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Abstract

We study the average-case complexity of shortest-paths problems in the vertex-potential
model. The vertex-potential model is a family of probability distributions on complete
directed graphs with arbitrary real edge lengths but without negative cycles. We show
that on a graph with n vertices and with respect to this model, the single-source shortest-
paths problem can be solved in O(n?) expected time, and the all-pairs shortest-paths
problem can be solved in O(n?logn) expected time.

1 Introduction

A large variety of combinatorial-optimization problems can be modeled as shortest-paths
problems. Given a (directed) graph in which edges are assigned real edge lengths, these
problems ask for distances between pairs of vertices. The distance of vertex j from vertex 4
is defined as the infimum of the lengths of all directed paths from ¢ to j, where the length
of a path is the sum of the lengths of its edges. (We need to take the infimum, since in the
presence of a negative cycle, that is, a (directed) cycle of negative length, a finite minimum
does not always exist.) We concentrate on two types of shortest-paths problems. In the
single-source shortest-paths problem, we are interested in the distances of all vertices from a
given source vertex; in the all-pairs shortest-paths problem, we want to compute the distance
between each pair of vertices.

The worst-case complexity of known algorithms for the single-source shortest-paths problem
on a directed graph with vertex set [n] = {1,...,n} and m edges depends heavily on whether
or not edge lengths are allowed to be negative. In fact, if all edge lengths are non-negative,
then Dijkstra’s algorithm solves the single-source shortest-paths problem in near-linear time
O(m + nlogn) [8, 11]. In the general case, the Bellman—Ford algorithm [2, 10] solves the
single-source shortest-paths problem in time O(vm), where v is the maximum number of
edges on a shortest path. This is O(nm) in the worst case. The solution of one single-source
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shortest-paths problem allows us to transform a problem with arbitrary real edge lengths
into an equivalent problem with non-negative edge lengths [9, 17]. This gives a running
time of O(nm + n%logn) for the all-pairs shortest-paths problem in the general case. The
algorithms of McGeoch [21] and Karger, Koller, and Phillips [18] solve the all-pairs shortest-
paths problem with non-negative edge lengths in time O(n|H|+n?logn), where H is the set
of edges that are a shortest path between their endpoints. Somewhat better running times
are known if the edge lengths are assumed to be integers from some fixed range; see [1, 13, 5.

Worst-case analysis, however, sometimes fails to bring out the advantages of algorithms that
perform well in practice; average-case analysis has turned out to be more appropriate for
these purposes. In average-case analysis, we study the expected running time of shortest-
paths algorithms where instances of shortest-paths problems are generated according to a
probability distribution on the set of complete directed graphs with edge lengths. Two kinds
of probability distributions have been considered in the literature. In the uniform model,
the edge lengths are independent, identically distributed random variables. The endpoint-
independent model is more general. A random instance generated according to the endpoint-
independent model has the property that if the edges leaving a vertex are sorted according
to their lengths, then the associated endpoints occur in random order. This even includes
the case that the edge lengths themselves are arbitrarily fixed, and only the assignment of
the edge lengths to the edges leaving a vertex is random.

The average running time of shortest-paths algorithms has mainly been studied for the case
of non-negative edge lengths. In the endpoint-independent model, the following results on the
average-case complexity of the single-source shortest-paths problem (on instances with n ver-
tices) are known. Noshita [24] analyzed the average-case complexity of Dijkstra’s algorithm;
the time bound, however, does not improve over the worst-case complexity of the algorithm.
Spira [26] dealt first with the average-case complexity of the all-pairs shortest-paths problem.
He proved an expected time bound of O(n?(logn)?), which was later improved by Bloniarz [3]
and Frieze and Grimmett [12]. Moffat and Takaoka [23] described an algorithm with expected
running time O(n?logn). Mehlhorn and Priebe [22] showed that the algorithm of Moffat and
Takaoka is reliable, that is, it runs in time O(n?logn) with high probability and not just
in expectation. In the uniform model, Frieze and Grimmett [12] derived precise results on
the distribution of edge lengths and distances. It is a consequence of their results that the
expected running time of the algorithms of McGeoch and Karger et al. is O(n2logn) in the
uniform model.

Concerning the average-case complexity of the shortest-paths problem in the case of arbitrary
real edge lengths, it is already difficult to define a probability distribution that allows negative
edge lengths but does not trivialize the problem. For an instance of the shortest-paths
problem on a directed graph D, let Doy and D> be the subgraphs formed by the edges
of negative and non-negative length, respectively. If Do contains a cycle and D>q consists
of a single strongly connected component, then all distances are —oo. Topological sorting
allows us to decide in linear time whether D g contains a cycle, and depth-first search allows
us to decide in linear time whether D>( consists of a single strongly connected component.
We conclude that shortest-paths problems become trivial if the probability distribution is
such that, with high probability, Do contains a cycle and D>( consists of a single strongly
connected component. This will, for example, be the case if edge lengths have a (constant)
non-zero probability of being negative and instances are generated according to the uniform



model.

To the best of our knowledge, a probability distribution for graphs with arbitrary real edge
lengths (in order to generate instances of shortest-paths problems) was proposed by Kol-
liopoulos and Stein [19] for the first time. They studied the endpoint-independent model
and gave an algorithm for the single-source shortest-paths problem with expected running
time O(n?logn). In general, it is not clear how likely a negative cycle is in the endpoint-
independent model. (Note, however, that if each vertex has at least one outgoing edge of
negative length, then the directed graph must contain a negative cycle.)

We study the average-case complexity of shortest-paths problems in the wvertez-potential
model. This model was used previously by Cherkassky, Goldberg, and Radzik [4] in an
experimental evaluation of shortest-paths algorithms. In this model, there is a potential ;
for each vertex i € [n] and a random variable r; ; for each edge (i, j), ¢,7 € [n]. (We will set
ri; = 0, for 4 € [n].) The edge lengths are defined by

Cij =Tij — T+ 7 , for all edges (Z,J) .

Of course, only the c; ;’s are revealed to our algorithms and the r; ;’s and m;’s are hidden
parameters of the model. The variables 7; ;, ,j € [n], ¢ # j, are assumed to be independent,
identically distributed random variables with values in [0,1]. (Some additional assumptions
on the common distribution function F' of the r; ;’s are needed to allow the application of
the results of Frieze and Grimmett [12]. This will be made more precise in Sect. 3.) The
assumption 7;; > 0, 4,j € [n], guarantees that instances generated according to the vertex-
potential model contain no negative cycle; see Propositions 1 and 2. The vertex potentials
m;, © € [n], may be arbitrarily chosen. (This is a considerable generalization of the model

that we studied in [6], where the m;’s were assumed to be random variables with values in
[_L 1] )

We show that the single-source shortest-paths problem can be solved in O(n?) expected time
and that the all-pairs shortest-paths problem can be solved in O(n2 logn) expected time. In
both cases our algorithms are reliable, that is, finish their computations within the respective
time bounds with high probability. Our algorithms are tailored to random inputs generated
according to the vertex-potential model. They exploit two structural properties that are
exhibited by the input graphs with high probability. Firstly, we can reduce the number
of edges in the input graphs without changing the shortest-path distances. Secondly, each
shortest path consists of at most O(logn) edges.

More precisely, our algorithm for the single-source shortest-paths problem computes vertex
potentials 7;, ¢ € [n], with the property that for any i,j € [n], the difference 7; — 7; is
close to m; — m;. The 7;’s are then used to define reduced edge lengths ¢ by ¢; ; := ¢;; +
m; — ;. The reduced edge lengths will not be non-negative. However, since they are good
approximations of the r; ;’s, they allow the extraction of a small number of relevant edges
from the complete graph that, with high probability, give the same shortest-path distances.
We extract O(n?/logn) relevant edges and run the Bellman-Ford algorithm on this edge set.
Due to the second property, the algorithm computes a solution to one single-source shortest-
paths problem in expected time O(n?); see Theorem 1. (For the same reason, the algorithm
of Bellman and Ford would solve the single-source shortest-paths problem in expected time
O(n?logn) if run on complete input graphs.) The all-pairs shortest-paths problem can be



solved in O(n?logn) expected time if we use the solution to one single-source shortest-paths
problem to define non-negative edge lengths and then employ the algorithm of McGeoch or
Karger, Koller, and Phillips; see Theorem 2.

The vertex-potential model and the endpoint-independent model are incomparable as the
endpoint-independent model cannot exclude negative cycles and the vertex-potential model
excludes negative cycles. Moreover, in the vertex-potential model, there is a strong correlation
between the endpoint of an edge and the length of the edge. Assume that the distribution
function F is such that all r; ;’s are very close to zero. This implies that for all vertices 7, it
is probable that the shortest edge leaving 7 will go to the vertex with minimum potential.

The paper is organized as follows. In Sect. 2, we recall basic facts about shortest paths and
reduced edge lengths. We provide auxiliary results needed for the analysis of our algorithms
in Sect. 3. The algorithms and their analysis are presented in Sect. 4.

2 Shortest paths and reduced edge lengths

Let D,, be the complete loop-less directed graph on the set [n] = {1,...,n} of vertices.
Assume that edge lengths are given by a function ¢ from the set of edges to the reals; the
length of the directed edge (7,j) will be denoted by c; ;, for ,5 € [n]. (For convenience, let
¢i; =0, for i € [n].) We will write (Dy, c) for D,, with edge lengths c.

For a directed path P in D, let ¢(P) be the length of P with respect to ¢, that is, ¢(P) is
defined as E(iﬂ-)e p Cij- For any pair 4, j of vertices, let d; j(c) be the infimum of the lengths
of all paths from i to j. The quantity J; j(c) will be referred to as the distance of j from 4
(with respect to c).

We consider the following two shortest-paths problems. For a given source vertex s € [n],
the single-source shortest-paths problem asks for the distances of all vertices 7 € [n] from s.
If s is fixed and no confusion is possible, we will denote these distances by §;(c) for i € [n].
In the all-pairs shortest-paths problem, we want to compute the distance between each pair
of vertices. The maximum of all these distances is called the diameter of D,, with respect to
¢ and will be denoted by A(c).

As mentioned in the introduction, we want to generate instances of shortest-paths problems
without negative cycles. The following proposition characterizes edge lengths ¢ for which
(Dp, ¢) does not contain any negative cycle.

Proposition 1 The absence of negative cycles in (Dy,c) is equivalent to the ezistence of
vertez potentials m; € R, i € [n], so that the reduced edge lengths r (of ¢ with respect to the
m;’s) are non-negative, that is,

Tij = cCij +m —m; >0, for all edges (3,5) .

Proposition 1 relies on the following optimality conditions for a solution to the single-source
shortest-paths problem (with source s).



For every vertex i € [n], let d;(c) denote the length (with respect to ¢) of some
directed path from s to 4, with ds(c) = 0. The quantities d;(c) are equal to the
distances d;(c) if and only if they satisfy

di(c) + ¢ij > dj(c) , for all edges (i,7) . (1)

It is well-known that shortest-paths problems are invariant under reduction of edge lengths
with respect to vertex potentials. We summarize this knowledge in the following proposition.

Proposition 2 Suppose that we associate a vertez potential T; € R with each vertez i € [n]
and that we define reduced edge lengths € (of ¢ with respect to the 7;’s) by ¢ j := ¢; j +m; —7j,
for any edge (i,7). Then, for any directed path P from vertez k to vertez ¢,

AP) = Y (cij+7i—75) =c(P)+ 7k =T . (2)
(i.4)eP

Therefore, distances with respect to c and € relate to each other through 6y ¢(¢) = O ¢(c)+ 7k —
e, for all k,£ € [n]. It also follows from (2) that, for any directed cycle C, E(i,j)ec Cij =
Z(i,j)ec ¢ij; wn particular, (Dy,¢) contains a negative cycle if and only if there is a negative
cycle in (Dp,c).

3 Properties of the vertex-potential model

In the vertex-potential model that we consider in this paper, edge lengths c; ; are generated
according to
¢ij =rij —m +m; , for all edges (,7) ,

with random variables r; ; > 0 and (not necessarily random) vertex potentials 7;, %,j € [n].
(We will set r;; = 0, for ¢ € [n].) Our precise assumptions for these variables are as follows:

(A1) The variables r;j, i,j € [n], i # j, are independent, identically distributed random
variables with values in [0,1] and mean p. We will denote their common distribution
function by F; it is assumed to be independent of n. We further assume that F(0) =0
and that F'(0) exists and is strictly positive. (This implies p > 0.)

(A2) The vertex potentials m;, ¢ € [n], are arbitrary real numbers.

The independence assumptions in (Al) are the most important (and restrictive) ones. As-
sumption (A2) considerably generalizes the assumption on the ;’s in [6], where they were
assumed to be independent, identically distributed random variables with values in [—1,1].
We will not need to know the value of p; if needed, we could get a good estimate for it from
the data, see the remark after Lemma 5. This lemma will be the only place where we use
that the random variables are bounded, and the assumption of boundedness is there more for
convenience than necessity. It could be replaced by bounds on the tails of the distributions.
By definition of F’(0) and since F'(0) = 0,

F(e) =Pr(rij <e)=F'(0)-e+o(e) , asel0, (3)



that is, the assumption F'(0) > 0 implies that the distribution of the r; ;’s can be approx-
imated by uniform distributions in a neighborhood of 0. This allows reducing the proof of
Lemma 2 to the case of the uniform distribution on [0,1]. The proof of the following tail
estimate also makes use of this fact.

Lemma 1 Let G be a fized distribution function with the properties that G(0) = 0 and that
G'(0) exists. Then there are constants R = Rg and eg such that for any collection X1, ..., Xm
of independent random variables, all distributed according to G, and for any € < eg,

Pr(X1+---+Xmgg)g<@)m . (4)

m

Proof. By our assumptions on G, G(¢) = G'(0) - € + o(¢), as € | 0, and there exist constants
R = Rg > G'(0) and e¢ < 1/R such that, for all £ < eg, G(¢) < R-¢. Let X be a random
variable that is distributed according to G, and let Y be a random variable that is uniformly
distributed on [0,1/R]. For all € < g, we have by construction,

Pr(X<e)=G(e)<R-e=Pr(Y <¢) ,
which implies that

Pr (min{X, eg}t < £) <Pr <min{Y, eg} < {) forall £ >0 .

This means that the random variable min{Y, eg} is stochastically dominated by the random
variable min{X,eg}. Let Y1,...,Y,, be independent copies of Y. Since stochastic domi-
nance is preserved under taking sums of independent random variables (see, for example, [25,
Example 9.2(A)]), for any € < £, we get the following bound on Pr(X; + --- + X, <€),

Pr(Xi+ - +Xm<e) = Pr(min{Xl,ag} + -+ min{Xp,eq} < 6)

INA

Pr (min{Yl, egl+ -+ min{Yn,,eq} < 6)
= Pr(i+---+Y,<e) . (5)

It is easily seen that Pr(Y1+---+Y, <¢) = %, for any € < 1/R, since the probability in
question equals the volume of a suitably scaled standard simplex in R™. We thus get from

(5) that
PT(X1++Xm§€) < (Rs) S <6R6> ’

- m! m
for any € < e@, which proves (4). O

For a problem of size n, we will say that an event occurs with high probability if it occurs
with probability at least 1 — O(n~7) for an arbitrary but fixed constant v > 1. To ensure
a probability of failure O(n~7), in most of our statements, we have to choose sufficiently
large constants, depending on the actual value of «y. This is sometimes made explicit by a
subscript .



3.1 The non-negative case (7 = 0)

If the 7;;’s are distributed as in (A1) and the m;’s are identically 0, then this gives rise to
instances (D, r) with non-negative edge lengths, and the analysis of shortest-paths algo-
rithms by Frieze and Grimmett in [12] can be applied. We briefly review how they argue
to obtain bounds on the distances in (D,,r). For every vertex i, they construct a spanning
tree T; rooted at . With high probability, the length of the path in T; from the root to any
other vertex is O((logn)/n) [12, (4.6) and (4.14)]. This implies that the diameter A(r) is
O((logn)/n) with high probability.

Furthermore, if (4, 5) is the p-th shortest edge in the adjacency list of ¢ where p > B,logn
(for a sufficiently large constant B, ), then r; ; > A(r) with high probability [12, Lemma 4.3].
This means that, with high probability, edge (i, j) is #rrelevant, that is, is not contained in any
shortest path in (D,,r). We can therefore restrict ourselves to examining the sparse graph
with only the O(logn) shortest edges from each adjacency list. We will show in Lemma 6
how to adjust this idea of sparsifying the graph if edge lengths are distributed according to
the vertex-potential model.

Lemma 2 ([12]) Suppose that edge lengths in (D,,r) are distributed as specified in (A1).
Then, with high probability, A(r) = O((logn)/n), and the set A := {(i,7) ; ri; < A(r)} of
relevant edges is of cardinality O(nlogn).

(For the special case of uniformly distributed r, similar results were proved by Hassin and
Zemel in [14].) By a fairly involved argument, Frieze and Grimmett also proved that each
of the trees T;, ¢ € [n], is of depth O(logn), that is, that these short (in length, though not
necessarily shortest-length) paths in T; consist of O(logn) edges with high probability [12,
Theorem 5.2]. One might imagine that a considerable fraction of shortest paths has more
(but shorter) edges, but we now prove that, with high probability, shortest paths also consist
of only logarithmically many edges.

Lemma 3 With high probability, shortest paths in (Dy,r) consist of O(logn) edges.

Proof. Recall from Lemma 2 that, for v > 1 arbitrary but fixed, there is a constant C' = C
such that, with probability at least 1 — O(n~7), the diameter A(r) in (D,,r) is at most
C(logn)/n. We fix such a constant C, though we will not necessarily assume in the following
that A(r) < C(logn)/n. Let us call a path P in (Dp,r) short if r(P) = > (; yeprij <
C(logn)/n =: €5. The length (with respect to 7) of a given (directed) path consisting of a fixed
number of k edges is the sum of k independent, identically distributed random variables, and
according to (A1), their common distribution function satisfies the assumptions of Lemma 1.
For sufficiently large n, Lemma 1 thus implies that a given path with k£ edges is short with
probability at most (‘ER%)’“ = (%)’2 for some constant R that depends only on the
distribution function of the edge lengths. This upper bound is at most (en)~* if k > kg :=
K logn, for some K > e2RC. Hence, short paths with more than ko edges exist in (D, )
only with probability at most Y .-, (k + 1)!(,7,) - (en)™® < n? - n~K. If we also ensure
that K > « + 2, this probability is O(n~ 7). It follows that in (D,,r), with high probability,
A(r) < C(logn)/n and all short paths consist of O(logn) edges. If this is the case, shortest
paths in (D,,r) (with respect to r) are also short (with respect to the definition above),

which proves the lemma. O



Since shortest paths are invariant under reduction of edge lengths with respect to vertex
potentials (see Section 2), the following is an immediate consequence of Lemma 3.

Corollary 1 Let edge lengths r be distributed as specified in (A1), and let edge lengths c be
obtained by reducing the edge lengths r with respect to some vertex potentials. Shortest paths
in (Dy,c) consist then of O(logn) edges with high probability.

The bounds on the quantities with which we are concerned in Lemma 2 and Lemma 3 are
essentially tight, as is indicated by the following results. Davis and Prieditis [7] showed that,
for exponentially distributed 7, the expected length of a shortest path is of order (logn)/n +
O(1/n). This is also true for r uniformly distributed; see 7, 21]. In fact, this result holds
if the distribution of r is chosen from a fairly general class of distributions, including both
exponential and uniform distributions, as was proved (for undirected graphs) by Janson [16]
recently. Janson also studied the number of edges on shortest paths, proving (among other
results) that for v, the maximum number of edges on shortest paths from a given vertex s,
vs/ logn converges in probability to e. A similar result is conjectured in [16] for the maximum
number of edges on any shortest path.

3.2 The general case: Approximating the vertex-potential differences

We will use the following form of the well-known Chernoff-Hoeffding bound on the tail of the
distribution of a sum of independent random variables; see [15, 20] for a proof.

Lemma 4 Let X4,...,X,, be independent, identically distributed random variables with val-
ues in [0,1]; let £ := E[X1]. Then, for any €, 0 <e <1,

Pr(|X(X1+-+Xm) — €] >e€) <2-e7mE/3 (6)
We now show how to compute vertex potentials 7;, @ € [n], so that, for any k,£ € [n], with

high probability, the difference 7, — 7, is a good approximation of the actual vertex-potential
difference my, — .

Lemma 5 For any i € [n], define

n

~ 1
7ri::——-§ Cij -
n J

=1

Then, for any k,£ € [n], the term |(Tx — 7g) — (7 — 7¢)| s of order O(4/(logn)/n) with high
probability.

Proof. For any k,j € [n], we have —cj j = mp — 7k j — m; by definition; thus,

n n n
S TR S ST P
=1 =1 =1



from which we conclude that
1 < 1 «
%—w:——-g -——-E ;L
k k n < Tk,j o Uy
J:]_ ]:]_

Note that the rightmost term, <+ - E?:;[ 7j, is independent of k. Hence, for any k,£¢ € [n],

''n

|(’7l'\k — 7I'k) — (%g — 71'g)| < |% . (Z?:l Tk, — Z?:l ’r‘g,j)l. This implies

- - 1 <
|(Tk — k) — (T — me)| < 2-max m'zlri,j—/’ ; (7)
J:
where p = L - B[} ;7). By assumption (A1), 37, ri; is the sum of n — 1 indepen-
dent, identically distributed random variables with values in [0, 1], and hence, the Chernoff-
Hoeffding bound (6) implies that, with high probability,

ﬁ.gm,j—p = 0(+/(e Togn)/n) = O (v/(logn)/n) |

for any ¢ € [n]. From this we conclude that 2 - max; |ﬁ Y 5-17ij — pl and, by (7),
|(Ty — 7)) — (¢ — mg)|, for any k,£ € [n], are all O(4/(logn)/n) with high probability. O

Remark 1 In [6], we defined approximate vertex potentials 7; = p — ﬁ Y ; Cijy for i €
[n], where p = ﬁ “ D Cig = ﬁ - 2.;;Tij- (The “observed mean” p is a good
approximation of p.) Using the stronger assumptions of [6] on the 7;’s, one can prove that |7;—
m;| = O(4/(logn)/n) with high probability. It turns out, however, that the approximation of

single vertex potentials is not needed in the analysis of our algorithms; see Sect. 4.1.

4 The algorithms

4.1 Solving the single-source shortest-paths problem

We are now ready to explain in detail how we solve an instance (Dy,c) of the single-source
shortest-paths problem if edge lengths in (D, c) are generated according to the vertex-
potential model of Sect. 3.

Our algorithm proceeds in three phases, a preprocessing phase, a computation phase, and
a postprocessing phase, in which the correctness of the solution from the second phase is
checked. Let the source vertex for the single-source shortest-paths problem under considera-
tion be denoted by s.

Preprocessing. The algorithm computes, for every vertex i € [n], a vertex potential 7; as in
Lemma 5 and transforms the edge lengths ¢; ; to

Ciji=Cij+ T —7T;=r;j+ (T —m)— (7; —m;) , for all edges (¢,7) . (8)



The shortest-paths problems (D,,c) and (D,,¢) are equivalent. However, (Dy,,¢) is more
efficiently solvable, since edge lengths ¢ allow a substantial sparsification of the underlying
graph. The following lemma gives a bound on the length of edges that are irrelevant with
respect to ¢.

Lemma 6 If¢;; > A(r) + maxyy |(T — m) — (T — 7g)|, then edge (i,7) is not contained in
any shortest path.

Proof. If (i,j) is contained in a shortest path, then ¢; ; = ¢; ;(¢) < A(€). It follows from (8)
and Proposition 2 that for any &, £ € [n], 0k () = Og4(r) + (Tk — k) — (Wg — 7;). This implies
(C)<A( )+maxkg|(7rk—7rk) (7rg—7rg)| O

For v > 1 arbitrary but fixed, we know from Lemma 2 and from Lemma 5 that there exist
constants Cy and M, such that

A(r) < Cy(logn)/n and  max|(7y — k) — (T — me)| < My/(logn)/n 9)
with probability at least 1 — O(n™7). For the time being, we will assume that (9) holds. For
an arbitrary (but fixed) constant L, > M, (and sufficiently large n), all relevant edges (that
is, edges that will possibly be contained in a shortest path) are then contained in

~

A= {(i,j) i Gij < Ly (logn)/n}

(A more careful proof of Lemma 5 reveals that we could set L, = 5,/4. This value is
not optimal but nevertheless indicates that, for given -y, some explicit constant L, is easily
derivable.) The vertex potentials 7;, ¢ € [n], the reduced edge lengths ¢, and the set A can
be computed in O(n?) time. Let D denote the graph ([n], A).

Computation. We now solve a single-source shortest-paths problem with source s on the
sparsified graph (ﬁ,E) by running the Bellman—Ford algorithm [2, 10]. This algorithm main-
tains tentative distances d; for every vertex ¢ € [n]. The d;’s are initially set to co (except
for ds = 0), and d; always represents the length of some path in (13,?:\) from s to i. The
Bellman—-Ford algorithm proceeds in passes over the edge set 121\, maintaining the following
invariant. After the k-th pass, the Bellman—Ford algorithm has correctly computed the dis-
tances of all vertices to which there is a shortest path from s consisting of at most k£ edges.
The algorithm actually checks the optimality conditions (1) for all edges (in A) in each pass,
and it will therefore terminate (with all distances in (D, ¢) computed correctly) after the v-th
pass, where v is the maximum number of edges on a shortest path in (D ¢). The running
time of the Bellman—Ford algorithm is therefore O(v |A|), which is O(n3) in the worst case
but o(n?) with high probability, as we now argue.

By (8) and (9),
Ac{(i4) 5 ris < (Ly + My)\/(logn)/n |
and it follows from the assumption (3) on the distribution of edge lengths that edge (7, 7)

is an element of the set on the right-hand side with probability p = ©(,/(logn)/n) for

sufficiently large n, independently of all the other edges. The random variable |121\|, the
cardinality of A, is therefore stochastically dominated by a random variable that is binomially

10



distributed with parameters n(n — 1) and p. We apply the tail estimates of Lemma 4 to
deduce that |A| = O(n(n — 1),/(logn)/n) = O(n32/logn) with high probability. By (8)
and Corollary 1, v = O(logn) with high probability. Hence, with high probability, it takes
O(n*/?(logn)®/?) = o(n?) time to run the Bellman-Ford algorithm on the sparsified graph
(D,2).

Postprocessing. The second phase will have failed to compute all distances correctly only if (9)
does not hold, which happens only with probability O(n 7). The optimality conditions (1)
(checked for all edges) are an O(n?)-time certificate for the correctness of the solution. Since
the worst-case running time of the Bellman—Ford algorithm on (D5, ¢) is O(n?), we can easily
afford to run the Bellman—Ford algorithm on (D,,¢) in case of failure, without affecting
the bounds on the running time. Finally, it takes O(n?) time to compute the distances
51(6) = 51(/6\) — T+ 7, forallie [n]

The discussion above is summarized in the following theorem.

Theorem 1 Assume that the edge lengths in (Dy,c) are generated according to the vertex-
potential model of Sect. 8. The single-source shortest-paths problem can then be solved in
time O(n?) with high probability.

Remark 2 Theorem 1 will still hold if the Bellman—Ford algorithm takes time O(n?) on
(13, ¢) (with high probability), since pre- and postprocessing of the algorithm take time O(n?)
anyway. This means that because of Corollary 1, we could afford to restrict the Bellman—Ford
algorithm to the edge set {(i,5) ; ¢, ; < R/logn}, which is a set of cardinality O(n?/logn)
with high probability for a suitable constant R. In fact, even if we omitted the computation
of both vertex potentials and reduced edge lengths and just ran the Bellman—Ford algorithm
on the complete input graph, we would solve the single-source shortest-paths problem in time
O(n?logn) with high probability because of Corollary 1.

4.2 Solving the all-pairs shortest-paths problem

Theorem 2 Assume that the edge lengths in (Dy,c) are generated according to the vertez-
potential model of Sect. 3. The all-pairs shortest-paths problem can then be solved in O(n?logn)
with high probability.

Proof. We first compute distances d;(c), ¢ € [n], with respect to source vertex 1 by solving a
single-source shortest-paths problem as in the proof of Theorem 1 or as indicated in Remark 2.
With high probability, this takes time O(n?) or O(n?logn), respectively. Let ¢ be the reduced
edge lengths of ¢ with respect to the vertex potentials ;(c), ¢ € [n], that is, for all edges (i, j),

Gj = cigtdi(c) = d5(c)
= rij+ (di(c) — mi) — (§;(c) — mj) . (10)
It follows from the first equality and the optimality conditions (1), that ¢; ; > 0 for all edges

(4,7). The reduced edge lengths ¢ can be computed in O(n?) time, and the same time bound
will later allow us to transform distances ¢; ;(¢) into distances d; j(c), for all ¢,j € [n].

To compute the §;j(¢)’s, we run one of the algorithms of Karger, Koller, and Phillips [18]
or McGeoch [21] on (Dy,¢), which efficiently solve the all-pairs shortest-paths problem with
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non-negative edge lengths. Both algorithms run in time O(n?logn + n|H|) where H = H(c)
is the set of edges that are the shortest path (with respect to ¢) between their endpoints. We
apply the arguments of Sect. 2 again. Shortest paths are invariant under reduction of the
edge lengths with respect to vertex potentials, and it follows from (10) that the edges in H
are also the shortest path between their endpoints with respect to edge lengths r. The set
H is therefore contained in the set A := {(4,j) ; 7; < A(r)}, and it follows by Lemma 2
that |H| = O(nlogn) with high probability. This yields a running time of O(n?logn) with
high probability for the algorithms of McGeoch and Karger, Koller, and Phillips. Since
|H| = O(n?) in the worst case, our algorithm has a running time of O(n3) with probability
O(n™"), v > 1, which still gives an expected running time of O(n?logn). O
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