T(to)T(to+1 _ .
%Pt% '(1+0o(1)) ifp> 3,
2rt, to+1,t0+1,1 .
- D(Gy,) + tg+2ptg—2r sb2 [t0+23+1,20+04+1 ; 1])

w0 With the same notation as in Theorem 2.

oo As was mentioned above, the asymptotic expected behavior is similar to the behavior of
o E[D(Gy)].

m We are finally in a position to state the exact and asymptotic expressions for E[deg, (s)].
o This we need to split in two parts: first, for the initial vertices of G, (1 < s <) and all
o other vertices (tg < s < t). Note that the first of the theorems may be derived directly from
s Eqn. (3), (using only lemmas from Appendix A) and the second one requires Corollary 5.
as For the proofs of both theorems see Appendix C.

a7 » Theorem 6. For all 1 < s < tg it is true that

w Bldey, (o) - ()

L(to)? G +1)
d
0 [ egto(s)l“(to + c1)D(t + c2) z; Jta + DI +c2+1)

280

++/p2+4r —+/p2+4r
w1 where ¢ = 2 g , Cg = P g

> Asymptotically as t — oo:

, c3 and ¢4 as above.

2

@

283

rint (14 o(1)) ifp=0 andr >0,

(¢
t”[degto( )m
284 E[degt(s)} =

L (to)T (to+1) to,to+1,1
+F(to+c1fl)F(¥o+c2+1) 3F% [ to+c10+f to+ca+1 1]
285 (1+o0(1)) ifp>0orr=0.
286 Here we observe only two regimes. In the first, for the case when p = 0, when edges

2

o

; are added mostly due to the parameter r, we have logarithmic growth of E[deg,(s)]. In the
28 second one, edges attached to s accumulate mostly by choosing vertices adjacent to s as

2

@

o parents of the new vertices, and therefore the expected degree of s grows proportionally to
200 tP.
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» Theorem 7. For all tg < s <t it is true that

E[deg,(s)] =

L(t+c)T(t+c2)

l(ps—p—r)

+ I(s+c1)T(s+ c2)

I(t)?

F(is+ecg—1DI(s4+cs—1)

T(to)D(to + 1)

T(s+c1)T(s+ o)

-2

(D(Gtu) F(to + Cg)F(tQ + C4

rT(s)?

where ¢1—c4 are as above.
Asymptotically as t — oco:

(i) for s = 0O(1)

t—1

T;F(

Z

=to

FHrE+1)

L(j+1)? )
L(j+e3+ DI +ca+1)

jHa+1DI(G+e+1)

r(i+1)?2

s,s+1,1 ]

E[deg;(s)] = t7(1 4 o(1))
I(s+cg—DI(s+cq—1)
(ps—p—r) F(53+ AT 0;1)
L(to)I'(to +1) =2
D(Gr) D(to + e3)(to + cq) +2r J; r'(j
rT(s)?
* F(S + Cl)F(S + 02) <1 t3ly [ stci+1,s4eat1s

(ii) for s = w(1) and s = o(t)

Eldeg,(s)] =

I(to)T(to+1)
(Gto)rlz’so%—m%w

rlog (i) (14 0(1
rldop) ()P (1—|—0(1))

p(1-2p) \s

(<)

r\/glogs (1+0(1))
2r
D(Gt(’) + tg+2p§((;72r 3F2[
pL(to)L(to+1)
T'(to+c3)T(to+ca)

(iii) for s=ct—o(t), 0 <c <1,

E[deg,(s)] =

(Gto ) T(to+c3)T (to+ca)

r(1—1loge) (1+0(1))
(prl(12;§))cp
7=logt (1 +o(1))

D(Go) + grspre—ar 812

—2) (14 o(1))

B

P (14 o(1))

to+1,to+1,1
to+eat1,to+eatls

()" 5711+ o(1))

pI'(to)I'(to+1) $2p—1.p— 1( +0(1))

to+1,t0o+1,1
to+cs+1,to+ca+1>

pI'(to)"(to+1) 4201 p— 1(1+0(1))

F(to +63)F(t0+64)

s
s2+ps—r

)

1))

+es+ DTG +ea+1)

ifp<s3,r=0,
ifp=0,r>0,
if0<p<f,r>0

ifp— 5, r >0,

N[

ifp>

ifp<i,r=0,
ifp=0,r>0,
zf0<p<f,r>0
ifpf 5, 7>0,

ifp>%.

The theorem above shows that there is a threefold behavior with respect to the range

of s: s small (constant), s medium (growing, but slower than t), and s large (when s is

directly proportional to t). In the first case we observe a behavior very similar to the one
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s for 1 < s < ty. In the second case we have a dependency on both s and ¢ depending on the
a5 values of p and 7. When the majority of the edges are created due to the copying (for r =0
s or p > 3), then E[deg,(s)] = © ((£)” s>*~1). When the majority of the edges are created
a7 due to the random addition (for r > 0 and p < 3), then E[deg,(s)] = © ((£)"). Finally, we
2 observe a phase transition for p = 3, r = 0 with E[deg,(s)] = © ((%)"logs). In the last case,
so  the rates of growth of E[deg,(s)] are exactly like for E[deg,(t)]: ©(1), ©(logt) or O(t**~1)
a0 respectively for different ranges of p and r.

e Note that given the results presented in [18] and [21] we expect the real-world networks
a2 to fit the range p > % and r > 0.
33 Finally, we derive the theorems showing the concentration of the quantity deg,(s), given

sa Gg. It is possible to show the following results:
»s B Theorem 8. Asymptotically for s = O(1) it holds that
; Pr[deg,(s) > AC tPlog?(t)] = O(t~*)

28 for some fized constant C > 0 and any A > 0.

b (XYZ )

33 We note additionally, that since deg,(t) is closely dependent on the degree distribution in
s Gi_1, it is very unlikely that for s close to ¢ the analogous bounds for deg,(s) exist.

= 3 Discussion

a3 In this paper we have focused on a rigorous and precise analysis of the average degree of a
s given node over the evolution of the network as well as the average degree. We present exact
15 and asymptotic results showing the behavior of important graph variables such as D(Gy),
s deg,(t) and deg,(s).

337 It is worth noting that it is the parameter p that drives the rate of growth of expected
s value for these parameters. The value of the parameter r and the structure of the starting
a9 graph Gy, impact only the leading constants and lower order terms.

340 We note that there are several phase transitions of these quantities as a function of p
s and r. However, as demonstrated in [18], it is seems that all real-world networks fall within
w2 a range % < p < 1,7 >0 - and this case should probably be the main topic of further
s investigation.

304 The proposed methodology can be easily extended to obtain variance and higher moments
s of the above quantities. Future work may include investigations into both the large deviation
us  of the degree distribution as well as proving properties of the degree distribution (i.e., the
s number of nodes of degree k) as a function of both degree and time ¢. This, in turn, would
us allow us to differentiate between the ranges of parameters for which we obtain an asymmetric
auo  graph with high probability and the range where non-negligible symmetry occurs. Estimation
0 of the graph entropy and the structural entropy would give us a way towards our ultimate
s aim: good quality (and efficient) algorithms which would match the entropy for this graph
32 model.
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A  Useful lemmas

Here we derive a series of lemmas useful for the analysis of the following type of recurrence

E[f(Gnt1) | Gn] = f(Gn)g1(n) + g2(n) (5)

for some nonnegative functions g;(n), g2(n) and a Markov process G,,. It should be again
noted that our recurrences for E[deg,(s)] and E[D(G¢)] (e.g., see (1) and (4)) fall under this
pattern.

First lemma is a generalization of a result obtained in [7], where only the case g1 (n) = 1+2,
a > 0, was analyzed.

» Lemma 9. Let (G)52,,, be a Markov process for which Ef(G,,) > 0 and (5) holds with
g1(n) >0, ga(n) >0 for alln =ng,ng + 1,.... Then
(ii) The process (My)3%,,, defined by M,, = f(Gy,) and

n=ng

oM s Eeo 115t

=ng ] no =no

is a martingale.
(ii) For alln > ng

n—1 n—1
Ef(Gn) = f(Gny) [T 1)+ D 920 H g1k

k=no Jj=mno k=j+1

= 1:[ g1(k) Z 92(J

k=ng Jj=ngo k_ng

Emk
; —
=

Proof. Observe that

n 1 n ] J 1
E[Mpi1 | Gn] = E[f(Gata) | Gl kg (k) j;n 9209) kgﬂ g1(k)
n—1 1 n—1 J 1
= f(Gn) k];[m gl(k) - j:ZnO 92(.7) kgo gl(k) = M,

which proves (i). Furthermore, after some algebra and taking expectation with respect to
G, we arrive at

J

n—1 n—1
B/(G) =50 T o+ 3 w0) [T - k e

k=ng j=no k:ng k no
n—1 n—1 n—1
= f(Gn,) H g1(k) + Z 92(J) H 91(k)
k=ng j=no k=j+1
which completes the proof. |

We now observe that any solution of recurrences of type (5) contains sophisticated products
and sum of products (e.g., see Eqn. (3)) with which we must deal to find asymptotics. The
next lemma shows how to handle such products.
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» Lemma 10. Let Wy (k), Wy(k) be polynomials of degree d with respective roots a;, b;
(i=1,...,d), that is, Wy (k) = [T, (k — a;) and Wa(k) = []%_,(k — b;). Then

Jj=1
nt 1(k) d I'(n—a;) no —b;)
H 2(k) H I'(n—1b) i)

k:no =1 "o — al)

Proof. We have

n—1 n—1 d d n—1 d
k‘ _ k o k — a; - F(’I’L — Cli) F(no — bz)
= k=ng i=1 i=1k=ng i=1
which completes the proof. <

The next lemma presents well-known asymptotic expansion of the gamma function but
we include it here for the sake of completeness.

» Lemma 11 (Abramowitz, Stegun [1]). For any a,b € R if n — oo, then

k=

o (1+ (a_b)(gn+b_ Yo (;)) :

where B,(cl)(x) are the generalized Bernoulli polynomials.

Now we deal with sum of products as seen in (5). In particular, we are interested in the
following sum of products

Hz 1 j+al)
]zr;o z 1 (]+b)

with a = Zle a;, b= Zle b;. In the next three lemmas we consider three cases: a +1 > b,
a+l=banda+1<b.

» Lemma 12. Let a;,b; € R (k € N) with a = 3¢ a;, b= YF_| b such that a +1 > b.
Then it holds asymptotically for n — oo that

Z Hz T+ as) _ pa—btl L0 (nmax{afb,o})
1 (j -+ bl) a — b + 1

j=no 1

Proof. We estimate the sum using Lemma 11 and the Euler-Maclaurin formula [19, p. 294]

Blrs o eo(l) - [ (o)

J no J=no
1 1 " 1 1
_ .a—b+1 ol:= _ a—b+1 o= O(1
oG, e e (3) oo
which completes the proof. <

» Lemma 13. Let a;,b; € R (k € N) with a = Zle ai, b= Zle b; such that a +1 =b.
Then asymptotically

Hz 1 -]+ ) nn
Jz":o L@ +0;) =+ O
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Proof. We proceed as before
; 1 "1 1 ‘
ZHH )y w0 (5) =[5 (1+0(3) ) ai=mn+on
STl TG +b) 50 no J J

which completes the proof. |

» Lemma 14. Let a;,b; €R (i=1,...,k, ke N) witha =" a;, b=SF b such that
a+1<b. Then it holds for every n € Ny that

k
ZHZ 1 -7 +a‘74) _ Hz’:l P(n+a1) n4+ai,...,n+ak,l . 1:|
=n

= F
k k+1 k[ n+by,...,n+bg
[, TG +0i)  TLieiT(n+b) ' "

where pFy[§; 2] is the generalized hypergeometric function. Moreover it is true that asymp-
totzcally
i 1 1
)
=n ’L 1 (-7 + b ) b—a—1 n

Proof. The proof of the first formula follows directly from the definition of the generalized
hypergeometric function. Second formula follows from Lemma 11, as we know that for
n — oo:

SR 100(2) - (o))
b o Q)] - (o)

as desired. |

B Proof of Lemma 1

Now we turn our attention to the proof of Lemma 1. We first observe that it follows from
the definition of the model that the degree of the new vertex ¢ + 1 is the total number of
edges from ¢t + 1 to Ni(parent(t + 1)) (chosen independently with probability p) and to all
other vertices (chosen independently with probability 7). Note that it can be expressed as a
sum of two independent binomial variables

deg; ;(t + 1) ~ Bin (deg,(parent(t 4 1)), p) 4+ Bin (t — deg, (parent(t + 1)), %) .

Hence

t g
Eldeg,,,(t+1) | Gi] = Z r(deg, (parent(t + 1)) = k) Z ( )pa(l — p)k-e

a—o \@
()60 e
— Zt: Pr(deg, (parent(t + 1)) = k) (pk N %(t B k))

E
I

0
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t
404 = (p — g) Z k Pr(deg,(parent(t + 1)) = k) + r.

495 k=0

496 Since parent sampling is uniform, we know that Pr(parent(t + 1) = i) = 1 and therefore

t

D(Gy) =Y Pr(parent(t + 1) = i) deg, (i) = Y _ kPr(deg, (parent(t + 1)) = k).

08 i=1 k=0

w0 Combining the last two equations above with the law of total expectation we finally establish
so  Lemma 1.

s« C  Proofs of Theorem 2 and Theorems 6—7

s2 We start with the proof of Theorem 2. First, we observe that by combining Eqn. (4) with
s Lemmas 9 and 10 we prove the first part of Theorem 1. In similar fashion, the second part
sa  of Theorem 2 follows directly from the first part, combined with Lemmas 12, 13 and 14 for
ss  the respective ranges of p.

506 Finally, we proceed to the proof of Theorems 6 and 7. First, we apply Lemma 9 with
sor g1(t) =14+ % — % and gs(t) = £ to Eqn. (1) and we obtain aforementioned Eqn. (3). Now
se we combine this result with Lemma 10. First, we if we apply it for 1 < s < t; we obtain
so0  directly the exact formula in Theorem 6.

510 Similarly, for Theorem 7, we get the almost identical formula. The only difference is that
su  we do not stop the recurrence at Gy, but at Gy:

F(t + Cl)F(t + Cg)
I(t)?

T'(s)2 — rL(HIG +1)
" (E[degs(sﬂ T+ e)l(s +ca) 2 TG+ +1)I(+et 1))

512 E[degt (S)} =

=s

514

p+y/p?+4r c _ p—/piHar
2 » 2= 2 :

55 where c1 =

516 Now it is sufficient to apply Corollary 5 to this equation to get the exact formula for
517 E[degt(s)]
518 The asymptotic formulas in Theorems 6 and 7 — as it was in the case of E[D(G¢)] above —

s are derived as straightforward consequences of Lemmas 12, 13 and 14.

0 D Proof of Theorem 3

s In order to prove the theorem we proceed as following: first we provide an asymptotic bound
sz on E [exp(Adeg,, (¢t + 1))|G¢], then we apply it for a suitable choices of A, which allow us
523 to use Chernoff bound.

» Lemma 15. For any A = O(3) it holds that
E [exp(Adeg,,(t +1))|G¢] < exp (ApD(Gy)(1+ O(Mt)) + Ar(1 + O(N))).
Proof.

524 E [exp()\ degtH(t + 1))|Gt]

- % > E {exp ()\Bin(degt (i),p) + ABin (t — deg, (i), g)) |Gt]
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—_

: g, (1) T\ tdes ()
N a- (177 r ) .
t; p+p6 t+te

Since €* < 1+ x + a2 for all z € [0,1], (1 +2)¥ < 1+ 2y + (zy)? for 0 < 2y < 1 and
14z < e* for any a:
E [exp(Adeg,  (t +1))|G]

t—deg, (i)
< % > (L+pA1+ O(x))ee® (1 + %(1 + O(A)))

A\
| =
ing

(14 pAdeg,(i)(1 + O(A)) (1 +rA(1 +O(N)))

(14 pAideg, (1)(1 + O(At))) exp (rA(1 + O(N)))

A
~ | —
KM*

= (14 pAD(Gy)(1 + O(At))) exp (rA(1 + O(N)))
exp (ApD(G¢)(1+ O(At)) + Ar(1 4+ O(N))) .

Now we are ready to finally prove the theorem.
E [exp (At+1D Gt+1 | Gt] = exp )\t+1 LD(Gt) + L deg (t + 1) } Gt
t+1 t+1 - ottt

Attt 2\
= exp (ttj__ll D(GQ) E [exp ( ; _|t_+11 deg, | (t + 1)) ’ Gt:|

2At41
t+1

Now we may use Lemma 16 with A = to get

E [exp ()\t+1D Gt+1 | Gt] =

2p —1
< exp (AMD(G» (1— o

27"/\t+1
t+1

)(1+O()\t+1)) + (1+o(t—1))).

Let us define for k =tg,...,t — 1

Mo = Abpa (1 n (253!11) (1+ O()\k+1))>

and let ¢, > A for all k.
Then clearly

Ay € lAt ﬁ <1+2]f;11) o ﬁ (1+ (?;f) (1+O(£t)))]

k=tgo k=tgo
£\ 21 + (2p—1)(1+O0(er))
c |, (t) (14 o(1)). A (t) (1+o(1))

It follows that

E [exp (AeD(Gt))] < exp (A, D(Gy,)) H X <2r)\k+1 (1 +0(k_1)))

k=to
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for a certain constant C;.

Finally, let A\, = &, (%

follows that

)—(217—1)(1+O(€t)))

Pr[D(G:) > aED(G;)] = Prlexp(D(G) — aED(Gy)) > 1]
< exp (—aMED(G;)) Elexp (A D(G4))]

2p—1
Assume ¢; = m For p > 1 we have ED(G,) = C> (i) P (14 0(1)), and therefore

< exp (—aMED(G:)) exp (A, D(Gy,)) (t

2p—1
Pr [D(Gt) > aCy (;) (1+ 0(1))1

0

¢ > 2req11+Ch

0

+ —(2p—1)e¢ t 2ree41+C1
<exp | —aCe; (750) exp (e¢(to — 1)) <t0)

< exp (—aCz

In (¢/to)

exp (~2p + 1)

ex

to —
P (m (t/to)

The last two elements are bounded by a constant, so it is sufficient to pick a = CAQ exp(2p—

! ) exp (2r + C1)

2 1
1) In“(t) to complete the proof for the case p > 3.

Now, for p < 1 and p = 3 it is sufficient to use ED(G;) = C2(1+ o(1)) and ED(G,) =

Cylnt(1 + o(1)), respectively.

E Proof of Theorem 4

t t
< exp (A, D(Gy,)) exp <2r5t+1 In % + C’1> = exp (A, D(Gyy)) (t

0

> 2rei41+Ch

so that Ay, < e;. Then from Chernoff bound it

We start the proof by obtaining a simple lemma, analogous to Lemma 15:

» Lemma 16. For any A = O(3) it holds that

Proof.

E [exp(Adeg,,(t + 1))|Gi] < exp (2ApD(Gy)(1+ O(N)) + 2Ar(1+ O(N))).

E [exp()\ degt+1(t + 1))|Gt]

IN

for all =

% ;]E {exp ()\Bin(degt (i),p) + ABin (t — deg, (i), %)) |Gt]

t .
LS (1
i=1

Since e* < 1+x+a?forallz € [0,1], 1+2z)¥ <1+2zyfor 0 <y <1l,and 1 +x < e

E [exp()\ deg, 1 (t + 1))|Gt]

<

| =

i=

1

ST+ pAA+O(N)) (

r

rA
14 2
+ t

T t*de&(i)
)T,

t—deg, (1)
1+ 0<A>>>
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(14 2pAdeg,(1)(1 + O(N))) (1 +2rA(1 + O(N))))

AN
| =
.Mw

=1

(1 +2pAdeg, (1)(1 + O(N))) exp (2r(1 + O(N)))

A\
| =
-MH

i=1
(1 +2pAD(Gy)(1 + O(N))) exp (2r(1 + O(N))))
exp (2ApD(G)(1 + O(N)) + 2Xr(1 + O(X))) .

IN

<

Next, using the lemma above and Theorem 3 we limit the growth of D(G¢) over certain
intervals:

» Lemma 17. Let p > % For sufficiently large t and all k <t it is true that
Pr{D(Geriye) — D(Gre) 2 AC((k + 1)~ — k22~ log?(1)] = O(t4)
for some fized constant C' > 0 and any A > 0.

Proof. First, let us define events B; = [D(Gyy1) > (A + 1) C; 3%~ log?(i)] with a constant
C; such that by Theorem 3 it is true that Pr[B;] = O(i=4~'). Let us also denote Aj =
UEE;;)FI B; and observe that Pr[A] = O(t~4).

Now, we note that from Lemma 15 for any A\ = o(1)

E [exp (AM(D(G41) — D(Gy)))

Gta _‘Bt:l

2A
<E {GXP (m deg, (¢ + 1)) G, ﬁBt}

2\r

< [exp (fiplp(et)u FOO) + (L O(A)))

t
<exp (A(A+1)Cot 2 log?(t)(1 + o(1)))

ﬁgt}

for a certain constant Cs.
Now we proceed as following;:
Pr[D(G(11)e) — D(Grt) = d|Gii]
< PI[D(G(k+1)t) - D(th) > d‘th, ﬁ.A]C] PI[ﬁA] + Pr[Ak]
< exp(—Ad)E [exp (A(D(G rs1)) — D(Gra))) |Gre, = Ar] +O(t™4)
(k+1)t—1

<on(-d) [ B |ew ((DGosr) — DG |Giy 8| + 0
i
< exp(—Ad) H exp (A (A+ 1) C2i? 2 log?(i) (1 + o(1))) + Ot %)
i=kt

(k41)t—1
< exp(—Ad) exp ( Z AA+1)C34%P21og?(t)(1 + 0(1))) + 0t

i=kt
< exp(—Ad)exp (A (A+1) C5((k + 1)*71 — k2P~ 1) og?(t)) + O(t ™)
for a certain constant Cj.

Finally, it is sufficient to take A = (((k+1)%~! — k1) log2(t))_1 and d = AC,((k +
1)2p=1 — 2p=1y2p=1]0g?(t) for sufficiently large Cyy to obtain the final result. <
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o18 Now we may return to the main theorem. Let Y = D(G (441):) — D(Grt). We know that
s0  for p > %

EYy = ED(G(41)¢) — ED(Gye) = Cy ((k + 1)%P71 — k2~ 1) 277 1(1 4 o(1))

o0
O
3]

62 for some constant C7.

623 Let now define the following events:
t2p—1
624 A = |:Yk < ]
ft)
t2p 1 9
625 Ay = |: f(t) <Y, < 02(( 1)21)—1 — k2p—1)f2p_1 log (t)

Az = [Yi > Co((k +1)* 7" — k* 1)t~ log?(1)]

oo
O
RNty

s for a constant Cy such that (from the lemma above) Pr[A3] = O(t~2). Here f(t) is any
&0 (monotonic) function such that f(t) — oo as t — oo.
630 We know that

631 EY, =E [Yk|A1] Pr [./41} +E [YklAQ] Pr [AQ] +E [Yk‘Ag] Pr [Ag]
632 EY, > C4 ((k+1)2p71 7]6'21)71) 21
t2p—1
633 <
E [Vi|As] < Co((k + 1)1 — 2P~ 11271 1og? (1)
g%g E [Yk|./43] S (k + l)t

es7 and therefore for sufficiently large ¢ it holds that

Pr{Ay] < Co ((k+ 1)~ — k%~ 1) log?(t) — Cy ((k + 1)2P~1 — k2P—1)
- v Co ((k+ 1)1 — k201 log?(t) — ?L
639 S 1-— LZ
610 2C5 log=(t)

641 Let now 7 = kt.

642 Pr [D(GT) < tzp_lf

k tzp 1
{1 ]
o SH“PSﬂJSﬁ@‘wigﬁ

=1

ss Therefore, if we assume k = % log®(t), we get

o PrPEI ST

ez and ﬁnally

t2p—1

] — exp (~Alog(t) = O(t™)

649 Pr (Gt)

650 L

A2 t2p 110g 3(2p71)7€(t) ZO(t_A).

61 for some constant C'3 and any ¢ > 0.
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w2 F  Proof of Theorem 8

653 E [eXp (At+1 degH_l(s)) | Gt} =

_ <degt(5)p + t — deg(s) T) exp (Ar41 (degy(s) + 1))

t t t

d t—d

655 + (%t(s)(l —p)+ i(s) (1 - 7‘)) exp (Ae11 deg,(s))
t t t
656 = exp (Ar+1 degy(s))
deg, (s t — deg,(s roor
657 <gl:() (1fp+pexp(/\t+1))+fgt() (1t+t6Xp()\t+1)>>
deg, (s r(t — deg,(s
658 < exp (Ary1 deg,(s)) (1 + (p ft( ) + ( 2 A ))> (A1 + )\f+1)>
deg, (s r(t — deg,(s
659 < exp ()\t+1 deg,(s) + (p ;gt( ) + ( 2 i ))> (Aes1 + )\fﬂ))
r r

oo = exp (At+1 deg(s) (1 + (% - tj) (1+ /\t+1)>) exp (At+1 (14 Att1) ;) :
662 Let us assume that A\, <e; =o0(1) for all s <k <t¢. Then for all k =s,s+1,...,t we

663 have

664 Ak = Akt1 (1 + (% — é) (1+ )\k+1)) < A1 (1 + (% - %) (1 +€t))

665

es6 which lead us to

R (RS [N PR (1 5 28
k=s $

o
=y

k=s
t
p r t 1 1
668 S/\texp <(1+€t)/s (k—k2dk')> :)\teXp ((1+€t) (plns+r<t—8)>)
t p(1+5t) r

669 < A - - 1 .
c ()t
671 It follows that

t—1 .
672 E [exp (A: deg,(s)) |Gs] < exp (As deg,(s))) H exp ()\k;+1 (1+ Ag+1) E)

k=s

" ¢ re¢(l+er)
673 < exp (As deg,(s))) exp <st (I1+e&)rln s) < exp (A5 deg,(s))) <s>
674

675 Now, let \; = & (i)_p(lﬁt)exp (—% (1 —&—et)) so that Ay < €. Then, from Chernoff

e7s  bound it follows that
677 Pr[deg,(s) > aEdeg,(s)|Gs] = Prlexp(deg,(s) — aE deg,(s)) > 1|Gs]

o8 < exp (—aXE[deg,(s)|Gs]) Elexp (A, deg,(s)) |G]
¢ re¢(14e¢)
679 < exp (—aME[deg,(s)|Gs]) exp (As deg,(s)) <> .
s
680
681 Let’s assume &; = 3. Recall now from Theorems 6 and 7 that if s = O(1), then it holds

> that E[deg,(s)|Gs] = C1t? and therefore

o
o

re¢(1+ey)
683 Pr[deg,(s) > aC1t?|G,] < exp (—aCaet™P°") exp (€; deg,(s))) (i)



684
685

686

687

688

689

690

691

692
693

694

695

696

697

698

699

700

701
702

703

704

705

706

707

708

709

7

o
5]

711

712
713

A. Frieze, K. Turowski, W. Szpankowski

aC! deg, (s
< exp <_lnt3> exp (lgnt()) exp (2r)

for certain constants Csy, Cj.
Therefore, it is sufficient to set o = CA;; In%t to get the final result.

G Proof of Theorem 77

We start by showing two lemmas, giving us the crude lower bound on the degree of a given
vertex:

» Lemma 18. Let s = O(1). Then asymptotically as t — oo, if r > 0, then

Pr {degt(S) < fz lnt} =0t

for some constant C and any A > 0.

Proof. Let X;, ~ Bin(k,}), Y = 3,1 X Then

t
t
EY; = Y EX)= rin s +0(1).
k=141

We note that if I = min{s, 7}, we have deg,(s) > deg,(s) — deg;(s) = Y. Therefore, from
the Chernoff bound

Pr[deg,(s) < r(1 —26)Int] < Pr {degt(s) <r(l-4)ln ;] <Pr [Yl <r(l-19) lnE

l
< exp (—522]1‘3)/1) = O<t7§),

and it is sufficient to pick § = % to finish the proof. <

Now we may go to the proof of the theorem.

E [eXp (—Mt+1 degH_l(S)) | Gt]
_ (degt(s)p i t —deg,(s)r

t t t) exp (—pe+1 (degy(s) +1))

(Cbgg(s)(l )+ w (1 - Z)) exp (—p41 degy(s))

+

= exp (— 41 deg,(s))

(S22 1 poxp () + =B (1 2 Do () )
< exp (—pu+1degy(s)) (1 + (pdeft(S) + - iegt(S))> (_Nt+1 + M%ﬂ))
< exp (ut+1 deg,(s) + (pdeft(s) + - - fgegt(s))> (=1 + M?—Q—l))
= exp <—Mt+1 deg,(s) (1 + (Itz - t%) (1- Mt+1))) exp (—um (1 — pes1) g) :
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714 Let us assume that pr < e, =o0(1) for all s < k <t¢. Then for all k =s,s+1,...,t we
715 have

o e (04 (B ) ) 2 (14 (2 ) 0 -2)

717

ns  which lead us to

NsZNtH(l‘F(%*#) (lfst)) > g exp (OSt)tX_i(ZI;))

=s k=s

oz (e [ (2 fa)) =mew (-0 (e (3-1))

¢ p(l—e:) r
™ > e () exp (; (1- 5t)>
s

722

~
oy
©

»3  and
s p t\" r
eI () < (2) e (5),
725 k=s
726 It follows that for any s < v <t
t—1
r
w Elexp (—pdeg,(s)) G,) < Elexp (—p, deg, (5))Ga] TT exp (s (1= ) 1)
k=v
s < E [exp (—p deg,(s))) |G]

729

730 Now, let u; = € (%)_p exp (—%) so that Ce; < & (S%)_p(5

7 from Chernoff bound it follows that

* exp (—%) < g < €. Then,
732 Prldeg,(s) < BEdeg,(s)|Gs] = Prlexp(BE deg,(s) — deg,(s)) > 1|G]

BuE[deg,(s)|Gs]) E[exp (—pe deg,(s)) |G]

BuiE[deg, (s)|Gs]) E[exp (—pus- degg.(s)) [G]-

733 < exp

o~ o~

B = exp

736 Now we know that

757 E [exp (—ps- deg,-(s))) |Gs]

* * *
738 < exp (—,us*r(S In S) Pr {degt(s) > rdln S] +Pr [degt(s) <rdln s
S S S
k\ —Hs*TS * *%
.= (2) o ((s)
5 S
740
741 Let’s assume s* =t and ¢; = m. For p > 0 we may proceed further:

742 Pr[degt(S) < BEdegt(SHGS]

< oxp (Gt 1 (dog, (5) + Calp.) (t)) E fexp (— e deg,. (5))) |G]

tPY o\ ~Ceerd 7 -4
744 < exp <5et(degs(s) + Cy(p, r))sp> () +0 ()

S S



745
746

747

748

749
750

A. Frieze, K. Turowski, W. Szpankowski

<exp (ﬁ

Crvylnlnt

Let now 8 = t7PY. Then

Prldeg,(s) < ¢ 7'E deg,(s)|G]

<o

A(degs(s) + C2 (pv 7“))

CrvysPlnlnt

(deg(s) + Ca(p, 7)) —

2) ool )
sp

(oo

762
t— 2

))

23:23

CVIT 2016



	Introduction
	Main results
	Discussion
	Useful lemmas
	Proof of Lemma 1
	Proofs of Theorem 2 and Theorems 6–7
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem ??
	Proof of Theorem ??

